跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/24 14:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊于霈
研究生(外文):Chuang, Yupei
論文名稱:利用旋轉盤生物反應器去除廢水中之有機物並同時生產細菌纖維以及利用改質細菌纖維吸附銅離子
論文名稱(外文):Simultaneous Removal of Organic Matter and Production of Bacterial Cellulose fromWastewater Using Rotating Disk Reactor and Copper Ion Adsorption by ModifiedBacterial Cellulose
指導教授:吳建一
指導教授(外文):Wu, Janeyii
口試委員:顏裕鴻陳晉照
口試日期:2012-07-10
學位類別:碩士
校院名稱:大葉大學
系所名稱:生物產業科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:250
中文關鍵詞:細菌纖維薄膜Gluconacetobacter sp. Wu1-1旋轉盤生物反應器化學改質膜壓
外文關鍵詞:Bacterial cellulose membraneGluconacetobacter sp. Wu1-1rotating disks reactorchemical modificationmembrane pressure
相關次數:
  • 被引用被引用:1
  • 點閱點閱:374
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
由Gluconacetobacter sp. Wu1-1 生產的細菌纖維薄膜,具有獨特的物理與化學特性,包括有良好的表面積、高機械強度與由微纖維組成之3D 網狀結構。本研究主要是探討影響Gluconacetobacter sp. Wu1-1於旋轉盤生物反應器(Rotating Disks Reactor, RDR)中生產細菌纖維薄膜之因子。初步研究顯示,利用聚碳酸酯為材料的轉盤,並在轉盤表面貼上400C的砂紙進行RDR操作,結果顯示其產量較其他粗糙度之砂紙高。而RDR操作最佳轉盤數目及轉盤轉速分別為8盤及 8 rpm,並在HRT為16小時且曝氣條件下,可獲得最大細菌纖維產量與COD去除率分別為0.99 g/L及67.7%。另一方面,利用細菌纖維在廢水處理,主要著重水體中銅離子之吸附,並計算吸附動力學與等溫線模式。結果顯示吸附過程屬於pseudo second-order kinetics,且實驗數據最符合Langmuir model。熱力學參數(ΔG, ΔH˚, ΔS˚)主要推測吸附過程屬於吸熱或放熱,結果顯示本研究細菌纖維之吸附為吸熱過程。另外,在細菌纖維之膜壓耐受性顯示,細菌纖維薄膜膜壓會隨著膜厚度增加而增加,而厚度較薄之薄膜其對於水的通透性會較厚薄膜來的好。對水溶液中銅離子去除效果初步結果顯示,若利用經乾燥之細菌纖維薄膜會較濕膜要來的有效果。然而,當細菌纖維薄膜經過手動壓膜機施壓後,反而會降低銅離子之吸附率。此外,利用傅立葉轉換紅外線光譜儀及電子顯微鏡觀察改質/未改質細菌纖維特性。
Bacterial cellulose membrane, an exopolysaccharide production by some bacterial, has unique physical and chemical properties, including well-developed surface area, high mechanical strength and ultrafine 3D network structure. In this study, the factors for bacterial cellulose production by Gluconacetobacter sp. Wu1-1 in Rotating Disks Reactor (RDR) were investigated. In the preliminary study, discs made from polycarbonate fabricated with 400C of sandpaper gave the highest result compared to others. The optimal number of disk and rotation speed for bacterial cellulose production were found to be 8 and 8 rpm. The bacterial cellulose production and COD removal rate were 0.99 g/L and 67.7%, respectively, in aeration treatment of high COD wastewater at hydraulic retention times (HRT) of 16 h. On the other hand, application of bacterial cellulose in wastewater treatment, the main focus of copper sorption from aqueous solution by bacterial cellulose was conducted in batch condition. Kinetic data and equilibrium sorption isotherms were measured. Results indicated that the sorption process follow a pseudo second-order kinetics and the Langmuir model gave a better fit to the experimental data. Additionally, the thermodynamic parameters (ΔG, ΔH˚, ΔS˚) for the adsorption process were calculated and results suggest that the nature of adsorption is endothermic and the process is spontaneous and favorable. On the other hand, the membrane pressure was enhanced as the thickness increased, and the thin membrane has better permeability. However, the adsorption of copper was reduced when the membranes were pressed by Manual Forming Machine. In additionally, the modified/unmodified of bacterial cellulose were characterized by Fourier Transfer Infrared spectroscopy (FTIR) and Scanning electron microscope (SEM).
目錄

封面內頁
簽名頁
中文摘要 iii
英文摘要 v
誌謝 vi
目錄 viii
圖目錄 xiii
表目錄 xx

1.前言 1
1.1緒言 1
1.2 研究目的與動機 2
2.文獻回顧 5
2.1 生物吸附劑 5
2.2 細菌纖維簡介 15
2.2.1 細菌纖維發展歷史 15
2.2.2 細菌纖維化學結構與特性 15
2.2.3 生產細菌纖維之菌株 18
2.2.4 細菌纖維生合成路徑與機制 20
2.2.5 影響細菌纖維生長之因子 23
2.3 細菌纖維之改質 28
2.3.1 生產期間添加添加物至培養基之改質 28
2.3.2 改質經純化後之細菌纖維 29
2.4 細菌纖維薄膜於廢水之應用 31
2.4.1 高氮廢水之污染物特性及處理方式 32
2.4.1.1 高氮廢水組成與水質特性 32
2.4.1.2 生物法處理廢水 33
2.4.1.3 旋轉盤生物反應器(Rotary Disk Reactor, RDR) 34
2.4.2重金屬廢水之特性及處理方式 38
2.4.2.1 含銅廢水之特性 38
2.4.2.2 含銅廢水之處理技術 38
2.5 吸附理論 40
2.5.1 吸附原理 40
2.5.2 吸附等溫線 42
2.5.3 吸附動力學分析 45
2.5.4 吸附熱力學模式解析 47
2.5.5 影響金屬吸附效率之因子 48
3.材料與方法 51
3.1 實驗材料 51
3.1.1 實驗藥品 51
3.1.2 儀器設備 53
3.2 菌株培養 54
3.2.1 菌株來源 54
3.2.2 菌株活化 54
3.3 批次試驗-高氮廢水同時去除COD與NH4+-N 57
3.3.1 不同類型之模擬高氮廢水對於Gluconacetobacter sp. Wu1-1、Wu2-1及Wu3M生長之影響 57
3.3.2 不同COD濃度之影響 57
3.3.3 不同NH4+-N來源之影響 58
3.3.4 不同NH4+-N濃度之影響 58
3.3.5 不同銅離子濃度之影響 59
3.4 RDR操作條件探討 59
3.4.1 轉盤粗糙度對細菌纖維生產之影響 60
3.4.2 轉盤轉速對細菌纖維生產之影響 61
3.4.3 轉盤間距對細菌纖維生產之影響 61
3.4.4 水力停留時間對細菌纖維生產之影響 62
3.5 模擬廢水分析 62
3.5.1 菌量分析 62
3.5.2 COD之分析 62
3.5.3 NH4+-N濃度測定 64
3.5.4 硝酸根與亞硝酸根濃度之測定 65
3.6 細菌纖維於廢水之應用 65
3.6.1 細菌纖維之批次吸附銅離子試驗 65
3.6.1.1 不同壓力處理之乾/濕細菌纖維對銅離子吸附 66
3.6.1.2 細菌纖維之物理特性對銅離子吸附 66
3.6.1.3 未改質細菌纖維之批次吸附試驗 66
3.7脫附試驗 68
3.8不同分子量之基質在細菌纖維膜滲透與過濾試驗 68
3.8.1 不同進流流速對細菌纖維膜壓之影響 68
3.8.2 不同分子量溶液之滲透與過濾試驗 69
3.9 細菌纖維改質 69
3.9.1生產期間額外添加化合物至培養基之改質 69
3.9.2 改質經純化後之細菌纖維 70
3.10 未改質/改質後之細菌纖維結構與物性分析 71
3.10.1 傅立葉轉換紅外線光譜 71
3.10.2 掃描式電子顯微鏡與元素分析 71
3.10.3 界達電位 72
3.11 銅離子濃度分析-原子吸收光譜分析 72
4.結果與討論 74
4.1 批次試驗-高氮廢水同時去除COD與NH4+-N 74
4.1.1 挑選最適細菌纖維生長之模擬高氮廢水及菌株 74
4.1.2 不同COD濃度之影響 84
4.1.3 不同NH4+-N來源之影響 90
4.1.4 不同NH4+-N濃度 95
4.1.5 銅離子濃度對細菌纖維生產之影響 103
4.2 RDR操作條件探討 109
4.2.1 轉盤粗糙度對細菌纖維生產之影響 109
4.2.2 轉盤轉速對細菌纖維生產之影響 114
4.2.3 轉盤間距對細菌纖維生產之影響 119
4.2.4 水力停留時間對細菌纖維生產之影響 124
4.3 細菌纖維於廢水之應用 128
4.3.1 未改質細菌纖維之批次吸附銅離子試驗 128
4.3.1.1 不同壓力處理之細菌纖維濕膜與乾膜對銅離子吸附之影響 128
4.3.1.2 細菌纖維之物理特性 131
4.3.1.3 細菌纖維吸附銅離子之等溫吸附模式解析 144
4.3.1.4 細菌纖維吸附銅離子之吸附動力學解析 150
4.3.1.5 細菌纖維之銅離子吸附熱力學解析 162
4.3.1.6 脫附試驗 166
4.3.2 細菌纖維應用於滲透與過濾試驗 169
4.3.2.1 不同進流流速對細菌纖維膜壓之影響 169
4.3.2.2 不同分子量溶液之滲透及過濾試驗 176
4.3.3 細菌纖維改質 184
4.3.3.1 生產期間額外添加化合物至培養基之改質 184
4.3.3.2 改質經純化後之細菌纖維 191
4.3.3.3 不同pH值之PGA改質細菌纖維素對銅離子
去除之影響 203
5. 結論 207
參考文獻 209


圖目錄

Figure 1-1 Schematic of this study procedure 4
Figure 2-1 Chemical Structure of Cellulose (Image created on ChemDraw®) 17
Figure 2-2 Formation of dimensional network in bacterial cellulose 18
Figure 2-3 Pathways of carbon metabolism in Acetobacter xylinum 22
