跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/27 18:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳勝徨
研究生(外文):Chen, Shenghuang
論文名稱:茉莉酸參與日本朝顏花朵受到機械性創傷後所誘導的老化機制
論文名稱(外文):Involvement of Jasmonic Acid in Wound-Induced Flower Senescence of Japanese Morning Glory
指導教授:游志文
指導教授(外文):Yu, Chihwen
口試委員:郭順宇游志文洪淑嫻
口試委員(外文):Kuo, SoongyuYu, ChihwenHung, Shuhsien
口試日期:2012-07-17
學位類別:碩士
校院名稱:大葉大學
系所名稱:分子生物科技學系碩士班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:28
中文關鍵詞:茉莉酸乙烯日本朝顏豐樂果阿斯匹靈
外文關鍵詞:jasmonic acidethylene2-aminoethoxyvinylglycine2-acetoxybenzoic acidJapanese morning glory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
老化過程是植物生長週期的一部份,假如能夠詳細的瞭解花朵老化的過程,將有助於花卉運輸過程和保存處理技術的提升,進而延長花卉觀賞期和增加販售價值。花朵老化是一個快速的過程,除了老化生化反應的進行,這些老化生化反應也受到外界環境的刺激和影響;例如授粉(pollination)、機械性創傷 (wounding)。本研究利用日本朝顏(Ipomoea nil)探討機械性創傷誘導花朵老化,和花朵正常老化之差異,及可能的訊號路徑傳遞。研究成果顯示,在固定生長條件下生長之日本朝顏,其開花時間大約持續6小時(在此指開花後6小時,開始出現可見萎凋徵狀);經過機械性創傷之處理後(移除雄蕊、移除花柱、同時移除花柱和雄蕊、花瓣處理0.5 cm長的切傷),其開花時間則縮短至3小時。以100 μM的茉莉酸(jasmonic acid, JA)處理剛完全開花的日本朝顏花朵,其開花時間縮短至大約3小時,與機械性創傷處理的花朵開花時間大致相當,且花朵萎凋外觀也相似於以機械性創傷處理之花朵。但是若先以濃度1 mM的阿斯匹靈(2-acetoxybenzoic acid, ASP)處理剛開花的花朵,抑制茉莉酸生合成,而後再進行花朵機械性創傷處理或以100 μM的茉莉酸處理,結果發現開花時間回復為大約6小時。除了外加阿斯匹靈有這種回復效果外,外加濃度0.01% (w/v) 乙烯(ethylene)生合成抑制劑2-aminoethoxyvinylglycine (AVG),也有同樣的回復效果。綜合試驗結果顯示,乙烯(ethylene)和茉莉酸(jasmonic acid)的訊號路徑,可能與日本朝顏花朵因受到機械性創傷所導致的提早萎凋反應有關。
Flower senescence is a rapid process that is triggered by developmental or environmental stimuli. In this study, several environmental factors such as pollination, petal-wound, and stamen/pistil-cut, were investigated for the effects on the flower senescence of Japanese morning glory (Ipomoea nil). All the treatments were able to shorten the flowering time from 6 to 3 h by advancing the process of senescence. Interestingly, application of jasmonic acid (JA) to the flowers also accelerated flower senescence with a similar pattern to that of stamen/pistil-cut. Moreover, both wounding and JA induced senescence acceleration in flowers could be recovered to normal if pre-treated with 2-acetoxybenzoic acid (ASP), a JA biosynthesis inhibitors, or 2-aminoethoxyvinylglycine (AVG), an inhibitor of ethylene biosynthesis. These preliminary results suggested that ethylene and JA play a role in the wounding-induced flower senescence of Japanese morning glory. The possible signaling pathways were also discussed here.
封面內頁
簽名頁
中文摘要.........................................................................................................................................iii
英文摘要.........................................................................................................................................iv
誌謝................................................................................................................................................v
目錄................................................................................................................................................vi
圖目錄.............................................................................................................................................viii

1. 前言
1.1 乙烯與花朵老化..........................................................................................................................1
1.2 授粉與花朵老化..........................................................................................................................2
1.3 機械性創傷與細胞程式性死亡.......................................................................................................2
1.4 機械性創傷與茉莉酸....................................................................................................................3

