跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/02 21:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:儲君諺
研究生(外文):Chu, Jyun-Yan
論文名稱:新鮮肉品與肉製加工品於各種儲存環境下微生物生長與自由水、孔隙度變化之探討
論文名稱(外文):Investigation of Microorganism Growth and Free Water, Porosity Changes in Fresh Meats and Meat Products during Different Storage Environments
指導教授:王維麒
指導教授(外文):Wang, Wei-Ci
口試委員:張德明顏裕鴻
口試委員(外文):Chang, Deh-MingYen, Yue-horng
口試日期:2012-07-20
學位類別:碩士
校院名稱:大葉大學
系所名稱:生物產業科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:80
中文關鍵詞:肉品肉製加工品水分流動性自由水比率孔隙度生菌數電導度
外文關鍵詞:meatprocessed meatwater mobilityfree water ratioporositytotal viable countelectrical conductivity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:396
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
新鮮肉品與肉製加工品都會受到微生物滋生而導致品質下降,但傳統微生物檢測無法即時提供食品原料之資訊。過去本實驗室開發出將電導度作為食品即時品質檢測指標,由於食品置於不同存放環境下,微生物大量滋生,導致電導度上升,而電導度與微生物呈正比關係已確定。過去研究認為微生物生長繁殖時,會改變食品本身結構,造成孔隙度產生變化,或改變水分結構,束縛水得到釋放而轉變成自由水,因而使得電導度上升。然而微生物滋生導致孔隙度與水分流動性變化之想法,過去並無實驗來加以証明,因此本研究之目的是以不同存放環境下,量測肉品與肉製加工品原料自由水比率與孔隙度之變化,並會配合本實驗室先前之生菌數與電導度,探討保存期間自由水比率、孔隙度與生菌數、電導度之關係。在本研究中,三種新鮮肉品與三種肉製加工品樣本分別置於常溫或潮濕環境下,進行總 72小時保存試驗,進行自由水比率與孔隙度之量測,之後以統計迴歸分析其與生菌數、電導度數據之相互關係。結果顯示於不同環境儲存下,肉製加工品在保存期間,生菌數隨時間而上升,但其孔隙度呈下降趨勢,自由水比率則較無變化。新鮮肉品中之自由水比率與孔隙度皆產生變化,豬肉與牛肉樣本中孔隙度隨微生物上升而增加,魚肉樣本則是自由水比率與孔隙度皆上升,與電導度之上升之相關性高,此種不一致現象可能是因為肉製加工品為重組食品,由人工所製成,因此在原料加工期間,其束縛水已轉變成自由水,因此對其自由水比率較無影響,且在儲存期間,微生物滋生產生腐敗現象,讓其產生粉泥狀態,使孔隙度下降。而在新鮮肉品中,魚肉樣本因其肉質較豬肉與牛肉樣本柔軟,在微生物生長期間,會使肉質產生崩潰,束縛水轉變成自由水,使魚肉樣本之自由水比率增加。且微生物滋生會改變各肉品樣本之空間結構,造成孔隙度上升,這些結果均可說明肉品電導度上升之原因。
Fresh meats and meat products result in quality decreasing by microorganism growth, but traditional microbiology testing doesn’t provide food raw material’s information immediately. Before laboratory builded a quality testing index. It was electrical conductivity. Food placed different storage environment. Microorganism growth leaded to electrical conductivity increasing. Electrical conductivity and microorganism were positive related. Previous studies indicated microorganism growth. Which cause could change food structure, and the porosity or water structure were mutated, which cause bound water transferred free water. The changes resulted in electrical conductivity increasing. However, no studies were conducted to verify microorganism growth leading to porosity and free water ratio variation. The study’s purpose are measuring free water ratio and porosity variation of meats and meat products in different storage environment. Data with previous laboratory’s total viable count and electrical conductivity data were compared. In the study. Three fresh meats and three meat products samples were stored in the room temperature or wet environment for total 72 hours. Both free water ratio and porosity were measured. Regression analysis of free water ratio, porosity and total viable count, electrical conductivity data were conducted. The results show when samples placed in different environments, the total viable count varied with the time during storage. The porosity decreased, but the free water ratio didn’t. Fresh meats’ free water ratio and porosity varied with the total viable count. The pork and beef samples’ porosity increased with microorganism growth. Both free water ratio and porosity increased in the fish samples. It showed high relativity with electrical conductivity. Because meat products were restructure food, water had been changed into free water during processing. The porosity decreasing resulted from soiled materials. For fresh meats, the fish sample’s pulp is tenderer than pork and beef samples, this results in change of bound water to free water during microorganism growth. All meats samples’ porosity increased, because the structures were destroyed in microorganism growth.
