# 臺灣博碩士論文加值系統

(34.226.244.254) 您好！臺灣時間：2021/08/01 04:58

:::

### 詳目顯示

:

• 被引用:0
• 點閱:127
• 評分:
• 下載:0
• 書目收藏:0
 在連結網路中Star graph是一個耳熟能詳的拓樸網路架構。此論文中探討星狀圖的一些漢米爾頓特性之邊容錯和相鄰點容錯。　　先令Sn 為一個n 維的星狀圖，再令Fe是Sn上壞邊的集合和Fav 是Sn 上壞相鄰對點的集合。在這篇論文中，我們要建構一個當b 和w 為任意兩個奇數長度的點並且 fav + fe ≤ 3 及n ≥ 5，在Sn – Fav – Fe 時還存在一條漢米爾頓路徑 P(b, w) 的星狀圖。
 The star graph is a famous interconnection network. In this thesis, we will investigate the edge fault tolerance and adjacent vertex fault tolerance for some Hamiltonian property of the star graph.　　Let Sn be an n-dimensional star graph, and let Fe be the set of fe faulty edges and let Fav be the set of fav pairs of adjacent faulty vertices of Sn. In this thesis, we show that there exists a Hamiltonian path P(b, w) of Sn –Fav – Fe where b and w are arbitrary two vertices with odd distance for fav + fe ≤ n - 3and n ≥ 5.
 封面內頁簽名頁中文摘要ABSTRACT誌謝目錄圖目錄Chapter1 Introduction1Chapter2 Preliminaries2.1 Previous results2.2 Some additional lemmasChapter3 The Main ResultChapert4 Conclusion
 [1] S.B. Akers, B. Krishnamurthy, “A group-theoretic model for symmetric interconnection networks,” IEEE Transaction on Computers, 38, pp. 555-566, 1989.[2] N. Bagherzadeh, M. Dowd, N. Nassif, “Embedding an arbitrary binary tree into the star graph,” IEEE Trans. Comput., pp. 475-481, 1996.[3] J.H. Chang, C.S. Shin, K.Y. Chwa, “Ring embedding in faulty star graphs,” IEICE Trans. Fund. E82-A. pp. 1953-1964, 1999.[4] C. Dongqin, G. Dachang, “Cycle embedding in star graphs with more conditional faulty edges,” Applied Mathematics and Computation, 218, pp. 3856-3867, 2011.[5] T. Dvoˇr´ak, “Hamiltonian cycles with prescribed edges in hypercubes,” SIAM J. Discrete Math. 19 (2005) 135-144.[6] T. Dvoˇr´ak, P. Gregor, “Hamiltonian paths with prescribed edges in hypercubes,” Discrete Mathematics 307 (2007) 1982-1998.[7] J.S. Fu, “Conditional fault-tolerant hamiltonicity of star graphs,” Parallel Computing, 33, pp. 488-496, 2007.[8] S.Y. Hsieh, G.H. Chen, C.W. Ho, “Longest fault-free paths in star graphs with vertex faults,” Theoret. Comput. pp. 215-227, 2001.[9] S.Y. Hsieh, G.H. Chen, C.W. Ho, “Longest fault-free paths in star graphs with edge faults,” IEEE Trans. Comput. pp. 960-971, 2001.[10] S.Y. Hsieh, “Embedding longest fault-free paths onto star graphs with more vertex faults,” Theoret. Comput. pp. 370-378, 2005.[11] S.Y. Hsieh, C.D. Wu, “Optimal fault-tolerant Hamiltonicity of star graphs with conditional edge faults,” Journal of Supercomputing, 49, pp. 354-372, 2009.[12] C.N. Hung, Y.H. Chang, C.M. Sun, “Longest paths and cycles in fault hypercubes,” Proceedings of the IASTED International Conference on Parallel and Distributed Computing and Networks, pp. 101-110, 2006.[13] C.W. Huang, H.L. Huang, S.Y. Hsieh, “Edge-bipancyclicity of star graphs with faulty elements,” Theoretical Computer Science, 412, pp. 6938-6947, 2011.[14] J.S. Jwo, S. Lakshmivarahan, S.K. Dhall, “Embedding of cycles and grids in star graphs,” J. Circuits, Systems, and Comput. pp. 43-74, 1991.[15] S. Latifi, N. Bagherzadeh, “Hamiltonicity of the clustered-star graph with embedding applications,” Proc. Internat. Conf. Parallel Distributed Process. Tech. pp. 734-744, 1996.[16] T.K. Li, Jimmy J.M. Tan, L.H. Hsu, “Hyper hamiltonian laceability on edge fault star graph,” Information Sciences, Vol. 165, pp. 59-71, 2004.