2. 材料與方法
2.1 實驗藥品....................................................................................................................................4
2.2 實驗材料及生長條件....................................................................................................................4
2.3 實驗方法....................................................................................................................................5
2.4 日本朝顏花朵不同花器受到機械性創傷後,對於開花時間的影響........................................................5
2.5 施加JA、ASP、AVG,並利用三者藥劑組合,來探討對日本朝顏花朵開花時間的影響............................5
2.6 施加JA、ASP、ABA、IAA、AVG,利用5種藥劑組合,來探討對日本朝顏開花時間的影響.....................6
2.7 日本朝顏花朵完全開花後,並在不同的時間點施加茉莉酸(JA)........................................................7
2.8 日本朝顏花朵完全開花後立刻移除花蕊,並在不同的時間點施加阿斯匹靈(ASP)...............................8
2.9 JA、ASP藥劑的組合,並在日本朝顏花朵完全開花後經過3小時再施用................................................8
2.10 日本朝顏花朵因機械性創傷,造成花朵提早萎凋可能的訊號路徑圖..................................................9
2.11 統計方法.................................................................................................................................10

3. 結果
3.1 機械性創傷與日本朝顏花朵..........................................................................................................11
3.2 茉莉酸與機械性創傷....................................................................................................................11
3.3 植物賀爾蒙與日本朝顏花朵老化....................................................................................................12
3.4 機械性創傷與茉莉酸的作用時間點.................................................................................................13
3.5 日本朝顏花朵受到機械性創傷後所誘導的老化機制...........................................................................14

4. 結論
4.1 乙烯與日本朝顏花朵老化..............................................................................................................16
4.2 機械性創傷誘導日本朝顏花朵老化.................................................................................................16
參考文獻...........................................................................................................................................26

圖目錄

圖1. 日本朝顏花朵不同花器受到機械性創傷後,對於開花時間的影響.......................................................23
圖2. 施加JA、ASP、AVG,並利用三者藥劑組合,來探討對日本朝顏花朵開花時間的影響...........................24
圖3. 施加ABA、IAA、JA、ASP、AVG,利用5種藥劑組合,來探討對日本朝顏開花時間的影響....................25
圖4. 日本朝顏花朵完全開花後,並在不同的時間點施加茉莉酸(JA).......................................................26
圖5. 日本朝顏花朵完全開花後立刻移除花蕊,並在不同的時間點施加阿斯匹(ASP)......................................27
圖6. JA、ASP藥劑的組合,並在日本朝顏花朵完全開花後經過3小時再施用...............................................28
圖7. 日本朝顏花朵因受機械性創傷,造成提早萎凋可能的訊號路徑圖.......................................................29






