跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/03 12:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅暐勛
研究生(外文):Lo, Wei-Hsun
論文名稱:角蛋白酶生產菌株之篩選及酵素分析 與應用
論文名稱(外文):Isolation of Keratinase-Producing Microorganisms, Analysis of Enzyme Characteristics and Applications
指導教授:吳建一凃瑞澤凃瑞澤引用關係
指導教授(外文):Wu, Jane-YiiToo, Jui-Rze
口試委員:施英隆王維麒林昀輝黃思蓴凃瑞澤吳建一
口試日期:2012-06-22
學位類別:博士
校院名稱:大葉大學
系所名稱:生物產業科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:296
中文關鍵詞:角蛋白酶羽毛廢棄物金屬蛋白酶
外文關鍵詞:keratinasefeather wastemetalloproteases
相關次數:
  • 被引用被引用:1
  • 點閱點閱:556
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
從彰化養雞場的羽毛廢棄物土壤中,篩選出六株初步命名為Wu1、Wu2、Wu3、Wu4、 Wu5及Wu6之具分泌角蛋白酶能力的羽毛降解微生物,經由微生物菌種鑑定並命名為Bacillus megaterium Wu1、Bacillus cereus Wu2、Bacillus cereus Wu3、Brevibacillus parabrevis Wu4、Bacillus thuringiensis Wu5及Bacillus cereus Wu6。除了Wu3之外,其餘五株菌在培養基初始酸鹼值為pH 5.0時,有最大角蛋白酶活性,Wu3則是pH 9.0。六株菌最適的生長溫度範圍在30-40oC之間。B. megaterium Wu1是唯一不需額外添加碳氮源,就具有較高的角蛋白酶活性。將家禽廢棄羽毛作為六株菌生長時的碳源與氮源,均可產生胞外角蛋白酶。將發酵液經過硫酸銨沉澱、Sephacryl S-200 HR膠體層析及DEAE Sephadex A-50離子交換樹脂的純化,角蛋白酶Wu1、Wu3、Wu5及Wu6的純化倍率分別為7.63、19.48、2.23及4.71,合成率分別為13.59%、26.32%、16.60%及10.55%。以SDS-PAGE分析純化後酵素的分子量,分別為34、46、32及55與68 kDa,其中角蛋白酶Wu6為二聚體。以偶氮酪蛋白為基質,B. megaterium Wu1角蛋白酶於pH 4-12.0與溫度範圍為10-100oC下有活性,最適pH與溫度分別為pH 7與50oC。B. cereus Wu6角蛋白酶於pH 6.0-11.0,10-100oC範圍內具有活性,最適pH與溫度分別為pH 8與50oC。金屬螯合劑EDTA和O-phenanthroline蛋白酶抑制劑會對本研究角蛋白酶之酵素活性造成抑制,因此此二種角蛋白酶皆金屬型蛋白酶。發現於B. megaterium Wu1 和B. cereus Wu6角蛋白酶中添加Na+和Mg2+離子可增加酵素活性。B. megaterium Wu1 和B. cereus Wu6角蛋白酶以粉末形式貯存於最具有穩定性,若以液態形式存在於室溫下,酵素會快速失活。此外,添加一些有機溶劑對Wu1可穩定酵素活性;添加還原劑則會對B. megaterium Wu1 和B. cereus Wu6的活性造成抑制效果。特別是B. megaterium Wu1 和B. cereus Wu6角蛋白酶以偶氮酪蛋白為基質,Wu1和Wu6角蛋白酶之Km值,分別為0.85和3.28 g/L。
Six feather-degrading microorganisms with keratinase producing capacity were isolated from poultry farm feather waste soil in Changhua. They were identified by sequence analysis of 16S rDNA, and named as Bacillus megaterium Wu1, Bacillus cereus Wu2, Bacillus cereus Wu3, Brevibacillus parabrevis Wu4, Bacillus thuringiensis Wu5 and Bacillus cereus Wu6, respectively. The optimum initial pH value of medium to Wu1, Wu2, Wu4, Wu5 and Wu6 was pH 5.0, but Wu3 was pH 9.0. The optimum culture temperature to these six strains between 30 and 40oC. The extracellular keratinases produced by six strains grown on feather as carbon and nitrogen source after liquid culture with each optimum cultured conditions for 4 days. Four keratinases (B. megaterium Wu1, Bacillus cereus Wu3 and Bacillus thuringiensis Wu5 and Bacillus cereus Wu6) were purified by ammonium sulfate precipitation, Sephacryl S-200 HR gel filtration column and DEAE Sephadex A-50 ions exchange column. By these steps, the purity of these enzymes increased by 7.63, 19.48, 2.23 and 4.71 fold, with activity recovery of 13.59%, 26.32%, 16.60% and 10.55%, respectively. The molecular mass of these enzymes determined by SDS-PAGE was 34, 46, 32, 55, 68 kDa, respectively, the keratinase Wu6 was a dimeric protein. These purified enzymes exhibited activity at pH range of pH 4.0-12.0 and pH 6.0-11.0 temperature range of 10-100oC, respectively, with azo-casein as substrate. Optimum pH and temperature of B. megaterium Wu1 and B. cereus Wu6 keratinases were pH 7, and pH8, and 50oC, respectively. The protinase inhibitory effect of metal chelator EDTA and O-phenanthroline characterized three keratinases as metalloproteases. The three bacterial keratinases were completely activated by the presence of Na+ and Mg2+. B. megaterium Wu1 and B. cereus Wu6 keratinases were stable as powder storage at various temperature, nevertheless the keratinases activity started to drop significantly as liquid storage at room temperature. Further, the keratinase Wu1 showed enhence stability in the presence of some organic solvents, but reducings agents were inhibited the keratinase activity from B. megaterium Wu1 and B. cereus Wu6. The Km of B. megaterium Wu1 and B. cereus Wu6 keratinases with azo-casein as substrate were 0.85 and 3.28 g/L, respectively.
目錄

封面內頁
中文摘要 iii
英文摘要 v
誌謝 vii
目錄 ix
圖目錄 xiv
表目錄 xxiii

1. 緒論 1
1.1 前言 1
1.2 研究動機與目的 5
1.3 文獻回顧 8
1.3.1 羽毛之簡介 8
1.3.2 家禽羽毛廢棄物的處理現況 8
1.3.3 角蛋白之簡介 14
1.3.4 蛋白酶的分類 18
1.3.4.1 外切胜肽酶 18
1.3.4.2 內切胜肽酶 20
1.3.5 角蛋白酶之簡介 26
1.3.5.1 角蛋白酶的生產菌株 27
1.3.5.2 影響菌株生產角蛋白酶的環境因子 32
1.3.5.3 角蛋白酶的生化特性 38
1.3.5.4 角蛋白酶降解角蛋白的機制 43
1.3.5.5 角蛋白酶的應用 47
2. 本土性角蛋白分解菌株之篩選與特性分析 52
2.1 前言 52
2.2 材料與方法 53
2.2.1 藥品 53
2.2.2 使用儀器 55
2.2.3 菌株篩選 55
2.2.3.1 樣本來源 56
2.2.3.2 篩選角蛋白分解菌株之培養基 56
2.2.3.3 菌種鑑定 59
2.2.4 選菌株之特性分析 60
2.2.4.1 培養基初始酸鹼值對菌株生產角蛋白酶活性的影響 60
2.2.4.2 培養溫度對菌株生產角蛋白酶活性的影響 60
2.2.4.3 不同氮源對菌株生產角蛋白酶活性的影響 61
2.2.4.4 不同碳源對菌株生產角蛋白酶活性的影響 61
2.2.4.5 不同角蛋白基質對菌株生產角蛋白酶活性的影響 62
2.2.5 分析方法 62
2.2.5.1 角蛋白酶活性的分析 62
2.2.5.2 蛋白質定量之分析方法 63
2.2.5.3 氨氮濃度分析 64
2.3 結果與討論 66
2.3.1 角蛋白分解菌株篩菌結果 66
2.3.2 培養基初始酸鹼值對菌株生產角蛋白酶活性
的影響 75
2.3.3 培養溫度對菌株生產角蛋白酶活性的影響 93
2.3.4 不同氮源對菌株生產角蛋白酶活性的影響 111
2.3.5 不同碳源對菌株生產角蛋白酶活性的影響 129
2.3.6 不同角蛋白基質對菌株生產角蛋白酶活性的影響 147
2.4 結論 166
3. 角蛋白降解酶之純化與特性分析 171
3.1 前言 171
3.2 材料與方法 172
3.2.1藥品 172
3.2.2 儀器設備 174
3.3 實驗方法 175
3.3.1 角蛋白酶之純化步驟 175
3.3.1.1 粗酵素液製備 175
3.3.1.2 硫酸銨沉澱 175
3.3.1.3 膠體過濾層析 176
3.3.1.4 離子交換樹脂層析 176
3.3.1.5 十二烷基硫酸鈉聚丙烯醯胺凝膠電泳 177
3.3.2 角蛋白酶之一般特性性質測定 178
3.3.2.1 角蛋白酶之最適pH 178
3.3.2.2 角蛋白酶之最適溫度 181
3.3.2.3 角蛋白酶之pH穩定性 181
3.3.2.4 角蛋白酶之熱穩定性 181
3.3.2.5 角蛋白酶貯存性試驗 182
3.3.3 角蛋白酶之生化特性性質測定 182
3.3.3.1 蛋白酶抑制劑對酵素活性之影響 182
3.3.3.2 金屬離子對酵素活性之影響 183
3.3.3.3 有機溶劑對酵素活性之影響 183
3.3.3.4 還原劑對酵素活性之影響 184
3.3.3.5 酵素動力學 184
3.4 結果與討論 185
3.4.1 酵素純化 185
3.4.2 角蛋白酶活性之一般特性性質測定 203
3.4.2.1 最適活性反應pH值 204
3.4.2.2 最適活性反應溫度 208
3.4.2.3 貯存性試驗 212
3.4.3 角蛋白酶活性之生化特性性質測定 216
3.4.3.1 蛋白酶抑制劑對角蛋白酶活性之影響 216
3.4.3.2 金屬離子對角蛋白酶活性之影響 220
3.4.3.3 有機溶劑對角蛋白酶活性之影響 227
3.4.3.4 還原劑對角蛋白酶活性之影響 233
3.4.3.5 酵素反應動力學 237
3.5 結論 240
4. 角蛋白降解菌株於生化反應器之操作 243
4.1 前言 243
4.2 材料與方法 243
4.2.1 藥品 243
4.2.2 儀器設備 244
4.2.3 實驗方法 246
4.3 結果與討論 248
4.4 結論 264
參考文獻 268
圖目錄

Figure 1-1 Schematic of this study procedure 7
Figure 1-2 The appearance conformation of feather 9
Figure 1-3 The structure of (A)The α - helix and (B) β-sheet structure 16
Figure 1-4 The structure of (a) hydrogen bond and (b) disulfide bridge 17
Figure 2-1 Appearance of molds cultured with the screened strains and micromorphology of gram strain isolate keratinolytic 68
Figure 2-2 Phylogenetic tree basedon 16S rDNA sequence comparisons of strain Wu1 and selected bacteria 69
Figure 2-3 Phylogenetic tree basedon 16S rDNA sequence comparisons of strain Wu2 and selected bacteria 70
Figure 2-4 Phylogenetic tree basedon 16S rDNA sequence comparisons of strain Wu3 and selectedbacteria 71
Figure 2-5 Phylogenetic tree basedon 16S rDNA sequence comparisons of strain Wu4 and selectedbacteria 72
Figure 2-6 Phylogenetic tree basedon 16S rDNA sequence comparisons of strain Wu5 and selectedbacteria 73
Figure 2-7 Phylogenetic tree basedon 16S rDNA sequence comparisons of strain Wu6 and selectedbacteria 74
Figure 2-8 The effect of initial pH on keratinase activity production by Bacillus megaterium Wu1 76
Figure 2-9 The effect of initial pH on keratinase activity, specific activity and initial keratinase production rate, maximum keratinase production rate Bacillus megaterium Wu1 77
Figure 2-10 The effect of initial pH on keratinase activity production by Bacillus cereus Wu2 79
Figure 2-11 Effect of initial pH on keratinase activity and initial keratinase production rate, max keratinase production rate of Bacillus cereus Wu2 80
Figure 2-12 The effect of initial pH on keratinase activity production by Bacillus cereus Wu3 82
Figure 2-13 Effect of initial pH on keratinase activity and initial keratinase production rate, max keratinase production rate of Bacillus cereus Wu3 83