Figure 2-4 The representative synthetic route of phosphorylated bacterial cellulose (PBC) 31
Figure 2-5 Comparison of RDR and RBC 36
Figure 3-1 Schematic diagram of RDR. 60
Figure 3-2 RDR in this study 60
Figure 3-3 The calibration curve of NH4+-N 65
Figure 3-4 Schematic diagram of filter system 68
Figure 3-5 Schematic diagram of permeability system 69
Figure 3-6 The calibration curve of copper ion 73
Figure 4-1 Time course of cell growth and removal of COD by Gluconacetobacter sp. Wu1-1 at various simulated wastewater. 77
Figure 4-2 Time course of cell growth and removal of COD by Gluconacetobacter sp. Wu2-1 at various simulated wastewater. 78
Figure 4-3 Time course of cell growth and removal of COD by Gluconacetobacter sp. Wu3M at various simulated wastewater. 79
Figure 4-4 Effect of pH values in SWW II on removal of COD, dried weight and thickness of BC by Gluconacetobacter sp. Wu1-1. 80
Figure 4-5 Effect of pH values in SWW II on removal of COD, dried weight and thickness of BC by Gluconacetobacter sp. Wu2-1. 82
Figure 4-6 Effect of pH values in SWW II on removal of COD, dried weight and thickness of BC by Gluconacetobacter sp. Wu3M. 83
Figure 4-7 Time course of cell growth and removal of COD by Gluconacetobacter sp. Wu1-1 at various COD concentration in SWW I. 86
Figure 4-8 Time course of cell growth and removal of COD by Gluconacetobacter sp. Wu1-1 at various COD concentration in SWW II. 87
Figure 4-9 Effect of various COD concentration on removal of COD, dried weight and thickness of BC by Gluconacetobacter sp. Wu1-1. (A)SWWI; (B)SWW II. 88
Figure 4-10 The photograph of BC production by Gluconacetobacter sp. Wu1-1 after 4 days. 89
Figure 4-11 Time course of cell growth and removal of COD by Gluconacetobacter sp. Wu1-1 at various nitrogen source. 92
Figure 4-12 Effect of various nitrogen source on removal of COD, dried weight and thickness of BC by Gluconacetobacter sp. Wu1-1. 93
Figure 4-13 The photograph of BC production by Gluconacetobacter sp. Wu1-1 at various nitrogen source (2 g/L) after 4 days. 94
Figure 4-14 Time course of cell growth and removal of COD by Gluconacetobacter sp. Wu1-1 at various YE concentration. 96
Figure 4-15 Effect of YE concentration on removal of COD, dried weight and thickness of BC by Gluconacetobacter sp. Wu1-1. 97
Figure 4-16 Time course of cell growth and removal of COD by Gluconacetobacter sp. Wu1-1 at various NH4+-N concentration 100
Figure 4-17 Effect of various NH4+-N concentration on removal of COD, dried weight and thickness of BC by Gluconacetobacter sp. Wu1-1. 101
Figure 4-18 Effect of adding various NH4+-N concentration at 48 hour for removal of COD, dried weight and thickness of BC by Gluconacetobacter sp. Wu1-1. 102
Figure 4-19 Time course of cell growth by Gluconacetobacter sp. Wu1-1 at various copper concentration in flask. 105
Figure 4-20 The image of BC production in the flask by Gluconacetobacter sp. Wu1-1 at various copper concentration. 107
Figure 4-21 Time course of cell growth and removal of COD by Gluconacetobacter sp.Wu1-1 at various roughness of disk in RDR. 111
Figure 4-22 Effect of disk roughness on removal of COD and dried weight of BC by Gluconacetobacter sp. Wu1-1 in RDR. 112
Figure 4-23 Schematic model of Gluconacetobacter sp. Wu1-1 attached to different disk roughness 113
Figure 4-24 Time course of cell growth and removal of COD by Gluconacetobacter sp. Wu1-1 at various rotation speed in RDR 116
Figure 4-25 Effect of rotation speed on removal of COD and dried weight of BC by Gluconacetobacter sp. Wu1-1 in RDR . 117
Figure 4-26 The image of BC production in the RDR by Gluconacetobacter sp. Wu1-1 at different rotation speed. 118
Figure 4-27 Time course of cell growth and removal of COD by Gluconacetobacter sp. Wu1-1 at various distance of disk in RDR. 121
Figure 4-28 Effect of distance of disk on removal of COD and dried weight of BC by Gluconacetobacter sp. Wu1-1 in RDR. 122
Figure 4-29 The time course of cell growth and removal of COD by Gluconacetobacter sp. Wu1-1 at different HRT in RDR 126
Figure 4-30 Effect of HRT on removal of COD and dried weight of BC by Gluconacetobacter sp. Wu1-1 in RDR with dissolved oxygen. 127
Figure 4-31 The effect of different pressure treatment by Manual Forming Machine on BC for the adsorption of copper. 130
Figure 4-32 The effect of different homogeneous treatment on BC for the adsorption of copper 133
Figure 4-33 Effect of pH on the adsorption of copper by BC powders 137
Figure 4-35 Effect of different copper concentration on the adsorption of copper by BC powders 141
Figure 4-36 Effect of temperature on the adsorption of copper by BC powders 143
Figure 4-37 Adsorption isotherm of copper onto BC powder at 25℃ 148
Figure 4-38 Kinetics of copper adsorption onto BC powder base on various pH conditions 154
Figure 4-39 Kinetics of copper adsorption onto BC powder base on various amount of BC powder 155
Figure 4-40 Kinetics of copper adsorption onto BC powder base on various concentration of copper 156
Figure 4-41 Kinetics of copper adsorption onto BC powder base on various temperature 157
Figure 4-42 Van't Hoff plot of copper adsorption onto BC. 163
Figure 4-43 Zeta potentials of the BC membrane at different solution pH values 165
Figure 4-44 Desorption copper from BC powders 168
Figure 4-45 Effect of different membrane thicknesses and feed flow rates on tolerance of BC. 172
Figure 4-46 The photograph of different treatment and thickness for BC wet membrane. 173
Figure 4-47 Effect of different membrane thicknesses and feed flow rates on tolerance of BC by drying at 80℃. 174