1.Andrew D. Hanson, Hans Kende. Ethylene-enhanced ion and sucrose efflux in morning glory flower tissue. Plant Physiology 1975; 55:663-669.
2.Creelman RA, Mulet JE. Biosynthesis and action of jasmonates in plants. Plant Physiology and Plant Molecular Biology 1997; 48: 355-381.
3.Emilia Wilmowicz, Jacek Kesy, Jan Kopcewicz. Ethylene and ABA interactions in the regulation of flower induction in Pharbitis nil. Journal of Plant Physiology 2008; 165: 1917-1928.
4.Farmer, E.E., Weber ,H. and Vollenweider, S. Fatty acid signaling in Arabidopsis. Panta 1998; 206: 167-174.
5.Enrique Rojo, Roberto Solano and Jose J. Sanchez-Serrano. Interactions between signaling compounds involved in plant defense. Journal of Plant Growth Regulation 2003; 22:82-98.
6.Ernst J. Woltering, Dianne Somhorst, and Pieter van der Veer. The role of ethylene in interorgan signaling during flower senescence. Plant Physiology 1995; 109: 1219-1225.
7.Filip Rolland, Brandon Moore, and Jen Sheen. Sugar sensing and signaling in plants. The Plant Cell 2002; 14: 185-205.
8.Gregg A. Howe. Jasmonates as signals in the wound response. Journal of Plant Growth Regulation 2004; 23: 223-237.
9.Guy Tanari, Amihud Borochow, Rainer Atzom, David Weiss. Methyl jasmonate induces pigmentation and flavonoid gene expression in petunia corollas: Apossible role in wound response. Physiologia Plantarum 1995; 94: 45-50.
10.Iris A. M. A. Penninckx, Bart P. H. J. Thomma, Antony Buchala, Jean-Pierre Metraux, and Willem F. Broekaert. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. The Plant Cell 1998; 10: 2103-2113.
11.Jacek Kesy, Beata Maciejewska, Magdalena Sowa, Magdalena Szumilak, Krzysztof K awalowski, Maja Borzuchowska, Jan Kopcewicz. Ethylene and IAA interactions in the inhibition of photoperiodic flower induction of Pharbitis nil. Plant Growth Regulation 2008; 55: 43-50.
12.Kazuo Ichimura, Kenichi Suto. Role of ethylene in acceleration of flower senescence by filament wounding in Portulaca hybrid. Physiologia Plantarum 1998; 104: 603-607.
13.Kenichi Shibuya, Tetsuya Yamada, Tomoko Suzuki, Keiichi Shimizu, and Kazuo Ichimura. InPSR26, aputative membrane protein, regulates programmed cell death during petal senescence in Japanese morning glory. Plant Physiology 2009; 149: 816-824.
14.Lucia C. Strader, Erin R. Beisner, and Bonnie Bartel. Silver ions increase auxin efflux independently of effects on ethylene response. The Plant Cell 2009; 21: 3585-3590.
15.Margrethe Serek, Rodney B. Jones, and Michael S. Reid. Role of ethylene in opening and senescence of Gladiolus sp. Flowers. J. Amer. Soc. Hort. Sci. 1994; 119: 1014-1019.
16.Michael S. Reid, Men-Jen Wu. Ethylene and flower senescence. Plant Growth Regulation 1992; 11:37-43.
17.Oscar Lorenzo, Raquel Piqueras, Jose J. Sanchez-Serrano, and Roberto. Ethylene response factor 1 integrates signals from ethylene and jasmonate pathways in plant defense. The Plant Cell 2003; 15: 165-178.
18.Porat R., A Borochov, A.H. Halevy. Enhancement of petunia and dendrobium flower senescence by jasmonic acid methyl ester is via the promotion of ethylene production. Plant Growth Regulation 1993; 13: 297-301.
19.Punita Nagpal, Christine M. Ellis, Hans Weber, Sara E. Ploense, Lana S. Barkawi, Thomas J. Guilfoyle, Gretchen Hagen, Jose M. Alonso, Jerry D. Cohen, Edward E. Farmer, Joseph R. Ecker and Jason W. Reed. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 2005; 132: 4107-4118.
20.Saniewski M, Miyamoto K, Ueda J. Gum formation by methyl jasmonate in tulip shoots is stimulated by ethylene. Plant Growth Regulation 1998; 17: 179-183.
21.Sharif, J., Muto, M., Takebayashi, S.I., Suetake, I., Iwamatsu, A., Endo, T.A., Shinga, J., Mizutani-Koseki, Y., Toyoda, T., Okamura, K. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 2007; 450: 908–912.
22.Shuangyi Bai, Belinda Willard, Laura J. Chapin, Michael T. Kinter, David M. Francis, Anthony D. Stead and Michelle L. Jones. Proteomic analysis of pollination-induced corolla senescence in petunia. Journal of Experimental Botany 2010; 61: 1089-1109.
23.Stead AD. Pollination-induced flower senescence: a review. Plant Growth Regulation 1992; 11: 13-20.
24.Stead AD, van Doorn W. Strategies of flower senescence- a review. Molecular and cellular aspects of plant reproduction. 1994; 55: 215-237.
25.Sven Verlinden, William R. Woodson. The physiological and molecular responses of carnation flowers to high temperature. Postharvest Biology and Technology 1998; 14: 185-192.
26.Trobacher P. Ethylene and programmed cell death in plants. Botany 2009; 87: 757-769.
27.Wouter G., Van Doorn. Effect of ethylene on flower abscission: a survey. Botany 2002; 89: 689-693.
28.Yeong- Biau Yu and Shang Fa Yang. Auxin-induced ethylene production and its inhibition by aminoethoxyvinylglycine and cobalt ion. Plant Physiology 1979; 64: 1074-1077.
29.Yuan Zhong and Claire Ciafre. Role of ABA in ethylene- independent Iris flower senescence. International Conference on Food Engineering and Biotechnology.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top