Figure 2-14 The effect of initial pH on keratinase activity production by Brevibacillus parabrevis Wu4 85
Figure 2-15 Effect of initial pH on keratinase activity and initial keratinase production rate, max keratinase production rate by Brevibacillus parabrevis Wu4 86
Figure 2-16 The effect of initial pH on keratinase activity production by Bacillus thuringiensis Wu5 87
Figure 2-17 Effect of initial pH on keratinase activity and initial keratinase production rate, max keratinase production rate of Bacillus thuringiensis Wu5 88
Figure 2-18 The effect of initial pH on keratinase activity production by Bacillus cereus Wu6 90
Figure 2-19 Effect of initial pH on keratinase activity and initial keratinase production rate, max keratinase production rate of Bacillus cereus Wu6 91
Figure 2-20 The effect of temperature on keratinase activity production by Bacillus megaterium Wu1 94
Figure 2-21 Effect of incubation temperature on keratinase activity and initial keratinase production rate, max keratinase production rate of Bacillus megaterium Wu1 95
Figure 2-22 The effect of temperature on keratinase activity production by Bacillus cereus Wu2 97
Figure 2-23 Effect of incubation temperature on keratinase activity and initial keratinase production rate, max keratinase production rate of Bacillus cereus Wu2 98
Figure 2-24 The effect of temperature on keratinase activity production by Bacillus cereus Wu3 100
Figure 2-25 Effect of incubation temperature on keratinase activity and initial keratinase production rate, max keratinase production rate by Bacillus cereus Wu3 101
Figure 2-26 The effect of temperature on keratinase activity production by Brevibacillus parabreris Wu4 103
Figure 2-27 Effect of different incubation temperature on keratinase activity and initial keratinase production rate, max keratinase production rate by Brevibacillus parabreris Wu4 104
Figure 2-28 The effect of temperature on keratinase activity production by Bacillus thuringiensis Wu5 105
Figure 2-29 Effect of different incubation temperature on keratinase activity and initial keratinase production rate, max keratinase production rate by Bacillus thuringiensis Wu5 106
Figure 2-30 The effect of temperature on keratinase activity production by Bacillus cereus Wu6 108
Figure 2-31 Effect of different incubation temperature on keratinase activity and initial keratinase production rate, max keratinase production rate by Bacillus cereus Wu6 109
Figure 2-32 The effect of various nitrogen sources on keratinase activity production by Bacillus megaterium Wu1 113
Figure 2-33 The effect of nitrogen sources on keratinase activity, specific activity and initial keratinase production rate, maximum keratinase production rate of Bacillus megaterium Wu1 114
Figure 2-34 The effect of various nitrogen sources on keratinase activity production by Bacillus cereus Wu2 115
Figure 2-35 The effect of nitrogen sources on keratinase activity, specific activity and initial keratinase production rate, maximum keratinase production rate of Bacillus cereus Wu2 116
Figure 2-36 The effect of various nitrogen sources on keratinase activity production by Bacillus cereus Wu3 118
Figure 2-37 Effect of different nitrogen sources on keratinase activity and initial keratinase production rate, max keratinase production rate by Bacillus cereus Wu3 119
Figure 2-38 The effect of various nitrogen sources on keratinase activity production by Brevibacillus parabrevis Wu4 121
Figure 2-39 The effect of nitrogen sources on keratinase activity, specific activity and initial keratinase production rate, maximum keratinase production rate of Bacillus megaterium Wu4 122
Figure 2-40 The effect of various nitrogen sources on keratinase activity production by Bacillus thuringiensis Wu5 123
Figure 2-41 The effect of nitrogen sources on keratinase activity, specific activity and initial keratinase production rate, maximum keratinase production rate of Bacillus thuringiensis Wu5 124
Figure 2-42 The effect of various nitrogen sources on keratinase activity production by Bacillus cereus Wu6 126
Figure 2-43 The effect of nitrogen sources on keratinase activity, specific activity and initial keratinase production rate, maximum keratinase production rate of Bacillus cereus Wu6 127
Figure 2-44 The effect of various carbon sources keratinase activity production by Bacillus megaterium Wu1 130
Figure 2-45 The effect of various carbon sources on keratinase activity, specific activity and initial keratinase production rate, maximum keratinase production rate of Bacillus megaterium Wu1 131
Figure 2-46 The effect of various carbon sources keratinase activity production by Bacillus cereusWu2 133
Figure 2-47 The effect of various carbon sources on keratinase activity, specific activity and initial keratinase production rate, maximum keratinase production rate of Bacillus cereus Wu2 134
Figure 2-48 The effect of various carbon sources keratinase activity production by Bacillus cereus Wu3 135
Figure 2-49 The effect of various carbon sources on keratinase activity, specific activity and initial keratinase production rate, maximum keratinase production rate of Bacillus cereus Wu3 136
Figure 2-50 The effect of various carbon sources keratinase activity production by Brevibacillus parabrevis Wu4 138
Figure 2-51 The effect of various carbon sources on keratinase activity, specific activity and initial keratinase production rate, maximum keratinase production rate of Brevibacillus parabrevis Wu4 139
Figure 2-52 The effect of various carbon sources keratinase activity production byBacillus thuringiensis Wu5 141
Figure 2-53 The effect of various carbon sources on keratinase activity, specific activity and initial keratinase production rate, maximum keratinase production rate of Bacillus thuringiensis Wu5 142
Figure 2-54 The effect of various carbon sources keratinase activity production by Bacillus cereusWu6 143
Figure 2-55 The effect of various carbon sources on keratinase activity, specific activity and initial keratinase production rate, maximum keratinase production rate of Bacillus cereus Wu6 144
Figure 2-56 The effect of various keratinous substrates on keratinase activity production by Bacillus megaterium Wu1 149
Figure 2-57 The effect of various keratinous substrates on keratinase activity, specific activity and initial keratinase production rate, max keratinase production rate of Bacillus megaterium Wu1 150
Figure 2-58 The effect of various keratinous substrates on keratinase activity production by Bacillus cereus Wu2 152
Figure 2-59 The effect of various keratinous substrates on keratinase activity, specific activity and initial keratinase production rate, max keratinase production rate of Bacillus cereus Wu2 153
Figure 2-60 The effect of various keratinous substrates on keratinase activity production by Bacillus cereus Wu3 154
Figure 2-61 The effect of various keratinous substrates on keratinase activity, specific activity and initial keratinase production rate, max keratinase production rate of Bacillus cereus Wu3 155
Figure 2-62 The effect of various keratinous substrates on keratinase activity production by Brevibacillus parabrevis Wu4 157
Figure 2-63 The effect of various keratinous substrates on keratinase activity, specific activity and initial keratinase production rate, max keratinase production rate of Brevibacillus parabrevis Wu4 158
Figure 2-64 The effect of various keratinous substrates on keratinase activity production by Bacillus thuringiensis Wu5 160