封面內頁
簽名頁
中文摘要...iii
英文摘要...v
誌謝...vii
目錄...viii
圖目錄...xi
表目錄...xii

1. 序論...1
2. 文獻回顧...2
2.1 食品原料保存期間之微生物之變化...2
2.2 食品之水分組成...5
2.3 肉品之微生物滋生...10
2.4 微生物滋生所引發之組成成分與水分結構變化...15
2.5 食品之孔隙度變化...18
2.6 食品原料中微生物、電導度、自由水比率與孔隙度之相互關係...19
3. 材料與方法...24
3.1 實驗材料...24
3.2 實驗儀器設備...24
3.3 樣本處理...25
3.3.1 新鮮肉品...25
3.3.2 肉製加工品...25
3.4 實驗方法...25
3.4.1 保存實驗...25
3.4.2 自由水比率之測定...26
3.4.3 孔隙度之測定...28
3.4.4 統計分析...29
4. 結果與討論...30
4.1 新鮮肉品於不同保存環境下自由水比率與孔隙度之變化...30
4.1.1 常溫環境...30
4.1.2 潮濕環境...34
4.2 肉製加工品於不同保存環境下自由水比率與孔隙度之變化...37
4.2.1 常溫環境...37
4.2.2 潮濕環境...40
4.3 水分流動性、孔隙度與微生物、電導度間之相關性...43
4.4 新鮮肉品於不同保存環境下生菌數與自由水比率之迴歸分析...44
4.4.1 常溫環境...44
4.4.2 潮濕環境...46
4.5 新鮮肉品於不同保存環境下生菌數與孔隙度之迴歸分析...47
4.5.1 常溫環境...47
4.5.2 潮濕環境...48
4.6 新鮮肉品於不同保存環境下自由水比率與電導度之迴歸分析...49
4.6.1 常溫環境...51
4.6.2 潮濕環境...51
4.7 新鮮肉品於不同保存環境下孔隙度與電導度之迴歸分析...53
4.7.1 常溫環境...53
4.7.2 潮濕環境...55
4.8 肉製加工品與新鮮肉品之差異...57
5. 結論...59
5.1 結論...59
5.2 未來展望...60
參考文獻...61
附錄...65

圖目錄
圖2-1 乾燥階段之區分...4
圖2-2 影響食品穩定因素與水活性之相關性...9
圖4-1 常溫環境下自由水比率與孔隙度(a)豬肉樣本(b)牛肉樣本(c)魚肉樣本...31
圖4-2 潮濕環境下自由水比率與孔隙度(a)豬肉樣本(b)牛肉樣本(c)魚肉樣本...35
圖4-3 常溫環境下自由水比率與孔隙度(a)貢丸樣本(b)牛肉丸樣本(c)魚丸樣本...38
圖4-4 潮濕環境下自由水比率與孔隙度(a)貢丸樣本(b)牛肉丸樣本(c)魚丸樣本...41
圖4-5 魚肉樣本總生菌數與自由水比率之迴歸分析圖 (a)常溫環境(b)潮濕環境...45
圖4-6 常溫環境下總生菌數與孔隙度之迴歸分析圖(a)豬肉樣本(b)牛肉樣本(c)魚肉樣本...48
圖4-7 潮濕環境下總生菌數與孔隙度之迴歸分析圖(a)豬肉樣本(b)牛肉樣本(c)魚肉樣本...50