Figure 4-48 The photograph of different treatment and thickness for BC dry membrane 175
Figure 4-49 Effect of different membrane thicknesses on permeate by glucose solution for BC membrane 179
Figure 4-50 The photograph of BC membranes with different thicknesses. 180
Figure 4-51 Effect of different molecular solution on tolerance of BC by drying at 80℃ with 1mL/min feed flow rates 181
Figure 4-52 The structure of different thicknesses BC membranes and schematic diagram of different size molecular transport into the membranes 182
Figure 4-53 Effect of different membrane thicknesses on starch solution transported into BC membrane. 183
Figure 4-54 The SEM images of BC membrane by adding different compounds in fermentation period. 187
Figure 4-55 The photograph of BC by adding different compounds in fermentation period 190
Figure 4-56 The effect of different modified conditions on BC for adsorption efficiency of copper 195
Figure 4-57 The effect of different modified conditions on BC for adsorption of copper. 196
Figure 4-58 The effect of different modified conditions on bacterial cellulose for adsorption of copper. 197
Figure 4-59 The FT-IR spectra of BC by different chemical modified 198
Figure 4-60 The effect of different pH values by PGA modified on BC membranes for the adsorption of copper. 205
Figure 4-61 The SEM and EDS image of BC by PGA modified. 206


表目錄

Table 2-1 Summary of bioadsorbents for the removal of heavy metal ions from aqueous solution 11
Table 2-2 Bacterial cellulose producers 20
Table 2-3 Production yield of BC based on the various carbon sources 25
Table 2-4 Summary of Previous Work on RDR 37
Table 3-1 Composition of HS medium 55
Table 3-2 Composition of simulated wastewater 55
Table 3-3 Composition of MWW. 56
Table 3-4 Composition of SWW I. 56
Table 3-5 Composition of SWW II 56
Table 3-6 Specifications for RDR. 60
Table 4-1 Effect of simulated wastewater on removal of COD, dried weight and thickness of BC by Gluconacetobacter sp. Wu1-1、Wu2-1 and Wu3M. 81
Table 4-2 Effect of various copper concentration on cell growth and removal of COD by Gluconacetobacter sp. Wu1-1 in flask. 106
Table 4-3 Influence of S/V coefficient on the BC production yield by Gluconacetobacter sp. Wu1-1 in RDR 123
Table 4-4 The photograph of homogeneous treatment on BC. 134
Table 4-5 Values of the five isotherm parameters of BC with copper at 25℃ 149
Table 4-6 Comparison of kinetic parameters for adsorption of copper onto BC powder at various pH 158
Table 4-7 Comparison of kinetic parameters for adsorption of copper onto BC powder at various weight 159
Table 4-8 Comparison of kinetic parameters for adsorption of copper onto BC powder at various concentration 160
Table 4-9 Comparison of kinetic parameters for adsorption of copper onto BC powder at various temperature. 161
Table 4-10 Thermodynamic parameters for the adsorption of copper onto BC. 164
Table 4-11 The information of PVA. 186
Table 4-12 The photograph of different modified conditions on BC 199
Table 4-13 The SEM images of different modified conditions on BC 201



1.田蕙萍。2009。以Acetobacter xyinum生產細菌纖維之最適培養條件及其抗菌應用之研究。大葉大學生物產業科技學系。碩士論文。彰化。
2.袁熙隆。2006。都市與畜牧廢水生物處理系統硝化菌生態與硝化效能相關性之研究。國立成功大學環境工程學系。碩士論文。台南。
3.張修齊。2010。咖啡渣吸附銅離子之研究。大葉大學環境工程學系。碩士論文。彰化。
4.梅麗,楊平,尚書勇。2004。污水的生物處理-生物轉盤法。當代化工,第33捲,第5期,282-285頁。
5.陳志銘。2002。UASB串聯活性污泥系統處理養豬廢水之動力行為。國立成功大學環境工程學系。碩士論文。台南。
6.黃政賢。1995。污水工程。高立圖書有限公司。台南。
7.黃煌展,2008。添加干擾物質原位培養以修飾細菌性纖維素之結構。國立宜蘭大學食品科學系碩士論文。宜蘭。
8.歐陽嶠暉。2004。下水道工程學。長松文化興業股份有限公司。台灣。
9.鄧竣輿。2007。以MBR 處理染整廢水及脫色菌種分析。中原大學土木工程學系。碩士論文。桃園。
10.鍾濬鴻。2008。化學法增強木質纖維質對水中重金屬離子吸附能力之研究。嘉南藥理科技大學環境工程與科學系。碩士論文。台南。
11.Abdulrasaq, O. A. and Basiru, O. G. 2010. Removal of copper (II), iron (III) and lead (II) ions from Mono-component Simulated Waste Effluent by Adsorption on Coconut Husk. Afr. J. Env. ScI. Tech 4(6): 382-387.
12.Abia, A. A., Didi, O. B. and Asuquo, E. D. 2006. Modelling of Cd2+ sorption kinetics from aqueous solutions onto some thiolated agricultural waste adsorbents. Journal of Applied Polymer Science 6: 2549-2556.
13.Acar, F. N. and Eren, Z. 2006. Removal of Cu(II) ions by activated poplar sawdust (Samsun Clone) from aqueous solutions. Journal of Hazardous Materials B 137(909-914): 909-914.
14.Acemioglu, B. 2004. Adsorption of Congo red from aqueous solution onto calcium-rich fly ash. Journal of Colloid and Interface Science 274: 371-379.
15.Aharoni, C., S. Sideman, and Hoffer, E. 1979. Adsorption of phosphate ions by collod ion-coated alumina. Journal of Chemical Technology and Biotechnology 29: 404-412.
16.Ahluwalia, S. S. and Goyal, D. 2007. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology 98: 2243-2257.
17.Ajmal, M., Rao, R. A. K. and Siddiqui, B. A. 1996. Studies on removal and recovery of Cr (VI) from electroplating wastes. Water Research 30(6): 1478-1482.
18.Ajmal, M., Rao, R. A. K., Anwar, S., Ahmad, J. and Ahmad, R. 2003. Adsorption Studies on Rice Husk: Removal and Recovery of Cd (II) from Wastewater. Bioresource Technology 86: 147-149.
19.Aksu, Z. and İşoğlu, İ. A. 2005. Removal of copper(Ⅱ) ions from aqueous soluteion by biosorption onto agricultural waste sugar beet pulp. Process Biochemistry 40: 3031-3044.
20.Al-Anber, M. A. 2010. Thermodynamics Approach in the Adsorption of Heavy Metals, in: Thermodynamics – Interaction Studies – Solids, Liquids and Gases. pp. 737-764.
21.Alla, S. and Kjosbakken, J. 1982. Cellulose-negative mutants of Acetobacter xylinum. Canadian Journal of Microbiology 128: 1401-1408.
22.Aloni, Y. and Benziman, M. 1982.Intermediates of cellulose synthesis in Acetobacter, Plenum Publishing Corp., New York, 1982.
23.Al-Qodah, Z. 2000. Adsorption of dyes using shale oil ash. Water research 34: 4295-4303.