Figure 2-65 The effect of various keratinous substrates on keratinase activity, specific activity and initial keratinase production rate, max keratinase production rate of Bacillus thuringiensis Wu5 161
Figure 2-66 The effect of various keratinous substrates on keratinase activity production by Bacillus cereus Wu6 162
Figure 2-67 The effect of various keratinous substrates on keratinase activity, specificactivity and initial keratinase production rate, max keratinase production rate of Bacillus cereus Wu6 163
Figure 3-1 Elution profile after chromatography of keratinase from B. megaterium Wu1 on Sephacryl S-200 HR column. 187
Figure 3-2 Elution profile after chromatography of keratinase from B. megaterium Wu1 on DEAE Sephadex A-50 column 189
Figure 3-3 Elution profile after chromatography of keratinase from B. cereus Wu3 on Sephacryl S-200 HR column (first time) 191
Figure 3-4 Elution profile after chromatography of keratinase from B. cereus Wu3 on Sephacryl S-200 HR column (second time). 192
Figure 3-5 Elution profile after chromatography of keratinase from B.cereus Wu3 on DEAE Sephadex A-50 column 194
Figure 3-6 Elution profile after chromatography of keratinase from B. thuringiensis Wu5 on Sephacryl S-200 HR column 196
Figure 3-7 Elution profile after chromatography of keratinase from B. thuringiensis Wu5 on DEAE Sephadex A-50 column 197
Figure 3-8 Elution profile after chromatography of keratinase from B. cereus Wu6 on Sephacryl S-200 HR column 200
Figure 3-9 Elution profile after chromatography of keratinase from B. cereus Wu6 on DEAE Sephadex A-50 column 201
Figure 3-10 Effect of pH on the activity of purified keratinase from B. megaterium Wu1 205
Figure 3-11 Effect of pH on the activity of purified keratinase from B. cereus Wu6. 206
Figure 3-12 Effect of temperature on the activity of purified keratinase from B. megaterium Wu1 209
Figure 3-13 Effect of temperature on the activity of purified keratinase from B. cereus Wu6 211
Figure3-14 The relative activity curves of liquid and powder keratinase of B. megaterium Wu1 under various storage temperature. 213
Figure3-15 The relative activity curves of liquid and powder keratinase of B. cereus Wu6 under various storage temperature 214
Figure 3-16 The influence of inhibitor on keratinase activity from Bacillus megaterium Wu1 217
Figure 3-17 The influence of inhibitor on keratinase activity from Bacillus cereus Wu6. 219
Figure 3-18 The influence of metal ions on keratinase activity from Bacillus megaterium Wu1 221
Figure 3-19 The influence of metal ions on keratinase activity from Bacillus cereus Wu6. 225
Figure 3-20 Effect of organic solvents on activity of Bacillus megaterium Wu1 keratinase 228
Figure 3-21 Effect of organic solvents on activity of Bacillus cereus Wu6 keratinase 231
Figure 3-22 Effect of reducings agents on keratinase activity of Bacillus megaterium Wu1 235
Figure 3-23 Effect of reducings agents on keratinase activity of Bacillus cereus Wu6 236
Figure 3-24 Lineweaver-Burk plot of the Bacillus megateriumis Wu1 enzyme sample 238
Figure 3-25 Effect of various azo-casein concentration of the Bacillus megateriumis Wu1 enzyme sample. 238
Figure 3-26 Lineweaver-Burk plot of the Bacillus cereus Wu6 enzyme sample 239
Figure 3-27 Effect of various azo-casein concentration of the Bacillus cereus Wu6 enzyme sample 239
Figure 4-1 The illustration of continuous stirred tank reactor bioreactor in this study 245
Figure 4-2 Effect of various mixed type in CSTR on keratinase activity production by B. megaterium Wu1 249
Figure 4-3 Effect of various mixed type in CSTR on keratinase activity production by B. cereus Wu3 253
Figure 4-4 Effect of various mixed type in CSTR on keratinase activity production by B. thuringiensis Wu5 257
Figure 4-5 Effect of various bioreactor on keratinase activity production by B. cereus Wu6 261
Figure 4-6 The keratinase activity produced by Bacillus megrterium Wu1, Bacillus thuringiensis Wu5 and Bacillus cereus Wu6 that cultured in 120 L bioreactor 265

表目錄

Table 1-1 The statistics of the slaughtered poultry and carcass Weight 2
Table 1-2 The amino acid contents of the feather under various treatment 3
Table 1-3 Some important microorganism keratinases: source, production condition and keratinase activity 28
Table 1-4 Characterization of keratinase from various strain 39
Table 2-1 The pre-culture medium 57
Table 2-2 Casein medium 57
Table 2-3 Feather powder medium 58
Table 2-4 The used PCR primer in this study 60
Table 2-5 The optimal culture condition of isolated strains 170
Table 3-1 The contents of various concentration of separation gel 179
Table 3-2 The contents of stacking gel 179
Table 3-3 The contents of medicament of SDS-PAGE 180
Table 3-4 Purification of keratinase from Bacillus megaterium Wu1 186
Table 3-5 Purification of keratinase from Bacillus cereus Wu3 190
Table 3-6 Purification of keratinase from Bacillus thuringiensis Wu5 195
Table 3-7 Purification of keratinase from Bacillus cereus Wu6 198
Table 3-8 Compared with various bacteria on purification results 203
Table 4-1 The feathers were degraded in the various bioreactors by B. megaterium Wu1 250
Table 4-2 The feathers were degraded in the various bioreactors by B. cersus Wu3 254
Table 4-3 The feathers were degraded in the various bioreactors by B. thuringiensis Wu5 258
Table 4-4 The feathers were degraded in the various bioreactors by B. cereus Wu6 262
Table 4-5 The feather degraded by Bacillus megrterium Wu1,Bacillus thuringiensis Wu5 and Bacillus cereus Wu6 in 120 L bioreactor 266



參考文獻

1.吳芝穎。2004。Bacillus licheniformis THSC-1 角蛋白分解酶之純化、定性與基因選殖:第1-88頁。東海大學碩士論文。臺中,臺灣。
2.宋思揚、樓士林。2002。生物技術概論。第135-141頁。滄海書局。臺中,臺灣。
3.李京樺。2006。角蛋白酶生產菌篩選、純化及其特性:第1-32頁。臺灣海洋大學碩士論文。基隆,臺灣。
4.沈潔瑩。2008。篩選角蛋白酶生產菌及其酵素性質研究:第1-82頁。屏東科技大學碩士論文。屏東,臺灣。
5.張資奇。1999。蛋雞糞堆肥中篩選雞毛分解菌之研究:第1-102頁。東海大學碩士論文。臺中,臺灣。
6.莊榮輝。2000。酵素化學實驗。國立台灣大學農業化學系生物化學研究室。臺北,臺灣。
7.陳庭柔。2004。Bacillus licheniformis 14353和Bacillus licheniformis 11594之粗酵素對雞羽毛水解效果之評估:第1-89頁。中興大學碩士論文。臺中,臺灣。
8.陳瑩和王宇新。2002。角蛋白及其提取。材料導報 16 (12) : 65-67。
9.黃如婕。2008。豬毛篩選菌 Bacillus cereus H10 角蛋白酶及蛋白酶純化、特性與應用之研究:第1-63頁。臺灣大學碩士論文。臺北,臺灣。
10.賈如琰、何玉鳳、王榮民、李芳蓉、王艷。2008。角蛋白的分子構成、提取及應用。化學通報 71 (4):1-6。
11.趙曉芳。2002。羽毛粉的加工利用。廣東飼料11:13-14。
12.劉曉霞和郭曉輝。2001。膨化羽毛粉飼餵肉鴨試驗。獸醫與飼料添加劑 2:5-6。
13.謝魁鵬、魏耀輝。1985。最新生物化學實驗。藝軒出版社。台北,台灣。
14.蘇夢蘭。2000。化腐朽為神奇-家禽屠宰副產物化製場。農政與農情100:17-20。
15.蘇睿綺。2006。枯草菌屬角蛋白酶之純化與性質研究:第1-132頁。靜宜大學食品營養學研究所碩士論文。臺中,臺灣。
16.Abdel-Hafez, A. I. I. and EI-Sharoumy, H. M. M. 1990. The occurrence of keratinolytic fungi in sewage sludge from Egypt. J. Basic Microbiol. 30: 73-79.
17.Adbul-Fatah, H. M., Moubasher, H. H. and Maghazy, S. M. 1982. Keratinolytic fungi in Egyptian soils. Mycopathologia. 79: 49-53.
18.Akhtar, W. and Edwards, H. G. M. 1997. Fourier-transform raman spectroscopy of mammalian and avian keratotic biopolymers. Spectrochim acta part A: molecular and biomolecular spectroscopy 53: 81-90.
19.Al Musallam, A. A. and Radwan, S. S. 1990. Wool colonizing microorganisms capable of utilizing wool lipids and fatty acids as sole sources of carbon and energy. J. Appl. Bacteriol. 69: 806-813.
20.Allpress, J. D., Mountain, G. and Gowland, P. C. 2002. Production, purification and characterization of an extracellular keratinase from Lysobacter NCIMB 9497. Lett. Appl. Microbiol. 34: 337-342.
21.Al-Musallam, A. A. 1988. Distribution of keratinolytic fungi in the desert soil of Kuwait. Mycoses. 32: 296-302.
22.Al-Musallam, A. A. 1990. Distribution of keratinolytic fungi in animal folds in Kuwait. Mycopathologia. 79: 49-53.
23.Al-Musallam, A. A., Alzarban, S. S., Al-Sane, N. A. and Ahmad, T. M. 1995. A report on the predominance of a dermatophyte species in cultivated soil from Kuwait. Mycopathologia. 130: 159-161.