圖4-8 魚肉樣本自由水比率與電導度之迴歸分析圖(a)常溫環境(b)潮濕環境...52
圖4-9 常溫環境下孔隙度與電導度之迴歸分析圖(a)豬肉樣本(b)牛肉樣本(c)魚肉樣本...54
圖4-10 潮濕環境下孔隙度與電導度之迴歸分析圖(a)豬肉樣本(b)牛肉樣本(c)魚肉樣本...56

表目錄
表4-1 常溫環境下豬肉、牛肉與魚肉樣本之總含水率...32
表4-2 潮濕環境下豬肉、牛肉與魚肉樣本之總含水率...36
表4-3 常溫環境下貢丸、牛肉丸與魚丸樣本之總含水率...39
表4-4 潮濕環境下貢丸、牛肉丸與魚丸樣本之總含水率...42

1.毛賢婷。2004。以電導度測定不同加熱方式對於水分子流動性之影響。私立大葉大學生物產業科技學系碩士論文。
2.王維麒。1999。電阻加熱技術之原理及影響因子。食品工業31(2): 8-14。
3.白佳平。2000。市售鹽酥雞之製程、消費者調查及微生物品質。國立台灣大學畜產學研究所碩士論文。
4.何思諶。2010。肉品於保存期間微生物成長與電導度相關性探討。大業大學生物產業科技學系碩士論文。
5.李秀、柯文慶、賴滋漢。1993。食品分析與檢驗。第 313頁。富林出版社。台中市。臺灣。
6.林慶文。1988。肉品加工學。第 72-409頁。香華園出版社。
7.吳淑靜、柯文慶、賴滋漢編著。2003。食品添加物。富林出版社。台中市。臺灣。
8.涂榮珍。2005。陳年中式乾醃火腿表面黴菌菌元篩選及其於乾醃里脊肉塊之研究。國立臺灣大學畜產學系碩士論文
9.陳志銘。1991。不同儲存溫度的原料肉及其肉製品中生物胺變化之研究。國立中興大學畜牧學係碩士論文。
10.陳文賢。2004。水活性控制與食品儲存。專題報導-畜產食品科技。科學發展379:18-23。
11.陳雅雯。2005。以電導度分析半乾性產品加工程序中品質指標。私立大葉大學分子生物科技學系碩士論文。
12.陳禹睿。2011。以插入式電導度測定儀量測初步加工食品於保存期間之電導度與微生物生成之相互關係。私立大葉大學生物產業科技學系碩士 論文。
13.曾俊翔。2003。豬肉於貯存中的品質變化。國立海洋大學食品科學系碩士論文。
14.黃玉娟。2001。吳郭魚肉和青魚肉儲藏中之肉質變化。國立海洋大學食品科學系碩士在職專班論文。
15.黃孟笙。2008。電阻加熱中電壓頻率及波型對食品水分流動性之影響。私立大葉大學生物產業科技學系碩士論文。
16.楊瑩蓉。1995。常用辛香料之微生物品質及其對中式香腸品質影響之調查。國立中興大學畜牧學系碩士論文。
17.蔡佳芬、郭景豪、潘志寬、施養志。2010。以高效離子層析法分析食品中磷酸鹽類成分。食品藥物研究所年報1: 5-11。
18.續光清。1994。食品工業。第 675-676頁。財團法人徐氏基金會。台北市。臺灣。
19.續光清。1998。食品化學。第 2-3頁。財團法人徐氏基金會。台北市。臺灣。
20.Adams, M. R., and Moss, M. O. 2008. Food Microbiology. p. 6-9. Royal Society of Chemistry Publishing.