24.Amikam, D. and Benziman, M. 1989. Cyclic diguanylic acid and cellulose synthesis in Agrobacterium tumefaciens. Journal of Bacteriology 171: 6649-6655.
25.Anirudhan, T.S.and Suchithra, P.S. 2010. Humic acid-immobilized polymer/bentonite composite as an adsorbent for the removal of copper(II) ions from aqueous solutions and electroplating industry wastewater. Industrial and Engineering Chemistry Research 16: 130-139.
26.Apilánez, I., Gutiérrez, A. and Díaz, M. 1997. Effect of surface materials on initial biofilm development. Bioresource Technology 98(66): 225-230.
27.Argaman, Y., Sedlak, R. I., Eckenfelder, W. W., Daigger, G. T. and Poison, S. R. 1991. Phosphorus and Nitrogen Removal from Municipal Wastewater-Principles and Practice , 2nd Ed. Lewis Publishers.
28.Argun, M. E., Dursun, S., Ozdemir, C. and Karatas, M. 2007. Heavy metal adsorption by modified oak sawdust: thermodynamics and kinetics. Journal of Hazardous Materials B 141: 77-85.
29.Ayub, S., Ali, S. I. and Khan, N. A. 2001. Study on the removal of Cr(VI) by sugarcane bagasse from wastewater. Pollution Research Journal 2(2): 233-237.
30.Ayub, S., Ali, S. I. and Khan, N. A. 2002. Adsorption studies on the low cost adsorbent for the removal of Cr(VI) from electroplating wastewater. Environmental Pollution Control Journal 5(6): 10-20.
31.Ayub, S., Ali, S. I., Khan, N. A. and Rao, R. A. K. 1998. Treatment of wastewater by agricultural waste. Environmental Protection Control Journal 2(1): 5-8.
32.Bae, S. and Shoda, M. 2004. Bacterial cellulose production by fed-batch fermentation in molasses medium. Biotechnology Progress 20(5): 1366-1371.
33.Baral, S. S., Das, S. N. and Rath, P. 2006. Hexavalent chromium removal from aqueous solution by adsorption on treated sawdust. Biochemical Engineering Journal 31: 216-222.
34.Benziman, M. and Mazover, A. 1973. Nicotinamide adenine dinucleotide- and nicotinamide adenine dinucleotide-phosphate specific glucose-6-phosphate dehydrogenases of Acetobacter xylinum and their role in the regulation of the pentose cycle Journal of Biological Chemistry 248: 1603-1608.
35.Benziman, M., Russo, A., Hochman, S. and Weinhouse, H. 1978. Purification and regulatory properties of the oxaloacetate decarboxylase of Acetobacter xylinum. Journal of Bacteriology 134: 1-9.
36.Bhatnagar and Jain. 2005. Bhatnagar, A.K. Jain. A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water. Journal of Colloid and Interface Science 281: 49-55
37.Bhattacharya, S., Bhat, K. K. and Raghuver, K. H. 1992. Rheology of bengal gram cicer arietinum flour suspensions. Journal of Food Engineering 17: 83-96.
38.Bickerstaff, G. F. 1997. Immobilization of Enzymes and Cells. Humana Press.
39.Bielecki, S., Krystynowicz, A., Turkiewicz, M. and Kalinowska, H. 2005.Bacterial Cellulose, Wiley-VCH Verlag, Weinheim, Germany, 2005.
40.Bjorndal, H., Erbing, C., Lindberg, B., Fahraeus, G. and G, L. 1971. Studies on the extracellular polysaccharide from Rhizobium meliloti. Acta Chemica Scandinavica 25: 1281-1286.
41.Borzani, W. and Desouza, S. J. 1995. Mechanism of the film thickness increasing during the bacterial production of cellulose on non-agitated liquid-media. Biotechnology Letters 17(11): 1271-1272.
42.Brown, A. J. 1886. On an acetic ferment which forms cellulose. Journal of the Chemical Society, Transactions 49: 432-439.
43.Budhiono, A., Rosidi, B., Taher, H. and Iguchi, M. 1999. Kinetic aspect of bacterial cellulose formation in nata-de-coco culture system. Carbohydrate Polymers 40: 137-143.
44.Bulut, Y. and Tez, Z. 2003. Removal of heavy metal ions by modified sawdust of walnut. Fresenius Environmental Bulletin 12: 1499-1504.
45.Canale-Parola, E. 1970. Biology of sugar-fermenting sarcinae. Bacteriological Reviews 34: 82-97.
46.Cannon, R. E. and Anderson, S. M. 1991. Biogenesis of BC. Critical Reviews in Microbiology 17(6): 435-447.
47.Chand, S., Aggarwal, V. K. and Kumar, P. 1994. Removal of Hexavalent Chromium from the Wastewater by Adsorption. Indian Journal of Environmental Health 36(3): 151-158.
48.Chao, Y., Mitarai, M., Sugann, Y. and Shoda, M. 2001. Effect of assition of water- soluble polysaccharides on bacterial cellulose production in a 50-L airlift reactor. Biotechnology Progress 17(4): 781-785.
49.Chauhan, D. and Sankararamakrishnan, N. 2008. Highly enhanced adsorption for decontamination of lead ions from battery wastewaters using chitosan functionalized with xanthate. Bioresource Technology 99: 9021-9024.
50.Chen, H., Dai, G. L., Zhao, J., Zhong, A.G., Wu, J. Y. and Yan, H.. 2010. Removal of copper(II) ions by a biosorbent-Cinnamomum camphora leaves powder Journal of Hazardous Materials 177: 228–236.
51.Chen, P. P., Wu, S. and Chong, K.-H. 2003. Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption. Carbon 41: 1979-1986.
52.Chen, S., Zou, Y., Yan, Z., Shen, W., Shi, S., Zhang, X. and Wang, H. 2009. Carboxymethylated-bacterial cellulose for copper and lead ion removal. Journal of Hazardous Materials 161: 1355-1359.
53.Chubar, N., Calvalho, J. R. and Correia, M. J. N. 2004. Heavy metals biosorption on cork biomass: effect of the pre-treatment. Colloids and Surfaces A 238: 51-58.
54.Cooper, C. D. and Alley, F. C. 1992. Air pollution contro: A design approach. P. 343-372. Centralbook, Taipei, Taiwan.
55.Daifullah, A. A. M., Girgis, B. S. and Gad, H. M. H. 2003. Utilization of agro-residues (rice husk) in small waste water treatment plans. Materials Letters 57: 1723-1731.
56.Deepak, G. and Kilambi, P. 2003. The fabrication and evaluation of the formulation variable of a controlled-porosity osmotic drug delivery system. Pharmaceutical technology 27(9): 58-68.
57.Delmer, D. P. 1987. Cellulose biosynthesis. Annual Review of Plant Physiology 32: 259-290.
58.Denizli, A., Say, R. and Arica., Y. 2000. Removal of heavy metal ions from aquatic solutions by membrane chromatography. Separation and Purification Technology 21: 181-190.
59.Dubey, S. P. and Gopal, K. 2006. Adsorption of chromium(VI) on low cost adsorbents derived from agricultural waste material: a comparative study. Journal of Hazardous Materials.: 465-470.
60.Edele, D. G. 1973. Livestock wastw management in a quality environment. University of Illinois at Urbana-Champaign.
61.Evans, B. R., ÓNeill, H. M., Malyvanh, V. P., Lee, I. and Woodward, J. 2003. Palladium-bacterial cellulose membranes for fuel cells. Biosensors and Bioelectronics 18: 917-923.
62.Fiedler, S., Füssel, M. and Sattler, K. 1989. Production and application of bacterial cellulose: I. A survey on state of research and nvestigations concerning fermentation kinetics. Zentralblatt für Mikrobiologie 144: 473-484.