24.Anbu, P., Gopinath, S. C. B., Hilda, A., Lakshmi priya, T. and Annadurai, G. 2005. Purification of keratinase from poultry farm isolate-Scopulariopsis brevicaulis and statistical optimization of enzyme activity. Enzyme Microb. Technol. 36: 639-647.
25.Anbu, P., Gopinath, S. C. B., Hilda, A., Lakshmipriya, T. and Annadurai, G. 2007. Optimization of extracellular keratinase production by poultry farm isolate Scopulariopsis brevicaulis. Bioresour. Technol. 98: 1298–1303.
26.Apodaca, G. and Mckerrow, J. H. 1989. Regulation of Trichophyton rubrum proteolytic activity. Infect. lmmun. 57: 3081-3090.
27.Asahi, M. R., Lindquist, K., Fukuyama, G., Apocarda, W. L., Epstein, W. L. and McKerrow, J. H. 1985. Purification and charaterization of major extracellular proteinases from Trichophyton rubrum. Biochem. J. 232: 139-144.
28.Ashour, S. A., El-Shorah, H. M. and Ghanem, A. A. 1992. Keratinolytic activity of thermophilic bacteria isolated from Egyptian soil. J. Environ. Sci. 4: 335-339.
29.Bahuguna, S. and Kushwaha, R. K. S. 1989. Hair perforation by keratinophylic fungi. Mycoses. 32: 340-343.
30.Bajorath, J., Hinrichs, W. and Saenger, W. 1988. The enzymatic activity of proteinase K is controlled by calcium. Eur. J. Biochem. 176: 441-447.
31.Balaji, S., Senthil Kumar, M., Karthikeyan, R. Kumar, R., Kirubanandan, S., Sridhar, R. and Sehgal, P. K. 2008. Purification and characterization of an extracellular keratinase from a hornmeal-degrading Bacillus subtilis MTCC (9102). World J. Microbiol. Biotechnol. 24: 2741-2745.
32.Banerjee, U. C., Sani, R. K., Azmi, W. and Soni, R. 1999. Thermostable alkaline protease from Bacillus brevis and its characterization as a laundry detergent additive. Process Biochem. 35: 213–219.
33.Barett, A. J. 1994. Proteolytic enzymes: serine and cysteine peptidases. Methods enzymol. 244: 1-15.
34.Baxter, M. and Mann, P. R. 1969. Electron microscopic studies on the invasion of human hair in vitro by three keratinophilic fungi. Sabouraudia. 7: 33-37.
35.Benedek, A., Szabo, I., Barabas, G., Czappan, M. and Szabo, G. 1985. Digestion of chicken feather by keratinase enzyme(s) of an Actniomycetes strain. In: Biological, Biochemical and Biomedical Aspects of Actinomycetes. Proceedings of the Sixth International Symposium on Actinomycete Biology, Debrecen, Hungary, 26-30 August, 1985, ed. G. Szabo, S. Biro and M. Goodfellow, Akademiai Kiado, Budapest, 1986.
36.Bernal, C., Cairó, J. and Coello, N. 2006. Purification and characterization of a novel exocellular keratinase from Kocuria rosea. Enzyme Microb. Technol. 38: 49-54.
37.Bernal, C., Vidal, L., Valdivieso, E. and Coello, N. 2003. Keratinolytic activity of Kocuria rosea. World J. Microbiol. Biotechnol. 19: 255-261.
38.Bertsch, A. and Coello, N. 2005. A biotechnological process for treatment and recycling poultry feathers as a feed ingredient. Bioresour. Technol. 96: 1703-1708.
39.Bhaskar, N., Sudeepa, E. S., Rashmi, H. N. and Selvi, A. 2007. Partial purification and characterization of protease of Bacillus proteolyticus CFR3001 isolated from fish processing waste and its antibacterial activities. Bioresour. Technol. 98: 2758-2764.
40.Böckle, B., Galunsky, B. and Muller, R. 1995. Characterization of a keratinolytic serine proteinase from Streptomyces pactum DSM 40530. Appl. Environ. Microbiol. 61: 3705-3710.
41.Boguslawski, G., Shultz, J. L. and Yehle, C. O. 1983. Purification and characterization of an extracellular protease from Flavobacterium arborescen. Anal. Biochem. 132: 41-49.
42.Bradbury, J. H. 1973. The structure and chemistry of keratin fibers. Adv Prot Chem. 67: 111-211.
43.Bressollier, P., Letourneau, F., Urdaci, M., and Verneuil, B. 1999. Purification and characterization of a keratinolytic serine proteinase from Streptomyces albidoflavus. Appl. Environ. Microbiol. 65: 2570-2576 .
44.Burgess, A. W., Weinstein, L. I., Gabel, D. and Scheraga, H.A. 1975. Immobilized carboxypeptidase A as a probe for studying the thermally induced unfolding of bovine pancreatic ribonuclease. Biochemistry 28: 5421-5428.
45.Cai, C. G., Lou, B. G. and Zheng, X. D. 2008. Keratinase production and keratin degradation by a mutant strain of Bacillus subtilis. J Zhejiang Univ Sci B. 9: 60-67.
46.Carter, D. D. and Shih, J. C. H. 1997. In vitro and in vivo studies of the effect of keratinase on the digestibility of commercial feather meal and other proteins. Poultry Sci. 76: 1-22.
47.Chandrasekaran, S. and Dhar, S. C. 1986. Utilization of multiple proteinase concentrate to improve the nutritive value of chicken feather meal. J. Leather Res. 4: 23-30.
48.Chapman, J. D. and Hultin, H. O. 1975. Some properties of a protease (subtilisin BPN’) immobilized to porous glass. Biotechnol Bioeng. 17: 1783-1795.
49.Chen, S. X., Swaisgood, H. E. and Foegeding, E. A. 1994. Gelation of β-lactoglobulin treated with limited proteolysis by immobilization trypsin. J. Agric. Food Chem. 42: 234-239.
50.Chen, S. Y., Hardin, C. C., Swaisgood, H. E. 1993. Purification and characterization of β- structural domains of β-lactoglobulin liberated by immobilized proteolytsis. J. Protein Chem. 12: 613-625.
51.Cheng, S. W., Hu, H. M., Shen, S. W., Takagi, H., Asano, M. and Tsai, Y. C. 1995. Production and characterization of keratinase of a feather degrading Bacillus licheniformis PWD-1. Biosci. Biotechnol. Biochem. 59: 2239-2243.
52.Chitte, R. R., Nalawade, V. K. and Dey, S. 1999. Keratinolytic activity from the broth of a feather-degrading thermophilic Streptomyces thermoviolaceus strain SD8. Lett Appl Microbiol. 28: 131-136.
53.Choi, J. M. and Nelson, P. V. 1996. Developing a slow-release nitrogen fertilizer from organic sources II: using poultry feathers. J. Am. Soc. Hortic. Sci. 121: 634-638.
54.Church, F. C., Catiagnani, G. L. and Swaisgood, H. E. 1982. Use of immobilized Streptomyces griseus protease (pronase) as a probe of structural transitions of lysozyme, β-lactoglobin and casein. Enzyme Microb. Technol. 4: 317-321.
55.Church, F. C., Swaisgood, H. E. and Catiagnani, G. L. 1984. Compositional analysis of proteins following hydrolysis by immobilized proteinases. J Appl. Biochem. 6: 205-6211.
56.Cortezi, M., Cilli, E. M., Contiero, J. 2008. Bacillus amyloliquefaciens: A new keratinolytic feather-degrading bacteria. Current Trends in Biotechnology and Pharmacy 2: 170-177.
57.Coward-Kelly G., Chang, V. S., Agbogbo F. K. and Holtzapple, M. T. 2006. Lime treatment of keratinous materials for the generation of highly digestible animal feed: 1. Chicken feathers. Bioresour. Technol. 97: 1337-1343.
58.Dalev, P., Ivanov, l. and Liubomirova, A. 1997. Enzymic modification of feather keratin hydrolysates with lysine aimed at increasing the biological value. J. Sci. Food. Agric. 73: 242-244.
59.de Groot, A. P. and Slump, P. 1969. Effects of severe alkali treatment of proteins on amino acid composition and nutritive value. J. Nutr. 98: 45-56.
60.Desmukh, S. K. and Agrawal, S. C. 1982. In vitro degradation of human hair by some keratinophilic fungi. Mykosen. 25: 454-458.
61.Desmukh, S. K. and Agrawal, S. C. 1985. Degradation of human hair by some dermatophytes and other keratinophilic fungi. Mykosen. 28: 463-466.
62.Deydier, E., Guilet, R., Sarda, S. and Sharrock, P. 2005. Physical and chemical characterization of crude meat and bone meal combustion residue: “waste or raw material?” J. Hazard. Mater. 121: 141-148.
63.Dix, N. J. and Webster, J. 1995. Fungal Ecology. Chapman and Hall, London.
64.Dozie, I. N. S., Okeke, C. N. and Unaeze, N. C. 1994. A thermostable, alkaline-active, keratinolytic proteinase from Chrysosporium keratinophilum. World J. Microbiol. Biotechnol. 10: 563-567.
65.Ebeling, W. N., Hennrick, M., Klockow, H., Metz, H., Orth, D. and Lang, H. 1974. Proteinase K from Titrirachium album Limber. Eur. J. Biochem. 47: 91-97.
66.Eggum, B. O. 1970. Evaluation of protein quality of feather meal under different treatments. Acta Agricul. Scand. 20: 230–234.
67.Elmayergi, H. H. and Smith, R. E. 1971. Influence of growth of Sreptomyces fradiae on pepsin-HCl digestibility and methionine content of feather meal. Can. J. Microbiol. 17: 1067-1072.