21.Bogdan, V. V., Smirnov, L. P. and Sidorov, V. S. 2001. Lipids of Microorganisms of the Family Vibrionaceae, Causative Agents of Fish Disease. Applied Biochemistry and Microbiology 37(3): 310-313.
22.Brown, A. C. 2010. Understanding Food: Principles and Preparation. (4th ed). p. 157-160. Cengage Learning, Singapore.
23.Caurie, M. 1981. Derivation of full range moisture sorption isotherms. In:
Water Activity: Influences on Food Quality, L. B. Rockland and G. F. Stewart(Ed). p. 63-87. Academic Press, New York, USA.
24.Doyel, M. E. and Ph. D. Microbial Food Spoilage – Losses and Control Strategies. Fri Briefing: 1-8.
25.Fennema, O. R. 1985. Water and Ice. In Food Chemistry. 2nd ed. O. R. Fennema(Ed). p. 23-67. Marcel Dekker, New York, USA.
26.Goll, D. E., Robson, R. M., and Stromer, M. H. 1977. Muscle protein. In Food protein. J. R. Whitaker and S. R. Tannenebaun(Ed). AVI Publishing Company, Westport Connecticut, USA.
27.Hussain, M.A., Rahman, M. S. and Ng, C. W. 2002. Prediction of pores formation (porosity) in foods during drying: generic models by the use of hybrid neural network. Journal of Food Engineering 51: 239-248.
28.Jayarman, K. S., Gopinathan, V. K., Pitchamuthu, P. and Vijayaraghavan, P. K. 1982. The preparation of quick – cooking dehydrated vegetable by high temperature short time pneumatic drying. International Journal Food Science & Technology 17(6): 669-678.
29.Junhee, A., Grun, I. U., and Mustapha, A. 2007. Effects of plant extracts on microbial growth, color change, and lipid oxidation in cooked beef. Food Microbiology 24: 7-14.
30.Kassma, L. S. and Ngadi, M.O. 2005. Pore structure characterization of deep-fat-fired chicken meat. Journal of Food Engineering 66: 369-375.
31.Labuza, T. P. 1970. Properties of water as related to the keeping quality of foods. p. 618-635. Proceeding of the Third International Congress of Food Science & Technology, Washington, USA.
32.Leung, H. K. 1987. Influence of water activity on chemical reactivity. In Water Activity: Theory and Applications to Food. L. B. Rockland and L. R. Beuchat(Ed). p. 27-54. Marcel Dekker, New York, USA.
33.Offer, G and Trinick, J. 1983. On the mechanism of water holding in meat: the swelling and shrinking of myofibrils. Meat science 8(4): 245-281.
34.Pearson, A. M. and Dutson, T. R. 1995. Quality attributes and their measurement in meat, poultry and fish products. (1st ed). p. 108. Springer, New York, USA.
35.Pearson, A. M. and Gillet, T. A. 1996. Processed Meats. p. 1-5. Springer, New York, USA.
36.Rosado, W. and Govind N. S. 2003. Identification of carbohydrate degrading bacteria in sub-tropical regions. Revista de Biological Tropical 51(4): 205-210.
37.Sman van der, R. G.. M. and Boer, E. 2005. Predicting the initial freezing point and water activity of meat products from composition data. Journal of Food Engineering, volume 66(4): 469-475.
38.Teeri, T. T. 1997. Crystalline cellulose degradation: new insight into the function of cellobihydrolases. Trends in Biotechnology 15(5): 160-167.
39.Wang, W. C. and Sastry, S. K. 2000. Effects of thermal and electrothermal pretreatments on hot air drying rate of vegetable tissue. Journal Food Process Engineering 23(4): 299-319.
40.Yongsawatdigul, J., Park, J. W. and Kolbe, E. 1995. Electrical conductivity of pacific ehiting surimi paste during ohmic heating. Journal Food Science 60(5): 922-935.
41.Yousef, A. E. and Carlstrom, C. 2003. Food Microbiology: A Laboratory Manual. Wiley Interscience, New York, USA.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top