63.Fontana, J. D., de Sousa, A. M., Fontana, C. K., Torriani, I. L., Moreschi, J. C., Gallotti, B. J., de Sousa, S. J., Narcisco, G. P., Bichara, J. A. and Farah, L. F. 1990. Acetobacter cellulose pellicle as a temporary skin substitute. Applied Biochemistry Biotechnology. 25: 253-264.
64.Fontana, J. D., Franco, V. C., de Sousa, S. J., Lyra, I. N. and de Sousa, A. M. 1991. Nature of plant stimulators in the production of Acetobacter xylinum ('tea fungus') biofilm used in skin therapy. Applied Biochemistry Biotechnology 28(29): 341-351.
65.French, A. D. 1985. Physical and theoretical methods for determining the supramolecular structure of cellulose, in: Cellulose chemistry and its applications., R. P. Nevell and S. H. Zeronian (Eds.). Ellis Horwood Ltd., Chichester, England.
66.Ganji, M., Khosravi, M. and Rakhsaee, R. 2005. Biosorption of Pb, Cd, Cu and Zn from wastewater by treated Azolla filiculoides with H2O2/ MgCl2. International Journal of Environmental Science and Technology 1: 265-271.
67.Geyer, U., Klemm, D. and Schmauder, H. P. 1994. Kinetics of the utilization of different C sources and the cellulose formation by Acetobacter xylinum. Acta Biotechnologica 14: 261-266.
68.Ghimire, K. N., Inoue, K., Yamaguchi, H., Makino, K. and Miyajima, T. 2003. Adsorptive separation of arsenate and arsenite anions from aqueous medium by using orange waste. Water Research 37(20): 4945-4953.
69.Gromet, Z., Schramm, M. and Hestrin, S. 1957. Synthesis of cellulose by Acetobacter xylinum. IV. Enzyme systems present in a crude extract of glucose-grown cells. Biochemical Journal 67: 679-689.
70.Gupta, V. K. and Ali, I. 2004. Removal of lead and chromium from wastewater using bagasse fly ash–a sugar industry waste. Journal of Colloid and Interface Science 271: 321-328.
71.Gupta, V. K., Gupta, M. and Sharma, S. 2001. Process development for the removal of lead and chromium from aqueous solution using red mud – an aluminum industry waste. Water Research 35(5): 1125-1134.
72.Haigler, C. H. 1985. The functions and biogenesis of native cellulose, Ellis Horwood Ltd, Chichester, England.
73.Haigler, C. H., Brown Jr., R. M. and Benziman, M. 1980. Calcoflour white ST alters the in vivo assembly of cellulose microfibrils. Science 21: 903-906.
74.Halim, S. H. A., Shehata, A. M. A. and El- Shahat, M. F. 2003. Removal of lead ions from industrial waste water by different types of natural materials. Water Research 37: 1678-1683.
75.Hanafiah, M. A. K., Ibrahim, S. C. and Yahya, M. Z. A. 2006. Equilibrium adsorption study of lead ions onto sodium hydroxide modified Lalang (Imperata cylindrica) leaf powder. Journal of Applied Polymer Science Research 2: 1169-1174.
76.Hassan, M. L. and El-Wakil, N. A. 2003. Heavy metal ion removal by amidoximated bagasse. Journal of Applied Polymer Science 87: 666-670.
77.Hestrin, S. and Satoshi, M. 1954. Synthesis of cellulose biosynthesis by Acetobacter xylinum. I. Micromethod for the determination of cellulose. Biochemical Journal 56: 2259-2262.
78.Hestrin, S. and Schramm, M. 1954. Synthesis of cellulose by Acetobacter xylinum: II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochemical Journal. 58: 345-352.
79.Ho, T. C., Chen, C., Hopper, J. R. and Oberacker, D. A. 1992. Metal capture during fluidized bed incineration of wastes contaminated with lead chloride. Combustion Science and Technology 85: 101–116.
80.Ho, T. C., Chen, J. M., Shukla, S. and Hopper, J. R. 1990. Metal capture during fluidized bed incineration of solid wastes. AIChE Symposium Series 276(86): 51-60.
81.Ho, T. C., Chu, H. W. and Hopper, J. R. 1993. Metal volatilization and separation during incineration. Waste Management 13: 455-466.
82.Ho, T. C., Tan, T., Chen, C. and Hopper, J. R. 1991. Characteristics of metal capture during fluidized bed incineration. AIChE Symposium Series 281(87): 118-126.
83.Ho, Y. S. and McKay, G. 1999. Pseudo-second order model for sortpion processes. Process Biochemistry 34: 451-465.
84.Ho, Y. S. and Ofamaja, A. E. 2006. Kinetic studies of copper ion adsorption on palm kernel fibre. Journal of Hazardous Materials 137: 1796-1802.
85.Hon, D. N. S. 1996. Cellulose and its Derivatives: Structures, Reactions, and Medical Uses, in: Polysaccharides in Medicinal Applications, S. Dumitru (Ed.). Marcel Dekker, New York, USA, pp. 87-105.
86.Hornung, M., Ludwigl, M., Gerrard, A. M. and Schmauderl, H.-P. 2006a. Optimizing the production of bacterial cellulose in surface culture: evaluatio of substrate mass transfer influences on the bioreaction (Part 1). Engineering in Life Sciences 6(6): 537-545.
87.Horsfall Jr., M., Abia, A. A. and Spiff, A. I. 2006. Kinetic studies on the adsorption of Cd2+, Cu2+ and Zn2+ ions from aqueous solutions by cassava (Manihot sculenta Cranz) tuber bark waste. Bioresource Technology 97: 283-291.
88.Hranja, P. L., Jéso, B. D., Bareille, R., Rouais, F., Baquey, C. and Barbosa, M. A. 2006. Cellulose phosphates as biomaterials in vitro biocompatibility studies. Reactive and Functional Polymers 66: 728-739.
89.Huang, J. C. and Bates, V. T. 1980. Comparative performance of rotating biological contactors using air and pure oxygen. Journal of the Water Pollution Control Federation 52(11): 2686-2703.
90.Iguchi, M. and Yamanaka, S. 1997. Industrial use of bacterial cellulose - A review. Proceedings of International Workshop Green Polymer. Bandung-Bogor: 47-54.
91.Iguchi, M., Yamanaka, S. and Budhiono, A. 2000. Review: Bacterial cellulose - a masterpiece of nature's arts. Journal of Material Science 35(2): 261-270.
92.Ishida, T., Sugano, Y., Nakai, T. and Shoda, M. 2002. Effects of acetan on production of bacterial cellulose by Acetobacter xylinum. Bioscience, Biotechnology, and Biochemistry 66: 1677-1681.
93.Ishikawa, A., Masuoka, M., Tsuchida, T. and Yoshinaga, F. 1995. Increase in cellulose production by sulfa guanidine-resistant mutants derived from Acetobacter xylinum subsp. sucrofermentans. Bioscience, Biotechnology, and Biochemistry 59: 2259-2262.
94.Isihara, M. and Yamanaka, S. 2002. US Patent Application No. 20020065409.
95.Jonas, R. and Farab, L.F. 1998. Production and application of microbial cellulose. Polymer Degradation and Stability 59: 101-106.
96.Joris, K., Billiet, F., Drieghe, S., Brachx, D. and E, V. 1990. Microbial production of β-1,4 glucan Meded. Fac. Landbouwwet Rijksuniv Gent. 55: 1563-1566.
97.Junior, O. K., Gurgel, L. V. A., de Melo, J. C. P., Botaro, V. R., Melo, T. M. S., de Freitas Gil, R. P. and Gil, L. F. 2006. Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse. Bioresource Technology 98: 1291-1297.
98.Kadirvelu, K., Kavipriya, M., Karthika, C., Radhika, M., Vennilamani, N. and Pattabhi, S. 2003. Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous Solution. Bioresource Technology 87: 129-132.