68.El-Naghy, M. A., El-Ktatny, M. S., Fadl-Allah, E. M. and Nazeer, W. W. 1998. Degradation of chicken feathers by Chrysosporium georgiae. Mycopathologia 143: 77-84.
69.El-Refai, H. A., AbdelNaby, M. A., Gaballa, A., El-Araby M. H. and Abdel Fattah, A.F. 2005. Improvement of the newly isolated Bacillus pumilus FH9 keratinolytic activity. Process Biochemistry. 40: 2325-2332.
70.El-Shora, H. M., Ashour, S. A. and Ghanem, A. A. 1992. Growth and keratinolytic activity of selected Bacillus spp. in relation to the initial pH, molarity, different vitamins and trace elements. Egypt. J. Appl. Sci. 7: 320-334.
71.Evans, K. L., Crowder, J. and Miller, E. S. 2000. Subtilisins of Bacillus spp. hydrolyze keratin and allow growth on feathers. Can. J. Microbiol. 46: 1004-1011.
72.Fakhfakh-Zouari, N., Haddar, A., Hmidet, N., Frikha, F. and Nasri, M. 2010. Application of statistical experimental design for optimization of keratinases production by Bacillus pumilus A1 grown on chicken feather and some biochemical properties. Process biochemistry. 45: 617-626.
73.Farag, A. M. and Hassan, M. A. 2004. Purification, characterization and immobilization of a keratinase from Aspergillus oryzae. Enzyme Microb. Technol. 34: 85-93.
74.Fasasi, Y. A. 1997. Studies on keratinophilic actinomyctes isolated from Kuwait soil. MSc Thesis, Department of Biological Sciences, Kuwait University.
75.Feder, J., Garrett, L. R., and Wildi, B. S. 1971. Studies on the role of calcium in thermolysin. Biochemistry 10: 4552-4556.
76.Figueras, M. J., Gurrado, J. and Zaror, L. 1997. Ultrastructural aspectes of hair digestion in black piedra infection. J. Med. Vet. Mycol. 35: 1-6.
77.Fox, P. F., Power, P., and Cogan, T. M. 1989. Isolation and molecular characteristics, in “Enzymes of Psychrotrophs in Raw Food”. p. 57–120. CRC Press, Boca Raton, USA.
78.Friedrich, A. B. and Antranikian, G. 1996. Keratin degradation by Frevidobacterium pennavorans, a novel thermophilic anaerobic species of the order thermotogales. Appl. Environ. Microbiol. 62: 2875-2882.
79.Friedrich, J. and Kern, S. 2003. Hydrolysis of native proteins by keratinolytic protease of Doratomyces microsporus. J. Mol. Catal., B Enzym. 21: 35-37.
80.García de Fernando, G. D., and Fox, P. F. 1991. Extracellular proteinases from micrococcus GF. 1. Factors affecting growth and production. Lait. 71: 371–382.
81.Garrett, R. H. and Grisham, C. M. 2002. Principles of biochemistry: with a human focus. p.128-129. Fort worth: Harcourt college pub, Belmont, USA.
82.Gassessse, A., Kaul, R. H., Gashe, B. A. and Mattiasson, B. 2003. Novel alkaline proteases from alkalophilic bacteria grown on chicken feather. Enzyme Microb. Technol. 32: 519-524.
83.Ghorbel, B., Sellami-Kamoun, A. and Nasri, M. 2003. Stability studies of protease from Bacillus cereus BG1. Enzyme Microb. Technol. 32: 513-518.
84.Ghosh, A., Chakrabarti, K. and Chattopadhyay, D. 2008. Degradation of raw feather by a novel high molecular weight extracellular protease from newly isolated Bacillus cereus DCUW. J. Ind. Microbiol. Biotechnol. 35: 825-834.
85.Gousterova, A., Braikova, D., Goshev, I., Christov, P, Tishinov, K., Tonkova, V. E., Haertle, T. and Nedkov, P. 2005. Degradation of keratin and collagen containing wastes by newly isolated thermoactinomycetes or by alkaline hydrolysis. Lett. Appl. Microbiol. 40: 335-340.
86.Govind, N. S., Merta, B., Sharma, M. and Modi, V. V. 1981. Protease and carotenogenesis in Blakeslea trispora. Phytochemistry 20: 2483-2485.
87.Gradisar, H. Friedrich, J. Krizaj, I. and Jerala, R. 2005. Similarities and specificities of fungal keratinolytic proteases: comparison of keratinases of Paecilomyces marquandii and Doratomyces microsporus to some known proteases. Appl. Environ. Microbiol. 71: 3420-3426.
88.Gradisar, H., Kern, S. and Friedrich, J. 2000. Keratinase of Doratomyces microsporus. Appl. Microbiol. Biotechnol. 53: 196-200.
89.Grappel, S. F. and Blank, F. 1972. Role of keratinse in dermatophte. Dermatologica. 145: 245-255.
90.Grimwood, B. G., Hechemy, K. and Stevens, R. W. 1994. Purification and characterization of a neutral zinc endopeptidase secreted by Flavobacterium meningosepticum. Arch. Biochem. Biophys. 311: 127-132.
91.Gripon, J. C., Auberger, B. and Lenoir, J. 1980. Metalloproteases from Penicillium caseicolum and P. roqueforti: comparison of specificity and chemical characterization. Int. J. Biochem. 12: 451-455.
92.Gupta, M. N. 1992. Enzyme function in organic solvents. Eur. J. Biochem. 203: 25-32.
93.Gupta, R. and Ramnani, P. 2006. Microbial keratinases and their prospective applications: an overview. Appl. Microbiol. Biotechnol. 70: 21-33.
94.Gupta, R., Beg, Q. K. and Lorenz, P. 2002. Bacterial alkaline proteases: molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 59: 15-32.
95.Hadas, A. and Kautsky, L. 1994. Feather meal, a semi-slow-release nitrogen fertilizer for organic farming. Nutr. Cycl. Agroecosyst. 38: 165-170.
96.Hanel, H., Kalisch, J., Keil, M., Marsch, W. C. and Buslau, M. 1991. Quantification of keratinolytic activity from Dermatophilus congolensis. Med. Microbiol. lmmun. 180: 45-51.
97.Haruta, S., Nakayama, T., Nakamura, K., Hemmi, H., Ishii, M., Igarashi, Y. and Nishino, T. 2005. Microbial diversity in biodegradation and reutilization processes of garbage. J. Biosci. Bioeng. 99: 1-11.
98.Higuchi, D., Takiuchi, J. and Negi, M. 1981. The effect of keratinase on human epidermis especially on stratum corneum. Jpn. J. Dermatol 91: 119-125.
99.Hirchsman, D. J., Zametkin. J. M. and Rogers, R. E. 1994. The utilization of wool by four saprophytic microorganisms in the presence of added nutrients. Am. Dyestuff Rep. 33: 353-359.
100.Holmquist, B. and Vallee, B. L., 1974. Metal substitutions and inhibition of thermolysin: spectra of the cobalt enzyme. J. Biol. Chem. 249: 4601-4607.
101.Ignatova, Z., Gousterova, A., Spassov, G. and Nedkov, P. 1999. Isolation and partial characterization of extracellular keratinase from a wool degrading thermophilic actinomycete strain Thermoactinomyces candidus. Can. J. Microbiol. 45: 217-222.
102.Ionata, E., Canganella, F., Bianconi, G., Benno, Y., Sakamoto, M., Capasso, A., Rossi, M. and La Cara F. 2008. A novel keratinase from Clostridium sporogenes bv. pennavorans bv. nov., a thermotolerant organism isolated from solfataric muds. Microbiological Research. 163: 105-112.
103.Juan, S. M., and Cazzulo, J. J. 1976. The extracellular protease from Pseudomonas fluorescens. Experientia. 32: 1120-1122.
104.Kembhavi, A. A., Kulharni A. and Pant, A. A. 1993. Salt-tolerant and thermostable alkaline protease from Bacillus subtilis NCIM No. 64. Appl. Biochem. Biotechnol. 38: 83-92.
105.Khan, M. R., Blain, J. A. and Patterson, J. D. E. 1983. Partial purification of Mucor pusillus intracellular proteases. Appl. Environ. Microbiol. 45: 94-96.
106.Kim, J. M., Lim, W. J. and Suh, H. J. 2001. Feather-degrading Bacillus species from poultry waste. Process Biochem. 37: 287-291.
107.Kim, J. S., Kluskens, L. D., de Vos, W. M., Huber, R. and van der Oost, J. 2004. Crystal structure of fervidolysin from Fervidobacterium pennivorans, a keratinolytic enzyme related to subtilisin. J. Mol. Biol. 335: 787-797
108.Kim, W. K. and Patterson P. H. 2000. Nutritional value of enzyme- or sodium hydroxide-treated feathers from dead hens. Poultry Sci. 79: 528-34
109.Kitadokoro, K., Tsuzuki, H., Nakamura, E., Sato, T. and Teraoka, H. 1994. Purification and charaterization, primary structure, crystallization and preliminary crystallographic study of a serine proteinase from Streptomyces fradiae ATCC 14544. Eur. J. Biochem. 220: 55-61.
110.Kojima, M., Kanai, M., Tominaga, M., Kitazume, S., Inoue, A. and Horikoshi, K. 2006. Isolation and characterization of a feather-degrading enzyme from Bacillus pseudofirmus FA30-01. Extremophiles 10: 229-235.
111.Kumar, C. G. 2002. Purification and characterization of a thermostable alkaline protease from alkalophilic Bacillus pumilus. Lett. Appl. Microbiol. 34: 13-17.
112.Kunert, J. 1972. Keratin decomposition by dermatophytes: evidence of sulphitolysis of the protein. Experientia. 28: 1025-1026.
