跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/24 16:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡東昇
研究生(外文):Tsai, Tung-Sheng
論文名稱:人臉偵測與追蹤之實作
論文名稱(外文):Implementation of Face Detection and Face Tracking
指導教授:林國祥林國祥引用關係
指導教授(外文):Lin, Guo-Shiang
口試委員:張軒庭張世旭林國祥
口試委員(外文):Chang, Hsuan T.Chang, Shih-HsuLin, Guo-Shiang
口試日期:2012-07-16
學位類別:碩士
校院名稱:大葉大學
系所名稱:資訊工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:59
中文關鍵詞:人臉追蹤人臉偵測特徵追蹤KLT追蹤人眼偵測
外文關鍵詞:face trackingfeature trackingface detectionKLT trackingeye detection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:223
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文中,提出一個基於特徵點追蹤之人臉追蹤技術。本論文提出之人臉追蹤技術主要由兩個部份所組成:人臉偵測和人臉追蹤。
首先,人臉偵測部分,使用Haar-Like特徵結合多分類器演算法的人臉偵測器,找出人臉的所在區域,為了移除偵測錯誤的人臉區域,人眼資訊也被採用。完成人臉偵測後,本論文透過特徵擷取與特徵追蹤達成人臉追蹤。
為了評估所提出的方法,藉由網路攝影機擷取各種不同的臉部動態影像。實驗結果顯示,本論文提出之人臉追蹤系統中,人臉偵測正確檢測率高於96%,人臉追蹤正確檢測率高於91%,效果良好。實驗結果證明,在自然且具有雜訊環境下,本論文提出的方法可以有效地達成人臉追蹤。

In the thesis, we implemented a face detection and tracking system. The developed system is composed of two main parts: face detection and face tracking.
In the face detection part, a face detector using Haar-Like features trained by Adaboost algorithm is adopted to detect facial region. To remove the error of face region, the human eyes information can also be used. After the face detection was completed, each face candidate can be tracked in the temporal domain. In the face tracking part, KLT features are extracted and tracked between two adjacent frames. Based on KLT feature tracking, face tracking can be achieved in the developed system.
To evaluate the developed system, several videos with different kinds of face movement are captured by using low-cost webcam. Experimental results show that our proposed system can detect and track facial regions well. The detection rate of our face detection is more than 96% and the detection rate of our face tracking is more than 91%. These results demonstrate that our proposed system can achieve face detection and face tracking in real-world noisy videos.

封面內頁
簽名頁
中文摘要 iii
ABSTRACT iv
誌謝 v
目錄 vi
圖目錄 viii
表目錄 x

第一章 緒論 1
1.1 研究動機 1
1.2 系統概要 1
1.3 人臉偵測相關技術 3
1.3.1 人臉追蹤困難之處 3
1.4 人臉追蹤相關技術 3
1.4.1 人臉追蹤困難之處 4
第二章 人臉偵測 5
2.1 人臉偵測之系統架構 5
2.2 人臉矯正 6
2.2.1 結構相似性指標 8
2.2.2 旋轉人臉影像 9
2.2.3 亮度調整 12
2.3 人眼偵測 14
2.3.1 局部二元樣本 16
2.3.2 支持向量機 17
第三章 人臉追蹤 20
3.1 人臉追蹤之系統架構 20
3.2 KLT特徵追蹤 22
3.3 重新人臉偵測之程序 26
第四章 實驗結果 28
4.1 系統執行環境 28
4.2 人臉偵測之結果 29
4.2.1 Haar-Like特徵結合多分類器演算法的人臉偵測之結果 29
4.2.2 人臉旋轉之結果 32
4.2.3 亮度調整與人眼偵測之結果 33
4.2.4 人臉偵測之結果 35
4.2.5 特徵擷取之結果 40
4.2.6 人臉追蹤之結果 43
第五章 結論與未來研究方向 46
5.1 結論 46
5.2 未來研究方向 46
參考文獻 47


[1]P. Viola and M. Jones, “Robust real-time face detection,” International Journal of Computer Vision, vol. 57, no. 2, pp. 137-154, 2004.
[2]G. S. Lin, M. K. Chang, and Y. J. Chang, “Gender recognition based on multi-model information fusion,” APSIPA ASC 2011.
[3]Y. Andreu and R. A. Mollineda, “The role of face parts in gender recognition,” in Proc. LNCS Int’l Conf. on Image Analysis and Recognition, vol.5112, pp. 945-954, 2008.
[4]H. Fukai, H. Takimoto, Y. Mitsukura and M. Fukumi, “Age and Gender Estimation System based on Human Perception,” Proc. of 18th IEEE International Symposium on Robot and Human Interactive Communication, pp. 1143-1148, 2009.
[5]Olugbenga Ayinde, and Yee-Hong Yang, “Region-Based Face Detection,” Pattern Recognition, Vol. 35, pp. 2095-2017, 2002.
[6]S. Hayashi, and O. Hasegawa, “A Detection Technique for Degraded Face Images,” Conference on Computer Vision and Pattern Recognition, IEEE Computer Society, Vol. 2, pp. 1516-1512, 2006.
[7]L. Zhao, X. Sun, and X. Xu, “Face detection based on facial features,” Proceedings of the International Conference on Signal Processing, Vol. 3, Nov, pp. 16-20, 2006.