[17] T.K. Li, “Cycle embedding in star graphs with edge faults,” Applied Mathematics and Computation, 167, pp. 891-900, 2005.[18] C.K. Lin, H.M. Huang, L.H. Hsu, “The super connectivity of the pancake graphs and the super laceability of the star graphs,” Theoretical Computer Science, 339, pp. 257-271, 2005.[19] S. Latifi, “A study of fault tolerance in star graph,” Information Processing Letters, 102, pp. 192-200, 2007.[20] Z. Miller, D. Pritikin, I.H. Sudborough, “Near embeddings of hypercubes into Cayley graphs on the symmetric group,” IEEE Transaction on Computers, 43, pp. 13-22, 1994.[21] J.H. Park, H.C. Kim, “Longest paths and cycles in faulty star graphs,” Journal of Parallel and Distributed Computing, 64, pp. 1286-1296, 2004.[22] S. Ranka, J.C.Wang, N. Yeh, “Embedding meshes on the star graph,” J. Parallel Distributed Comput. pp. 131-135, 1993.[23] W.Y. Su, C.N. Hung,“The Longest Ring Embedding in Faulty Hypercube,” Workshop on Combinatorial Mathematics and Computational Theory, 23,pp. 262-272, 2006.[24] Y.C. Tseng, S.H. Chang, J.P. Sheu, “Fault-tolerant ring embedding in star graphs with both link and node failures,” IEEE Trans. Parallel Distributed Systems. pp. 1185-1195, 1997.[25] Y.C. Tseng, “Embedding a ring in a hypercube with both faulty links and faulty nodes,” Information Processing Letters, 59, pp. 217-222, 1996.[26] D.J. Wang, “Embedding Hamiltonian cycles into folded hypercubes with link faults,” Journal of Parallel and Distributed Computing, 61, pp. 545-564, 2001.[27] W.Q. Wang, X.B. Chen, “A fault-free Hamiltonian cycle passing through prescribed edges in a hypercube with faulty edges,” Information Processing Letters, 107, pp. 205-210, 2008.[28] M.Xu, X.D. Hu, Q. Zhu, “Edge-bipancyclicity of star graphs under edge-fault tolerant,” Applied Mathematics and Computation, 183, pp. 972-979, 2006.[29] C.Y. Yang, C.N. Hung, “Adjacent Vertices Fault Tolerance Hamiltonian Laceability of Star Graphs” The Proceedings of the 23rd Workshop on Combinatorial Mathematics and Computation Theory, pp. 279-289, 2006.[30] M.C. Yang, T.K. Li, Jimmy J.M. Tan, L.H. Hsu, “Fault tolerant cycle-embedding of crossed cubes,” Information Processing Letters, 88, pp. 149-154, 2003.[31] M.C. Yang, “Cycle embedding in star graphs with conditional edge faults,” Applied Mathematics and Computation, 215, pp. 3541-3546, 2009.[32] M.C. Yang, “Embedding cycles of various lengths into star graphs with both edge and vertex faults,” Applied Mathematics and Computation, 216, pp. 3754-3760, 2010.[33] M.C. Yang, “Path embedding in star graphs,” Applied Mathematics and Computation, 207, pp. 283-291, 2009.[34] T.Y. Yu, C.N. Hung, “The Hamiltonian path passing through prescribed edges in a star graph with faulty edges,” Proceedings of the 28th Workshop on Combinatorial Mathematics and Computation Theory, pp. 112-123, 2011.
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 星狀圖二可生成性質相鄰點容錯之研究 2 星狀網路通過特定邊的漢米爾頓迴圈與漢米爾頓路徑邊容錯之研究

 無相關期刊

 1 以整數線性規劃法解決全客戶式 超大型積體電路增量式平面規劃 2 工程圖影像字元萃取之研究與實作 3 以整數線性規劃法解決3D超大型積體電路增量式平面規劃 4 星狀圖二可生成性質相鄰點容錯之研究 5 交叉立方體條件式容錯漢米爾頓迴路 6 情境式語意景點推薦系統 7 智慧型手機使用者從手機通話轉換行動即時通訊軟體之決定因素研究 8 結合智慧型教學系統與社群網站以發展同儕學習之研究 9 整合式數位內容搜尋系統之設計與實作 10 以投影法為基礎之工程圖影像字元萃取法 11 星狀網路通過特定邊的漢米爾頓迴圈與漢米爾頓路徑邊容錯之研究 12 應用認知負荷理論為基之數位學習於圓面積學習成效改善 13 適用於生醫應用之可調式小波轉換處理器 14 以位相連續性法則偵測影像與空載雷射資料之幾何特徵 15 應用於多通道神經感測之可配置小波離散轉換

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室