113.Kunert, J. 1973. Keratin decomposition by dermatophytes: 1. Sulfite production as a possible way of substrate denaturation. Zeltschrife fuer Allgermerine Microbilogie Morphologie, Genetic und Oekologie der Microrganismen. 13: 489-498.
114.Kunert, J. 1975. Formation of sulphate, sulfite and S-sulfocysteine by the fungus Microsporium gypseum during growth on cystine. Folia Microbiologica 20: 142-151.
115.Kunert, J. 1976. Keratin decomposition by dermatophytes: II. Presence of S-sulfocystine and cysteic acid in soluble decomposition product Zeltschrife fuer Allgermerine Microbilogie Morphologie, Genetic und Oekologie der Microrganismen. 16: 97-105.
116.Kunert, J. 1985a. Metabolism of sulphur containing amino acids in the dermatophyte Microsporium gypseum. I: Neutral amino acids. J. Basic. Microbiol. 25: 31-37.
117.Kunert, J. 1985b. Metabolism of sulphur containing amino acids in the dermatophyte Microsporium gypseum. II: Acidic amino acids derivatives. J. Basic. Microbiol. 25: 111-118.
118.Kunert, J. 1987. Utilization of various concentrations of free cystine by fungus Microsporium gypseum. J. Basic. Microbiol. 27: 207-213.
119.Kunert, J. 1988. Thiosulfate production from cystine by the keratinolytic prokaryote Streptomyces fradiae. Arch. Microbiol. 150: 600-601.
120.Kunert, J. 1989. Biochemical mechanisms of keratin degradation by actinomycete Streptomyces fradiae and fungus Microsporium gypseum, a comparison. J. Basic Microbiol. 29: 597-604.
121.Kunert, J. 1992. Effects of reducind agents on proteolytic and keratinolytic activity of enzymes of Microsporium gypseum. Mycoses 35: 343-348.
122.Kunert, J. and Krajci, D. 1981. An elctron microscopy study of keratin degradation by the fungus Microsporium gypseum in vitro. Mykosen 24: 485-496.
123.Kunert, J. and Stransky, Z. 1988. Thiosulfate production from cysteine by the keratinophilic prokatyote Streptomyces fradiae. Arch. Microbiol. 150: 600-01.
124.Kunert, J., 2000. Physiology of keratinophilic fungi. In: Kushwaha, R.K.S., Guarro, J. (Eds.), Biology of Dermatophytes and Other Keratinophilic Fungi, Revista Iberoamericana de Micologia, pp. 77-85. Bilbao.
125.Kunitate, A. Okamoto, M. and Ohmori, I. 1989. Purification and characterization of a thermostable serine protease from Bacillus thuringiemis. Agric. Biol. Chem. 53: 3251-3256.
126.Kushwaha, R. K. S. 1983. The in vitro degradation of peacock feathers by some fungi. Mykosen 26: 324-326.
127.Lamkin, I., Hamilton, A. J. and Hay, R. J. 1996. Purification and characterisation of a novel 34,000-Mr cell-associated proteinase from the dermatophyte Trichophyton rubrum. FEMS Immunol. Med. Microbiol. 13: 131-140.
128.Langeveld, J. P. M., Wang, J. J., Van de Wiel, D. F. M., Shih, G. C., Garssen, G. J., Bossers, A. and Shih, J. C. H. 2003. Enzymatic degradation of prion protein in brain stem from infected cattle and sheep. J. Infect. Dis. 188: 1782-1789.
129.Larcher, G., Cimon, B., Symoens, F., Tronchin, G., Chabasse, D. and Bouchara J. P. 1996. A 33 kDa serine proteinase from Scedoporium apiospermum. Biochem. J. 315: 119-126.
130.Larsen, K. S. and Auld, D. S. 1989. Carboxypeptidase A: mechanism of zinc inhibition. Biochemistry. 28: 9620-9625.
131.Latshaw, J. D., Musharaf, N. and Retrum, R. 1994. Processing of feather meal to maximize its nutritional value for poultry. Anim. Feed Sci. Technol. 47: 79-188.
132.Lee, G. G., Ferket, P. R., Shih, J. C. H. 1991. Improvement of feather digestibility by bacterial keratinase as a feed additive. FASEB J. 59: 1312.
133.Lee, H., Suh, D. B., Hwang, J. H., Suh, H. J. 2002. Characterization of a keratinolytic metalloprotease from Bacillus sp. SCB-3. Appl. Biochem. Biotechnol. 97: 123-133.
134.Lee, K. H., Park, K. K., Park, S. H. and Lee, J. B. 1987. Isolation, purification and characterization of keratinolytic proteinase from Microsporum canis. Yonsei Med. J. 28: 131-138.
135.Letourneau, F., Soussote, V., Bressollier, P., Branland, P. and Verneuil, B. 1998. Keratinolytic activity of Streptomyces sp. S. KI-02: a new isolated strain. Lett. Appl. Microbiol. 26: 77-80.
136.Li, E. and Yousten, A. A. 1975. Metalloprotease from Bacillus thuringiensis. Appl. Microbiol. 30: 354-361.
137.Lin, X., Inglis, G. D., Yanke, L. J. and Cheng, K. J. 1999. Selection and characterization of feather degrading bacteria from conola meal compost. J. Ind. Microbiol. Biotechnol. 23: 149-153.
138.Lin, X., Kelemen, D. W., Miller, E. S. and Shih, J. C. H. 1995. Nucleotide sequence and expression of ker A, the gene encoding a keratinolytic protease of Bacillus licheniformis PWD-1 Appl. Environ. Microbiol. 61: 1469-1474.
139.Lin, X., Lee, C., Casale, E. S. and Shih, J. C. H. 1992. Purification and characterization of a keratinase from a feather degrading Bacillus licheniformis strain. Appl. Environ. Microbiol. 58: 3271-3275.
140.Lin, X., Shih, J. C. H. and Swaisgood, E. H. 1996. Hydrolysis of feather keratin by immobilized keratinase. Appl. Environ. Microbiol. 62: 4273-4275.
141.Lindberg, R. A., Eirich, L. D., Price, J. S., Wolfinbarger, L. Jr. and Drucker, H. 1981. Alkaline protease from Neurospora crassa purification and partial characterization. J. Biol. Chem. 256: 811-814.
142.Macedo, A. J., da Silva, W. O. B., Gava, R., Driemeier, D., Henriques, J. A. P. and Termignoni, C. 2005. Novel keratinase from Bacillus subtilis S14 exhibiting remarkable dehairing capabilities. Appl. Environ. Microbiol. 71: 594-596.
143.Mallya, S. K., and Van Wart, H. E. 1989. Mechanism of inhibition of human neutrophil collagenase by gold (I) chrysotherapeutic compounds. Interaction at a heavy metal binding site. J. Biol. Chem. 264: 1594-1601.
144.Malviya, H. K, Rajak, R. C. and Hasija, S. K 1992. Synthesis and regulation of extracellular keratinase in three fungi isolated from the grounds of a gelatin factory, Jabalpur, India. Mycopathologia. 120: 1-4.
145.Malviya, H. K., Rajak, R. C. and Hasija, S. K. 1993b. In vitro degradation of hair keratin by Graphium penicillodeus: evidences for sulfitolysis and peptidolysis. Crypt. Bot. 3: 197-201.
146.Malviya, H. K., Tiwari, S., Rajak, R. C and Hasija, S. K. 1993a. Keratinolysis by four fungi isolated from the soil and effluent of a gelatin factory at Jabalpur (M.P.). Crypt. Bot. 3: 108-116.
147.Manczinger, L., Rozs, M., Vagvolgyi Cs and Kevei, F. 2003. Isolation and characterization of a new keratinolytic Bacillus licheniformis strain. World J. Microbiol. Biotechnol. 19: 35-39.
148.Matsubara, H. and Feder, J. 1971. The Enzymes. p. 721. Academic press, New York, USA.
149.Mayer, A. F. and Deckwer, W. D. 1996. Simultaneous production and decomposition of clavulanic acid during Streptomyces clavuligerus cultivations. Appl. Microbiol. Biotechnol. 45: 41-46.
150.Mercer, E. H. and Verma, B. S. 1963. Hair digested by by Trichophyton rnentagrophytes. An electron microscope examination. Arch. Dermatol. (Chicago). 87: 357-360.
151.Mignon, B., Swinnen, M., Bouchara, J. P., Holinger, M., Nikkels, A. and Pierard, G. 1998. Purification and characterization of a 315 kDa keratinolytic subtilisin like serine protease from Microsporum canis and evidence of its secretion in naturally infected cats. Med Mycol. 36: 395-404.
152.Mitsuiki, S., Ichikawa, M., Oka, T., Sakai, M., Moriyama, Y., Sameshima, Y., Goto, M. and Furukawa, K. 2004. Molecular characterization of a keratinolytic enzyme from an alkaliphilic Nocardiopsis sp. TOA-1. Enzyme Microb. Technol. 34: 482-489.
153.Moallaei, H., Zaini, F., Larcher, G., Beucher, B., Bouchara, J. 2006. Partial purification and characterization of a 37 kDa extracellular proteinase from Trichophyton vanbreuseghemii. Mycopathologia. 161: 369-375.
154.Mohamedin, A. H. 1999. Isolation, identification and some cultural conditions of a protease-producing thermophilic Streptomyces strain grown on chicken feather as a substrate. Int. Biodeterior. Biodegradation. 43: 13-21.
155.Mohammed El-Akied, Z. M. 1987. Microbial production of amino acids and proteins by thermophilic actinomycetes as a biodegradation of chicken feather. M. Sc. Thesis, Zagazig University, Egypt. Mukhopadhyay, R. P. and Chandra, A. L. 1990. Keratinase of a Streptomycete. Indian. J. Exp. Biol. 28: 575-577.