99.Kadirvelu, K., Thamaraiselvi, K. and Namasivayam, C. 2001a. Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from coirpith. Separation and Purification Technology 24: 497-505.
100.Kadirvelu, K., Thamaraiselvi, K. and Namasivayam, C. 2001b. Removal of heavy metal from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresource Technology 76: 63-65.
101.Kamide, K., Matsuda, Y., liJima, H. and Okajima, K. 1990. Effect of culture conditions of acetic acid bacteria on cellulose biosynthesis. British Polymer Journal 22: 167-171.
102.Keshk, S. and Sameshima, K. 2006. Influence of lignosulfonate on crystal structure and productivity of bacterial cellulose in a static culture. Enzyme and Microbial Technology 40: 4-8.
103.Khan, N. A., Ali, S. I. and Ayub, S. 2001. Effect of pH on the removal of chromium (Cr) (VI) by sugar cane baggase. Science and Technology 6: 13-19.
104.Khan, N. A., Shaaban, M. G. and Hassan, M. H. A. Removal of heavy metal using an inexpensive adsorbent. Proc. UM Research Seminar 2003 organized by Institute of Research Management and Consultancy (IPPP), University of Malaya, Kuala Lumpur.
105.Klemm, D., Schumann, D., Udhardt, U. and Marsch, S. 2001. Bacterial synthesized cellulose-artificial blood vessels for microsurgery. Progress in Polymer Science 26(9): 1561-1603.
106.Klimmek, K. S., Stan, H. J., Wilke, A., Bunke, G. and Buchholz, R. 2001. Comparative analysis of the biosorption of cadmium, lead, nickel, and zinc by algae. Environmental Science and Technology 35(21): 4283-4288.
107.Kobya, M., Demirbas, E., Senturk, E. and Ince, M. 2005. Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresource Technology 96: 1518-1521.
108.Kouda, T., Naritomi, T., Yano, H. and Yoshinaga, F. 1997. Effects of oxygen and carbon dioxide pressures on bacterial cellulose production by Acetobacter in aerated and agitated culture. Journal of Fermentation and Bioengineering 84(2): 124-127.
109.Krystynowicz, A., Czaja, W., Wiktorowska-Jezierska, A., Gonçalves-Miśkiewicz, M., Turkiewicz, M. and Bielecki, S. 2002. Factors affecting the yield and properties of bacterial cellulose. Journal of Industrial Microbiology and Biotechnology 29: 89-195.
110.Kuga, S., Takagi, S. and Brown Jr., R. M. 1993. Native folded chain cellulose II. Polymer Polymer: 3293–3297.
111.Kula, I., Uğurlu, M., Karaoğlu, H. and Çelik, A. 2007. Adsorption of Cd(II) ions from aqueous solutions using activated prepared from olive stone by ZnCl2 activation. Bioresource Technology 99(3): 492-501.
112.Kumar, U. and Bandyopadhyay, M. 2006. Sorption of cadm ium from aqueous solution using pretreated rice husk. Bioresource Technology 97: 104-109.
113.Lagergren, S. 1989. About the theory of so called adsorption of soluble substances. Ksver Veterskapsakad Hand 24: 1-6.
114.Lagergren, S. 2004. Adsorption of Congo red from aqueous solution onto calcium-rich fly ash. Journal of Colloid and Interface Science 274: 371-379.
115.Laus, R., Costa, T.G., Szpoganicz, B. and Fávere, V.T. 2010. Adsorption and desorption of Cu(II), Cd(II) and Pb(II) ions using chitosan crosslinked with epichlorohydrin-triphosphate as the adsorbent. Journal of Hazardous Materials 183: 233-241.
116.Lee, S. H. D. and Johnson, I. J. 1980. Removal of gaseous alkali metal compounds from hot flue gas by particulate sorbents. Journal of Engineering for Power 102: 397-402.
117.Leyva-Ramos, R., Bernal-Jacome, L. A. and Acosta-Rodriguez, I. 2005. Adsorption of cadmium(II) from aqueous solution on natural and oxidized corncob. Separation and Purification Technology 45: 41-49.
118.Li, J. X., Hu, J., Sheng, G. D., Zhao, G. X. and Huang, Q. 2009. Effect of pH, ionic strength, foreign ions and temperature on the adsorption of Cu(II) from aqueous solution toGMZ bentonite. Colloids and Surfaces A: 195-201
119.Li, N., Zhang, L., Chen, Y., Tian, Y. and Wang, H. 2011. Adsorption behavior of Cu(II) onto titanate nanofibers prepared by alkali Treatment. Journal of Hazardous Materials 189: 265-272.
120.Li, Q., Zhai, J., Zhang, W., Wang, M. and Zhou, J. 2006. Kinetic studies of adsorption of Pb(II), Cr(III) and Cu(II) from aqueous solution by sawdust and modified peanut husk. Journal of Hazardous Materials B 141: 163-167.
121.Liang, S., Guo, X., Feng, N. and Tian, Q. 2010. Isotherms, kinetics and thermodynamic studies of adsorption of Cu2+ from aqueous solutions by Mg2+/K+ type orange peel adsorbents. Journal of Hazardous Materials 174: 756-762.
122.Lin, J., Zhan, Y. and Zhu Z. 2011. Adsorption characteristics of copper (II) ions from aqueous solution onto humic acid-immobilized surfactant-modified zeolite. Colloids and Surfaces A: Physicochemical and Engineering Aspects 384: 9-16.
123.Liu, M., Deng, Y., Zhan, H. and Zhang, X. 2002. Adsorption and Desorption of Copper(II) from Solutions on New Spherical Cellulose Adsorbent. Journal of Applied Polymer Science 84: 478–485.
124.Loncar, E.S., Petrovic, S.E., Malbasa, R.V. and Verac, R.M. 2000. Biosynthesis of glucuronic acid by means of tea fungus. Nahrung-Food 44: 138-139.
125.Low, K. S., Lee, C. K. and Mak, S. M. 2004. Sorption of copper and lead by citric acid modified wood. Wood Science and Technology 38: 629-640.
126.Makhija, S. N. and Vavia, P. R. 2003. Controlled porosity osmotic pump-based controlled release systems of pseudoephedrine: I. Cellulose acetate as a semipermeable membrane. Journal of Controlled Release 89(1): 5-18.
127.Mall, I. D., Srivastava, N. C. and Agarwal, N. K. 2006. Removal of Orange-G and Methyl Violet dyes by adsorption onto bagasse fly ashkinetic strdy and equilibrium isotherm analyses. Dyes and Pigments 69: 210-223.
128.Marchetti, M., Clement, A., Loubinoux, B. and Gerardin, P. 2000. Decontamination of synthetic solutions containing heavy metals using chemically modified sawdusts bearing polyacrylic acid chains. Journal of Wood Science 46: 331-333.
129.Marshall, W. E., Wartelle, L. H., Boler, D. E., Johns, M. M. and Toles, C. A. 1999. Enhanced metal adsorption by soybean hulls modified with citric acid. Bioresource Technology 69: 263-268.
130.Martin-Dupont, F., Gloaguen, V., Granet, R., Guilloton, M., Morvan, H. and Krausz, P. 2002. Heavy Metal Adsorption by Crude Coniferous Barks: A Modelling Study. Journal of Environmental Science and Health 37(6): 1063-1073.
131.Masaoka, S., Ohe, T. and Sakota, N. 1993. Production of cellulose from glucose by Acetobacter xylinum. Journal of Fermentation and Bioengineering 75(1): 18-22.
132.Matsuoka, M., Tsuchida, T., Matsushita, K., Adachi, O. and Yoshinaga, F. 1996. A synthetic medium for bacterial cellulose production by Acetobacter xylinum subsp. sucrofermentans. Bioscience, Biotechnology, and Biochemistry 60(4): 575-579.
133.Matthysse, A. G. 1986. Initial interactions of Agrobacterium tumefaciens with plant host cells. Critical Reviews in Microbiology 13: 281-307.