[8]M. Turkan, M. Pardes, and A.E. Cetin, “Edge Projections for eye localization,” Optical Engineering, Vol. 47, pp. 047007-1–047007-6, 2008.
[9]J. -S. Jang, and J. -H. Kim, “Fast and robust face detection using evolutionary pruning,” IEEE Transactions on Evolutionary Computation, Vol. 12, No. 5, pp. 562-571, 2008.
[10]P. S. Hiremath, and A. Danti, “Detection of Multiple Faces in an Image Using Skin Color Information and Lines-of-Separability Face Model,” International Journal of Pattern Recognition and artificial Intelligence, Vol. 20, No. 1,pp. 39-61, 2006.
[11]Chin-Chung Han, Hong-Yuan Mark Liao, Kuo-Chung Yu, and Liang-Hua Chen, “Fast Face Detection Via Morphology-based Pre-Processing,” Pattern Recognition, Vol. 33, pp. 1701-1712, 2000.
[12]L. Goldmann, U. J. Monich, and T. Sikora, “Components and Their Topology for Detection in the Presence of Partial Occlusions,” IEEE Transactions on Information Forensics and Security, Vol. 2, No. 3, Sep, pp. 559–569, 2007.
[13]S. Bircheld, “Elliptical head tracking using intensity gradients and color histograms,” IEEE Conf. Computer Vision and Pattern Recognition, pp. 232–237, 1998.
[14]V. Kruger, R. Herpers, K. Daniilidis, and G. Sommer, “Teleconferencing using an attentive camera system,” Int. Conf. on Audio- and Video-based Biometric Person Authentication, pp. 142–147, 1999.
[15]Y. Raja, J. McKenna, and S. Gong, “Tracking and segmenting people in varying lighting conditions using color,” Int. Conf. on Automatic Face- and Gesture- Recognition, pp. 228–233, 1998.
[16]Y. Zheng and Y. meng, “A swarm-intelligence based algorithm for face tracking,” Int. J. Intelligent Systems Technologies and Applications, vol. 7, no. 3, pp.266–281, 2009.
[17]Jeremiah R. Barr, Kevin W. Bowyer, and Patrick J. Flynn, “Detecting Questionable Observers Using Face Track Clustering,” 2011 IEEE Workshop on Applications of Computer Vision (WACV), pp. 182-189, 2011.
[18]Hao Ji, Fei Su, and Geng Du, “Multiple faces tracking based on joint kernel density estimation and robust feature descriptors,” 2009. IC-NIDC 2009. IEEE International Conference on Network Infrastructure and Digital Content, pp. 680-685, 2009.
[19]Thanh Duc Ngo, Duy-Dinh Le, Shin’ichi Satoh, and Duc Anh Duong, “Robust Face Track Finding in Video Using Tracked Points,” 2008. SITIS '08. IEEE International Conference on Signal Image Technology and Internet Based Systems, pp. 59-64, 2008.
[20]C.-Y. Yu, Y.-C. Ouyang, C.-M. Wang, and C.-I Chang, “Adaptive inverse hyperbolic tangent algorithm for dynamic contrast adjustment in displaying scenes,” EURASIP Journal on Advanced in Signal Processing, vol. 2010, pp. 1-20, 2010.

[21]Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, pp. 600-612, 2004.
[22]T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and rotation invariant texture classification with local binary patterns”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, pp. 971-987, 2002.
[23]V. Vapnik, The Nature of Statisical Learning Theory, Springer-Verlag, New York, 1995.
[24]J. Shi, and C. Tomasi, “Good Feature to Track,” IEEE Conf. Computer Vision and Pattern Recognition, pp. 593-600, June 1994.
[25]T. Tommasini, A. Fueiello, and E. Trucco etal. , “Making good features track better,” Int’l Conf. Computer Vision and Pattern Recognition, pp. 178-183, 1998.
[26]Stan Birchfield, “Derivation of Kanade-Lucas-Tomasi Tracking Equation,” Unpublished, May 1996.
[27]C. Tomasi and T. Kanade, “Detection and Tracking of Point Features,” Carnegie Mellon University Technical Report CMU-CS-91-132, April 1991.
[28]C. Garcia and G. Tziritas, “Face Detection Using Quantized Skin Color Regions Merging and Wavelet Packet Analysis,” IEEE Transactions on Multimedia, vol. 1, pp. 264-277, 1999.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top