156.Moreira, F. G., de Souza, C. G. M., Costa, M. A. F., Reis S. and Peralta R. M. 2007. Degradation of keratinous materials by the plant pathogenic fungus Myrothecium verrucaria. Mycopathologia. 163: 153-160.
157.Morihara, K. 1974. Comparative specificity of microbial proteinases. Adv. Enzymol. Relat. Areas Mol. Biol. 41: 179-243.
158.Morihara, K. and Oda, K. 1992. Microbial degradation of proteins. In Microbial degradradation of natural products, ed. G. Winkelmann. VCH Verlagsgesellschaft mbH, Weinheim, Germany. pp. 293-364.
159.Morihara, K., Tatsushi, O. and Tsuzuki, H. 1967. Multiple proteolytic enzymes of Streptomyces fradiae. Production, isolation, and preliminary characterization. Biochim. Biophys. Acta. 139: 382-397.
160.Mukhopadhyay, R. P.and Chandra, A. L. 1990. Keratinase of a Streptomycete. Indian journal experimental biology 28: 575-577.
161.Naguib, M. 1., Mohammed, N. K. and Yassin, A. F. 1984. Studies on Actinomycetes of Egyptian soils: Effect of continuos incubation on keratin hydrolysis with reference to peptide formation Egypt. J. Bot. 22: 57-72.
162.Nakanishi, T. and Yamamoto, T. 1974. Action and specificity of a Streptomyces alkalophilic proteinase. Agric. Biol. Chem. 35: 2391-2397.
163.Nam, G. W., Lee, D. W., Lee, H. S., Lee, N. J., Kim, B. C., Choe, E. A., Hwang, J. K., Suhartono, M. T. and Pyun, Y. R. 2002. Native-feather degradation by Fervidobacterium islandicum AW-1, a newly isolated keratinase-producing thermophilic anaerobe. Arch. Microbiol. 178: 538-547.
164.Nilegaonkar, S. S., Zambare, V. P., Kanekar, P. P., Dhakephalkar, P. K. and Sarnail, S. S. 2007. Production and partial characterization of dehairing protease from Bacillus cereus MCM B-326. Bioresour. Technol. 98: 1238-1245.
165.Nishio, T. and Hayashi, R. 1984. Digestion of protein substrates by subtilisin: immobilization changes the pattern of the products. Arch. Biochem. Biophys. 229: 304-311.
166.North, M. J. 1982. Comparative biochemistry of the proteinases of eucaryotic microorganisms. Microbiol. Mol. Biol. Rev. 46: 308-340.
167.Noval, J. J., and Nickerson, W. J. 1959. Decomposition of native keratin by Streptomyces fradiae. J. Bacteriol. 77: 251-263.
168.Onifade, A. A., Al-Sane, N. A., Al-Musallam, A. A., Al-Zarban, S. 1998. Potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Biores Technol. 66: 1-11.
169.Paisley, L. G. and Hostrup-Pedersen, J. 2005. A quantitative assessment of the BSE risk associated with fly ash and slag from the incineration of meat-and-bone meal in a gas-fired power plant in Denmark. Prev. Vet. Med. 68: 263-275.
170.Papadopoulos, M. C. 1985. Amino acid content and protein solubility of feather meal as affected by different processing conditions. Neth. J. Agric. Sci. (Netherlands) 33: 317-319.
171.Papadopoulos, M. C. 1986. The effect of enzymatic treatment on amino acid content and nitrogen characteristics of feather meal. Anim. Feed Sci. Technol. 16: 151-156.
172.Papadopoulus, M. C. 1989. Effect of processing on high protein feedstuffs: A review. Biol. Wastes. 29: 123-138.
173.Parry, D. A. D., and North, A. C. T. 1998. Hard α-keratin intermediate filament chains: substructure of the N- and C-terminal domains and the predicted structure and function of the C-terminal domains of type I and type II chains. J. Struct. Biol. 122: 67-75.
174.Patel, B., K. and Jagannadham M. V. 2003. A high cysteine containing thiol proteinase from the latex of Ervatamia heyneana: purification and comparison with ervatamin B and C from Ervatamia coronaria. J. Sgric. Food Chem. 51: 6326-6334.
175.Patel, T. R., Jackman, D. M., Williams, G. J. and Bartlett, F. M. 1986. Extracellular heat resistant proteases of psychotrophic pseudomonads. J. Food Prot. 49: 183-188
176.Peek, K., Daniel, R. M., Monk, C., Parker, L. and Coolbear, T. 1992. Purification and characterization of a thermostable proteinase isolated from Thermus sp. strain Rt41A. Eur. J. Biochem. 207: 1035-1044.
177.Pillai, P. and Archana, G. 2008. Hide depilation and feather disintegration studies with keratinolytic serine protease from a novel Bacillus subtilis isolate. Appl. Microbiol. Biotechnol. 78: 643-650.
178.Porro, A. M., Yoshioka, M. C. N., Kaminski, S. K., Palmeira, M. C. A., Fischman, O. and Alchorne, M. A. M. 1997. Disseminated dermatophytosis caused by Microparium gypseum in two patients infected with the acquired immune deficiency syndrome. Mycopathologia. 137: 9-12.
179.Porter, D. H., Swaisgood, H. E. and Catiagnani, G. L. 1984. Characterization of an immobilized digestive enzyme system for determination of protein digestibility. Agric Food Chem. 32: 334-339.
180.Rai, S. K., and Mukherjee, A. K. 2010. Statistical optimization of production, purification and industrial application of a laundry detergent and organic solvent-stable subtilisin-like serine protease (Alzwiprase) from Bacillus subtilis DM-04. Biochem. Eng. J. 48: 173–180.
181.Rajak, R. C., Panwekar, S., Malviya, H. and Hasija, S. K. 1991. Kertin degradation by fungi isolated from the grounds of a gelatin factoy in Jabalupur (India). Mycopathologia 114: 83-87.
182.Ramnani, P., Singh, R. and Gupta, R. 2005. Keratinolytic potential of Bacillus licheniformis RG1: structural and biochemical mechanism of feather degradation. Can. J. Microbiol. 51: 191-196.
183.Raubitshek, F. 1961. Mechanical versus chemical keratinolysis by dermatophytes. Sabouraudia 1: 87-90.
184.Rawlings, N. D. and Barrett, A. J. 1993.Evolutionary families of peptidases. Biochem. J. 290: 205-218.
185.Rhodes, W. G., Lindberg, R. A. and Drucker, H. 1983. Purification and characterization of an extracellular acid protease from Neurospora crassa. Arch. Biochem. Biophys. 223: 514-520.
186.Riffel, A., Brandelli, A., Bellato, C. M., Souza, G. H. M. F., Eberlin, M. N. and Tavares, F. C. A. 2007. Purification and characterization of a keratinolytic metalloprotease from Chryseobacterium sp. kr6. J. Biotechnol. 128: 693-703.
187.Riffel, A., Lucas, F., Heeb, P. and Brandelli, A. 2003. Characterization of a new keratinolytic bacterium that completely degrades native feather keratin. Arch. Microbiol. 179: 258-265.
188.Rissen, S. and Antranikian, G. 2001. Isolation of thermoanaerobacter keratinophilus sp. nov., a novel thermophilic, anaerobic bacterium with keratinolytic activity. Extremophiles 5: 399-408.
189.Rojas-Avelizapa, L. I., Cruz-Camarillo, R., Guerrero, M. I., Rodríguez-Vázquez, R. and Ibarra, J. E. 1999. Selection and characterization of a proteo-chitinolytic strain of Bacillus thuringiensis, able to grow in shrimp waste media. World J. Microbiol. Biotechnol. 15: 299-308.
190.Rozs, M., Manczinger, L., Vágvölgyi, C., Kevei, F., Hochkoeppler, A. and Vara y Rodríguez, A. G. 2001. Fermentation characteristics and secretion of proteases of a new keratinolytic strain of Bacillus licheniformis. Biotechnol. Lett. 23: 1925-1929.
191.Ruffin, P., Andrieu, S. and Biserte, G. 1976. Sulphytolysis in keratinolysis. Biochemical proof. Sabouraudia. 14: 181-184.
192.Safranek, W. W. and Goos, R. D. 1982. Degradation of wool by saprophytic fungi. Can. J. Microbiol. 28: 137-140.
193.Sangali, S. and Brandelli, A. 2000. Feather keratin hydrolysis by a Vibrio sp. strain kr2. Journal Applied Microbiology 89: 735-743.
194.Santos, R. M. D., Firmino, A. A. P., Sá, C. M. and Felix, C. R. 1996. Keratinolytic activity of Aspergillus fumigatus Fresenius. Curr Microbiol. 33: 364-370.
195.Schrooyen, P. M. M. and Radulf, B. 2004. Keratin-based products and methods for their productions. US Patent 20,040,210,039.
196.Schrooyen, P. M. M., Dijkstra, P. J., Oberthur, R. C., Bantjes, A. and Feijen, J. 2001. Partially carboxymethylated feather keratins. 2. thermal and mechanical properties of films. J. Agric. Food Chem. 49: 221-230.
197.Secades, P., Alvarez B. and Guijarro, J. A. 2001. Purification and characterization of a psychrophilic, calcium-induced, growth-phase-dependent metalloprotease from the fish pathogen Flavobacterium psychrophilum. Appl. Environ. Microbiol. 67: 2436-2444.
198.Shih, J. C. H. 1993. Recent development in poultry waste digestion and feather utilization-a review. Poultry Sci. 72: 1617-1620.
199.Shih, J. C. H. and Williams, C. M. 1990. Feather-lysate, a hydrolyzed feather feed ingredient and animal feeds containing the same. US patent 4,908,220.
200.Siesenop, U. and Bohm, K. H. 1995. Comparative studies on keratinase production of Trichophyton mentagrophytes strains of animal origin. Mycoses 38: 205-209.