134.McGarry, M. G. 1970. Alga flocculation with aluminium sulfate and polyelectrolytes. Journal of the Water Pollution Control Federation 42: 191-201.
135.Memon, S. Q., Memon, N., Shah, S. W., Khuhawar, M. Y. and Bhanger, M. I. 2007. Sawdust–a green and economical sorbent for the removal of cadmium(II) ions. Journal of Hazardous Materials B 139: 116-121.
136.Metcalf and Eddy, I. 1991. Wastewater Engineering: Treatment and Reuse. 3rd ed. New York: McGraw-Hill.
137.Min, S. H., Han, J. S., Shin, E. W. and Park, J. K. 2004. Improvement of cadmium ion removal by base treatment of juniper fiber. Water Research 38: 1289-1295.
138.Mohan, D. and Singh, K. P. 2002. Singleand multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse-an agricultural waste. Water Research 36: 2304-2318.
139.Mohanty, K., Jha, M., Meikap, B. C. and Biswas, M. N. 2005. Removal of chromium(VI) from dilute aqueous solutions by activated carbon developed from Terminalia arjuna nuts activated with zinc chloride. Chemical Engineering Science 60: 3049-3059.
140.Moon, S. H., Park, J. M., Chun, H. Y. and Kim, S. J. 2006. Comparison of physical properties of bacterial celluloses produced in different culture conditions using Saccharified food wastes. Biotechnology and Bioprocess Engineering 11: 26-31.
141.Munaf, E. and Zein, R. 1997. The use of rice husk for removal of toxic metals from wastewater. Environmental Technology 18: 359-362.
142.Nakastuka, S., Nakate, I. and Miyano, T. 1996. Drinking water treatment by using ultrafiltration hallow membranes. Desalination 106: 55-61.
143.Namasivayam, C. and Kanchana, N. 1992. Waste Banapith as adsorbent for colour removal from wastewater. Chemsphere 25: 1691-1705.
144.Namasivayam, C. and Sangeetha, D. 2006. Recycling of agricultural solid waste, coirpith: removal of anions, heavy metals, organics and dyes from water by adsorption onto ZnCl2 activated coirpith carbon. Journal of Hazardous Materials B 135: 449-452.
145.Namasivayam, C., Jayakumar, R. and Yaumuna, R. T. 1994. Dye Removal from wastewater by adsorption on waste Fe (III) hydroxide, Waste Management, 14 (7): 643-648.
146.Nasernejad, B., Zadeh, T. E., Pour, B. B., Bygi, M. E. and Zamani, A. 2005. Comparison for biosorption modeling of heavy metals (Cr(III), Cu(II), Zn(II)) adsorption from wastewater by carrot residues. Process Biochemistry 40: 1319-1322.
147.Nassar, M. M., Hamoda, M. F. and Radwan, G. H. 1995. Adsorption equilibria of basic dyestuff onto palm fruit particles. Water Science and Technology 32: 31-41.
148.Nishi, Y., Uryu, M., Yamanaka, S., Watanabe, K., Kitajima, K. and Iguchi, M. 1990. The structure and mechanical properties of sheets prepared from bacterial cellulose. Part 2: Improvement of the mechanical properties of sheets and their applicability to diaphragms of electro-acoustic transducers. Journal of Material Science
149.Noeline, B. F., Manohar, D. M. and Anirudhan, T. S. 2005. Kinetic and equilibrium modeling of lead(II) sorption from water and wastewater by polymerized banana stem in a batch reactor. Separation and Purification Technology 45: 131-140.
150.Ofomaja, A. E. and Naidoo, E. B. 2010. Kinetic modeling of the interaction between copper(II) and calcium hydroxide treated pine cone powder. Journal of the Taiwan Institute of Chemical Engineers 42: 480-485.
151.Őikawa, T., Morino, T. and Ameyama, M. 1995a. Production of cellulose from D-Arabitol by Acetobacter xylinum Ku-1. Bioscience, Biotechnology, and Biochemistry 59(8): 1564-1565.
152.Őikawa, T., Ohtori, T. and Ameyama, M. 1995b. Production of cellulose from D-Mannitol by Acetobacter xylinum Ku-1. Bioscience, Biotechnology, and Biochemistry 59(2): 331-332.
153.Okieimen, F. E., Sogbaike, C. E. and Ebhoaye, J. E. 2005. Removal of cadmium and copper ions from aqueous solution with cellulose graft copolymers. Separation and Purification Technology 44: 85-89.
154.Oshima, T., Kondo, K., Ohto, K., Inoue, K. and Baba, Y. 2008. Preparation of phosphorylated bacterial cellulose as an adsorbent for metal ions. Reactive and Functional Polymers 68: 376-383.
155.Oshima, T., Taguchi, S., Ohe, K. and Baba, Y. 2011. Phosphorylated bacterial cellulose for adsorption of proteins. Carbohydrate Polymers 83: 953-958.
156.Özera, A. and Pirinççi, H. B. 2006. The adsorption of Cd(II) ions on sulfuric acid-treated wheat bran. Journal of Hazardous Materials B 137: 849-855.
157.Özera, A., Özera, D. and Özer, A. 2004. The adsorption of copper(II) ions onto dehydrated wheat bran (DWB): determination of equilibrium and thermodynamic parameters. Process Biochemistry 39: 2183-2191.
158.Palma, L.D., Merli, C., Paris, M. and Petrucci, E. 2003. A steady-state model for the evaluation of disk rotational speed influence on RBC kinetic: model presentation. Bioresource Technology 86: 193-200.
159.Pehlivan, E., Cetin, S. and Yanık, B. H. 2006. Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beet pulp and fly ash. Journal of Hazardous Materials B 135: 193-199.
160.Quesada-Chanto, A., Schroeder, A. G. S., Schmidt-Meyer, A. C., Lopez, J. A., Silveira, M. M., Jonas, R. and Naturforsch, Z. 1997. 52c: 193-196.
161.Rahman, M. S. and Islam, M. R. 2009. Effects of pH on isotherms modeling for Cu(II) ions adsorption using maple wood sawdust. Chemical Engineering Journal 149: 273-280.
162.Rehman, H., Shakirullah, M., Ahmad, I., Shah, S. and Hamedullah. 2006. Sorption studies of nickel ions onto sawdust of Dalbergia sissoo. Journal of the Chinese Chemical Society 53: 1045-1052.
163.Romano, M., Franzosi, G., Seves, A. and S, S. 1989. Study of the production of cellulose gel and cellulose by Acetobacter xylinum. Cellulose Chemistry and Technology 23: 217-223.
164.Sattler, K. and Fiedler, S. 1990. Production and application of bacterial cellulose: I. Cultivation in a rotating drum fermentor. Zentralbl Microbiol 145: 247-252.
165.Schmauder, H. P., Einfeldt, L., Geyer, U. and Klemm, D. 1992. Biosynthesis of cellulose by Acetobacter xylinum using glucose and modified carbonsources. . Meded. Fac. Landbouwwet Rijksuniv Gent 57(4a): 1797-1799.
166.Schramm, M., Gromet, Z. and Hestrin, S. 1957. Synthesis of cellulose by Acetobacter xylinum. IV Enzyme systems present in a crude extract of glucose grown cells. Biochemical Journal 67(7): 679-689.
167.Sćiban, M., Klasnja, M. and Skrbić, B. 2006. Modified softwood sawdust as adsorbent of heavy metal ions from water. Journal of Hazardous Materials B 136: 266-271.
168.Selvi, K., Pattabhi, S. and Kadirvelu, K. 2001. Removal of Cr (VI) from aqueous solution by adsorption onto activated carbon. Bioresource Technology 80: 87-89.
169.Serafica, G.C. 1997. Production of bacterial cellulose using a rotating disk film bioreactor by Acetobacter xylinum. PhD Thesis, Rensselaer Polytechnic Institute.