201.Simpanya, M. F. and Baxter, M. 1996. Isolation of fungi from soil using keratin baiting technique. Mycopatholagia. 136: 85-89.
202.Singh, C. J. 1997. Characterization of an extracellular keratinase of Trichophyton simii and its role in keratin degradation. Mycopathologia 137: 13-16.
203.Sinha, U. S., Wolz. A. and Pushkaraj, J. L. 1991. Two new extracellular serine proteinases from Streptomyces fradiae. Int. J. Biochem. 23: 979-984.
204.Sohair, A. M. and Assem, M. H. 1974. Biological and bichemical studies on thermophilic actinomycete isolated from Egyptian soi1. Zentralbl. Bakteriol. Abt. ll, 129: 591-599.
205.Son, E. S. and Kim, J. I. 2002. Purification and characterization of caseinolytic extracellular protease from Bacillus amyloliquefaciens S94. J. Microbiol. 40: 26-32.
206.Sousa, F., Jus, S., Erbel, A., Kokol, V., Cavaco-Paulo, A. and Gubitz, G. M. 2007. A novel metalloprotease from Bacillus cereus for protein fibre processing. Enzyme Microb. Technol. 40: 1772-1781.
207.Steinert, P. M. 1993. Structure, function, and dynamics of keratin intermediate filaments. J. Invest. Dermatol. 100: 729-734.
208.Stilborn, H. L, Moran, E T., Gous, R. M. and Harrison, M. D. 1997. Effect of age on feather amino acid content in two broiler strain crosses and sexes. J. Appl. Poultry Res. 6: 205-209.
209.Suntornsuk, W. and Suntornsuk, L. 2003. Feather degradation by Bacillus sp. FK 46 in submerged cultivation. Bioresour. Technol. 86: 239-243.
210.Suntornsuk, W., Tongjun, J., Onnim, P., Oyama, H., Ratanakanokchai, K., Kusamran, T. and Oda, K. 2005. Purification and characterisation of keratinase from a thermotolerant feather-degrading bacterium. World J. Microbiol. Biotechnol. 21: 1111-1117.
211.Swaisgood, H. E. and Catiagnani, G. L. 1991. Protein digestibility. In: Kinsella JE, editor. Advances in food and nutrition research, vol. 35. London: Elsevier Applied Science Publishers. p. 309-341.
212.Swaisgood, H. E., Chen, S. X. and Catiagnani, G. L. 1994. Probing structural changes and preparation of protein domains by limited proteolysis. In: Yada RY, Jackman RL, Smith JL, editors. Protein structure–function relationship in foods. Glasgow: Blackie Academic & Professional. p. 43-61.
213.Takami, H., Nakamura, F., Aono, R. and Horishiri, K. 1992. Degradation of human hair by a thermostable alkaline proteinase from alcalophilic Bacillus sp. no. AH 101. Biosci. Biotechnol. Biochem. 56: 1667-1669.
214.Takami, H., Nogi, Y. and Horikoshi, K. 1999. Reidentification of the keratinase-producing facultatively alkaliphilic Bacillus sp. AH-101 as Bacillus halodurans. Extremophiles 3: 293-296.
215.Takiuchi, I., Sci, Y., Tagagi, H. and Negi, M. 1984. Partial characterization of the extracellular keratinase from Microsporium canis. Sabouraudia. 22: 219-224.
216.Tatinen, R., Doddapaneni, K. K., Potumarthi, R. C., Vellanki, R. N., Kandathil, M. T., Kolli, N. and Mangamoori, L. N. 2008. Purification and characterization of an alkaline keratinase from Streptomyces sp. Bioresour. Technol. 99: 1596-1602.
217.Thanikaivelan, P., Rao, J. R., Nair, B. U. and Ramasami, T. 2004. Progress and recent trends in biotechnological methods for leather processing. Trends biotechnology 22: 181-188.
218.Thys, R. C. S., Guzzon, S. O., Cladera-Olivera, F. and Brandelli, A. 2006. Optimization of protease production by Microbacterium sp. in feather meal using response surface methodology. Process Biochem. 41: 67-73.
219.Thys, R. C. S., Lucas, F. S., Riffel, A., Heeb, P. and Brandelli, A. 2004. Characterization of a protease of a feather-degrading Microbacterium species. Lett. Appl. Microbiol. 39: 181-186.
220.Tiwary, E. and Gupta, R. 2010. Medium optimization for a novel 58 kDa dimeric keratinase from Bacillus licheniformis ER-15: Biochemical characterization and application in feather degradation and dehairing of hides. Bioresour. Technol. 101: 6103–6110.
221.Tomarelli, R. M., Charney, J. and Harding, M. L., 1949. The use of azoalbumin as a substrate in the colorimetric determination or peptic and tryptic activity. J. Lab. Clin. Med. 34: 428-433.
222.Tsuboi, R., Ko, I., Takamori, K. and Ogawa, H. 1989. Isolation of a keratinolytic proteinase from Trichophyton mentagrophytes with enzymatic activity at acidic pH. Infect. Immun. 57: 3479-3483.
223.Ulfig, K and Korcz, M. 1983. Isolation of keratinolytic fungi from sewage sludge. Sabouraudia 21: 247-250.
224.Ulfig, K. 1991. Keratinolytic fungi in waste water sediments. Roczniki Panstwowego Zakladu Higieny, 42: 309-315.
225.Ulfig, K. and Korcz, M. 1994. Keratinolytic fungi in sewage applied to devastated urban soil. A preliminary experiment Inter. J. Environ. Hlth. Res. 4: 244-253.
226.Ulfig, K. and Ulfig, A. 1990. Keratinolytic fungi in bottom sediment of surface waters. J. Med. vet. Mycol. 28: 419-422.
227.Ulfig, K., Terakowski, M., Plaza, G. and Kosarewicz, O. 1996. Keratinolytic fungi in sewage sludge. Mycopathologia 136: 41-46.
228.Venter, H., Osthoff, G. and Litthauer, D. 1999. Purification and characterization of a metalloprotease from Chryseobacterium indologenes Ix9a and determination of the amino acid specificity with electrospray mass spectrometry. Protein Expr. Purif. 15: 282-295.
229.Voet, D. and Voet, J. G. 1995. Three-dimensional structure of proteins. In: Stiefel Journal (ed) Biochemistry, 2nd edn. p 154-156. Wiley, New York, USA.
230.Wang, S. L., Hsu, W. T., Liang, T. W., Yen, Y. H., and Wang, C. L. 2008. Purification and characterization of three novel keratinolytic metalloproteases produced by Chryseobacterium indologenes TKU014. Bioresour. Technol. 9: 5679-5686.
231.Wang, X. and Parsons, C. M. 1997. Effect of processing systems on protein quality of feather meal and hair meal. Poult. Sci. 76: 491-496.
232.Wawrzkiewicz, K., Lobarzewski, J. and Wolski, T. 1987. Intracellular keratinase of Trichophyton gallinae, J. Med. Vet. Mycol. 25: 261-268.
233.Wawrzkiewicz, K., Wolski, T. and Lobarzewski, J. 1991. Screening the keratinolytic activity of dermatophytes in vitro. Mycopathologia. 114: 1-8.
234.Weinberg, E. D. 1970. Biosynthesis of secondary metabolites: roles of trace metals. Adv. Microb. Physiol. 4: 1-44.
235.Williams, C. M. and Shih, J. C. H. 1989. Enumeration of some microbial groups in thermophilic poultry waste digesters and enrichment of a feather-degrading culture. J. Appl. Bacteriol. 67: 25-35.
236.Williams, C. M., Lee, C. G., Garlich, J. D. and Shih, J. C. H. 1991. Evaluation of a bacterial feather fermentation product, feather-lysate, as a feed protein. Poultry Sci. 70: 85-94.
237.Williams, C. M., Richter, C. S., MacKenzie, J. M. and Shih, J. C. H. 1990. Isolation, identification, and characterization of a feather-degrading bacterium. Appl. Environ. Microbiol. 56: 1509-1515.
238.Woodin, A. M. 1953. Molecular size, shape and aggregation of soluble feather keratin. Biochem. J. 57: 99-109.
239.Yamamura, S., Morita, Y., Hasan, Q., Yokoyama, K. and Tamiya, E. 2002. Keratin degradation: a cooperative action of two enzymes from Stenotrophomonas sp. Biochem. Biophys. Res. Commun. 294: 1138-1143.
240.Yamauchi, K., Yamauchi, A., Kusunoki, T., Khoda, A. and Konishi, Y. 1996. Preparation of stable aqueous solutions of keratins, and physicochemical and biodegradational properties of films. J Biomed Mat Res. 31: 439-444.
241.Yu, R. J., Harmon, S. R. and Blank, F. 1968. Isolation and purification of an extracellular keratinase of Trichophyton mentagrophytes. J. Bacteriol. 96: 1435-1436.
242.Yu, R. J., Harmon, S. R. and Blank, F. 1969. Hair digestion by keratinase of Trichophyton mentagrophytes. J. Invest. Dermatol., 53: 166-171.
243.Yu, R. J., Harmon. S. R., Grappel. S. F. and Blank, F. 1971. Two cell bound keratinase of Trichophyton mentagrophytes. J. lnves. Dermatol. 56: 27-32.
244.Zhang, B., Sun, Z. W., Jiang, D. D., Niu, T. G. 2009. Isolation and purification of alkaline keratinase from Bacillus sp. 50-3. Afr. J. Biotechnol. 8: 2598-2603.
245.Ziegler, H., Bohme, H. and Reichmann, G. 1969. Stoffwecheslphysiologische untersucgungen uber den abbau von proteinen durch Microsporium gypseum and M. canis. Dermatol. Mschr. 155: 835-856.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top