170.Serafica, G.C.,•Mormino, R. and Bungay, H.R. 2002. Inclusion of Solid Particlesin Bacterial Cellulose, Journal of Applied Microbiology and Biotechnology 58: 756–760.
171.Shen, W., Chen, S., Shi, S., Li, X., Zhang, X. and Hu, W. 2009a. Adsorption of Cu(II) and Pb(II) onto diethylenetriamine-bacterial cellulose. Carbohydrate Polymers 75: 110-114.
172.Shin, E. W. and Rowell, R. M. 2005. Cadmium ion sorption onto lignocellulosic biosorbent modified by sulfonation: the origin of sorption capacity improvement. Chemosphere 60: 1054-1061.
173.Shoda, M. and Sugano, Y. 2005. Recent advances in bacterial cellulose production. Biotechnology and Bioprocess Engineering 10: 1-8.
174.Shukla, S. R. and Pai, R. S. 2005a. Adsorption of Cu(II), Ni(II) and Zn(II) on dye loaded groundnut shells and sawdust. Separation and Purification Technology 43: 1-8.
175.Shukla, S. R. and Pai, R. S. 2005b. Adsorption of Cu(II), Ni(II) and Zn(II) on modified jute fibres. Bioresource Technology 96: 1430-1438.
176.Sokolnicki, A. M., Fisher, R. J., Harrah, T. P. and Kaplan, D. L. 2006. Permeability of bacterial cellulose membranes. Journal of Membrane Science 272: 15-27.
177.Somasundaran, P., Somil C. M., Yu, X. and Krishnakumar, S. 2009. Handbook of surface and colloid chemistry. In: Colloid Systems and Interfaces Stability of Dispersions through Polymer and Surfactant Adsorption(Third Edition).
178.Srinivasan, K., Balasubramaniam, N. and Ramakrishna, T. V. 1998. Studies on chromium removal by rice husk carbon. Indian Journal Environmental Health 30(4): 376-387.
179.Subramaniam, P., Khan, N.A., and Ibrahim, S. 2004. Rice Husk as an Adsorbent for Heavy Metal. Proceedings of International Conference on Water and Wastewater (ASIAWATER 2004), Kuala Lumpur, Malaysia..
180.Suemitsu, R., Venishi, R., Akashi, I. and Nakano, M. 1986. The Use of Dyestuff-treated Rice Hulls for Removal of Heavy Metals from Waste Water. Journal of Applied Polymer Science 31: 75-83.
181.Swissa, M., Aloni, Y., Weinhouse, H. and Benziman, M. 1980. Intermediary steps in cellulose synthesis in Acetobacter xylinum: studies with whole cells and cell-free preparations of the wild type and a celluloseless mutant. Journal of Bacteriology 143: 1142-1150.
182.Tan, W. T., Ooi, S. T. and Lee, C. K. 1993. Removal of chromium (VI) from solution by coconut husk and palm pressed fibre. Environmental Technology 14: 277-282.
183.Taty-Costodes, V. C., Fauduet, H., Porte, C. and Delacroix, A. 2003. Removal of Cd(II) and Pb(II) ions from aqueous solutions by adsorption onto sawdust of Pinus sylvestris. Journal of Hazardous Materials B 105: 121-142.
184.Temkin, V. I. and Pyzhev, V. 1940. Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physicochimica URSS 12: 327-356.
185.Terada, A., Hibiya, K., Nagai, J., Tsuneda, S. and Hirata, A. 2003. Nitrogen Removal Characteristics and Biofilm Analysis of a Membrane-Aerated Biofilm Reactor Applicable to High-Strength Nitrogenous Wastewater Treatment. Journal of Bioscience and Bioengineering 95(2): 170-178.
186.Tesoro, G. C. and Willard, J. J. 1971. Crosslinked cellulose, in: Cellulose and Cellulose Derivatives, Vol 5. , N. M. Bikales and L. Segal (Eds.). Wiley Interscience, New York, USA., pp. 835-875.
187.Tiemann, K. J., Gamez, G., Dokken, K., Parsons, J. G. and Gardea-Torresdey, J. L. 2002. Chemical modification and X-ray absorption studies for lead(II) binding by Medicago sativa (alfalfa) biomass. Microchemical Journal 71: 287-293.
188.Torres, J. D., Faria, E. A. and Prado, A. G. S. Thermodynamic studies of the interaction at the solid/liquid interface between metal ions and cellulose modified with ethylenediamine. Journal of Hazardous Materials. 129 239-243.
189.Tutem, E., Apak, R. and Unal, C. F. 1998. Adsorptive removal of chlorophenols from water by bituminous shale. Water Research 32: 2315-2324.
190.Uberoi, M. and Shadman, F. 1990. Sorbents for removal of lead compounds from hot flue gases. AIChE Journal 36(2): 307-309.
191.Vasconcelos, H.L., Fávere, V.T., Gonc, N.S.¸ Laranjeira, alves, M.C.M. 2007. Chitosan modified with Reactive Blue 2 dye on adsorption equilibrium of Cu(II) and Ni(II) ions, Reactive and Functional Polymers 67: 1052-1060.
192.Wafwoyo, W., Seo, C. W. and Marshall, W. E. 1999. Utilization of peanut shells as adsorbents for selected metals. Journal of Chemical Technology and Biotechnology 74: 1117-1121.
193.Walton, A. G. and Blackwell, J. 1973. Biopolymers. Academic Press.
194.Wang, L. and Song, L. 1999. Flux decline in crossflow microfiltration and ultrafiltration experimental verification of Fouling Dynamics. Journal of Membrane Science 160: 41-50.
195.Wankasi, D., Horsfall Jr., M. and Spiff, A. I. 2006. Sorption kinetics of Pb2+and Cu2+ ions from aqueous solution by Nipah palm (Nypa fruticans Wurmb) shoot biomass. Electronic Journal of Biotechnology 9: 587-592.
196.Watanabe, K. and Yamanaka, S. 1995. Effect of oxygen tension in the gaseous phase on production and physiological properties of bacterial cellulose formed under static culture conditions Bioscience Biotechnology and Biochemistry 59: 65-68.
197.Wei Shen, Shiyan Chen, Shuaike Shi, Xin Li, Xiang Zhang, Weili Hu, Huaping Wang. 2009. Adsorption of Cu(II) and Pb(II) onto diethylenetriamine- bacterialcellulose. Carbohydrate Polymers 75: 110–114.
198.Weinhouse, H. and Benziman, M. 1974. Regulation of hexose phosphate metabolism in Acetobacter xylinum. Biochemical Journal 138: 537-542.
199.Weinhouse, H. and Benziman, M. 1976. Phosphorylation of glycerol and dihydroxyacetone in Acetobacter xylinum and its possible regulatory role. Journal of Bacteriology 127(2): 747-754.
200.White, D. G. and Brown, J. R. M. 1989.Prospects for the commercialization of the biosynthesis of microbial cellulose, Wiley, New York, 1989.
201.Wofwoyo, W., Chung, W. S. and Marshall, W. E. 1999. Utilization of peanut shells as adsorbents for selected metals. Journal of Chemical Technology and Biotechnology 74: 1117-1121.
202.Wong, K. K., Lee, C. K., Low, K. S. and Haron, M. J. 2003. Removal of cu and Pb by tartaric acid modified rice husk from aqueous solution. Chemosphere 50: 23-28.
203.Xie, Z. J., Chang, H. L. and Kilbane, J. J. 1996. Removal and recovery of metal, ions from wastewater using biosorbents and chemically modified biosorbents. Bioresource Technology 57: 127-136.
204.Yamanaka, S., Watanabe, K., Kitamura, N., Mitsuhashi, S., Nishi, Y. and Uryu, M. 1989. The structure and mechanical properties of sheets prepared from bacterial cellulose. Journal of Material Science 24: 3141-3145.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