跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/01 12:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃世維
研究生(外文):Hoang The Duy
論文名稱:應用於手持式數位視訊廣播之非對稱共面波導饋入型單極天線
論文名稱(外文):Compact Asymmetric Coplanar Waveguide Fed Monopole Antenna for DVB-H Applications
指導教授:吳俊德吳俊德引用關係
指導教授(外文):Chun-Te Wu
口試委員:林明星吳俊德邱政男
口試日期:2012-07-17
學位類別:碩士
校院名稱:大葉大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:44
中文關鍵詞:數位廣播通訊印刷電路板形式的單極天線共面波導
外文關鍵詞:digital video broadcasting-handheld (DVB-H)printed monopole antennacoplanar waveguide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:109
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的目的在於設計並製造應用於手持式數位廣播通訊(digital video broadcasting-handheld, DVB-H)的小型天線。諸如:筆記型電腦、行動電話、與汽車行動通訊等,均需要小型天線。因為需要小型化,所以相對於波長小很多的尺寸以及寬頻的需求極具挑戰性。在本論文中設計了一個以共面波導饋入的印刷電路板形式的單極天線,包含了一個P形狀的天線以及L形狀的接地面。利用不同長度的非對稱接地面,除了單極天線的四分之一波長共振頻段外,可以激發出一個新的輻射頻率 (0.75波長)。此外,共面波導饋入的型式,非常適合製作在短小輕便、價格低廉的單晶微波積體電路(monolithic microwave integrated circuits, MMICs)上。
藉由模擬軟體HFSS先求出輻射場型、反射損耗、或其他天線參數,我們可以初步設計符合此需求的天線。此天線操作頻率為 439-937 MHz,反射損耗皆在 -6dB以下,此頻段包含了 DVB-H 之頻段 (470-862 MHz)。這個天線的場型在操作頻段內接近全向性。

關鍵字:數位廣播通訊(digital video broadcasting-handheld, DVB-H)、印刷電路板形式的單極天線、共面波導

The purpose of this thesis is to design and manufacture the miniaturized antenna for digital video broadcasting-handheld (DVB-H) application. The miniaturized DVB-H antenna has become very attractive for applications in mobile communication devices such as laptop computers, mobile phones and automobiles. Because the volume reserved for an antenna inside these devices is limited, a DVB-H antenna should be electrically small, and broadband operation has the challenging. In this thesis, the printed monopole antenna which utilizes the coplanar waveguide line is designed. The proposed antenna comprises a P-shape patch and a L-shaped ground plane. By the use of the different length of asymmetric ground plane, an additional resonant mode (0.75-wavelenght) adjacent to the antenna’s fundamental (0.25-wavelength) resonant mode can be excited. In addition, the use of coplanar waveguide fed structure has advantages like single metallic layer structure, lightweight, low cost and easy integration to monolithic microwave integrated circuits (MMICs).
Based on the simulations of radiation patterns, return loss, and other antenna parameters from Ansoft High Frequency Structure Simulator (HFSS), the prototype antenna is designed. The proposed antenna can operate in the 439 – 937 MHz frequency range below -6 dB and cover the DVB-H operating bandwidth (470 - 862 MHz). The antenna has an approximately omni-directional radiation pattern in XZ-plane over the entire frequency band.

Keywords: digital video broadcasting-handheld (DVB-H), printed monopole antenna, coplanar waveguide

CONTENTS

摘要 ii
ABSTRACT iv
ACKNOWLEDGEMENT v
CONTENTS vi
ABBREVIATIONS viii
LIST OF FIGURES ix
LIST OF TABLES xi
CHAPTER 1 INTRODUCTION 1
1.1 Background and Motivation 1
1.2 Thesis structure 2
CHAPTER 2 DIGITAL VIDEO BROADCAST (DVB) STANDARDS AND AN OVERVIEW OF AVAILABLE ANTENNAS FOR DVB-H APPLICATIONS 3
2.1 Digital video broadcast standards 3
2.1.1 DVB-T 3
2.1.2 DVB-H 5
2.1.2.1 Time slicing 8
2.1.2.2 Multi Protocol Encapsulation – Forward Error Correction (MPE-PEC) 9
2.2 Performance requirements for the DVB-H system 10
2.3 Available antenna solutions for the DVB-H system 12
2.3.1 External antennas 12
2.3.2 Internal antennas 13
CHAPTER 3 ANTENNA THEORY 17
3.1 Efficiency, directivity and gain 17
3.2 Dipole antenna 18
3.3 Monopole antenna 22
CHAPTER 4 THE DESIGN PROCESS OF COPLANAR WAVEGUIDE FED DVB-H ANTENNA AND RESULTS 24
4.1 Introduction to coplanar waveguide 24
4.2 Conventional CPW fed monopole antenna 24
4.2.1 Ground plane width (W2) variation studies 27
4.2.2 Ground plane length (L2) variation studies 28
4.3 The miniaturized antenna for digital video broadcasting-handheld (DVB-H) application 29
4.3.1 Antenna structure 29
4.3.2 Results and discussions 32
CHAPTER 5 CONCLUSION AND FURTURE WORKS 41
5.1 Conclusion 41
5.2 Future works 42
REFERENCES 43


ABBREVIATIONS

CENELEC European Committee for Electro-technical Standardization
COFDM Coded Orthogonal Frequency Division Multiplexing
CPW Coplanar Waveguide
DTV Digital Television
DVB Digital Video Broadcasting
DVB-C Digital Video Broadcasting Cable
DVB-H Digital Video Broadcasting Handheld
DVB-S Digital Video Broadcasting Satellite
DVB-T Digital Video Broadcasting Terrestrial
ETSI European Telecommunications Standards Institute
FEC Forward error correction
GSM Global System for Mobile Communications
MMIC Monolithic Microwave Integrated Circuit
MPE Multi-Protocol Encapsulation
MPEG-2 Moving Picture Experts Group-2
MPEG-4 Moving Picture Experts Group-4
OFDM Orthogonal Frequency Division Multiplexing
PIFA Planar Inverted-F Antenna
QAM Quadrature amplitude modulation
QPSK Quadrature Phase-shift keying
SFN Single-frequency network
SNR Signal to noise ratio




LIST OF FIGURES

Figure 2.1. Digital television standards in the world [2].
Figure 2.2. Schematic description of the DVB-H system operating over a DVB-T system [5].
Figure 2.3. Time slicing technique.
Figure 2.4. The realized gain specification for DVB-H antenna.
Figure 2.5. Monopole antenna and corresponding helix antenna of an example mobile terminal.
Figure 2.6. The structure of (a) a spiral antenna and (b) a bow-tie antenna.
Figure 2.7. Example of PIFA structure.
Figure 2.8. Four most popular configurations to feed microstrip antennas.
Figure 3.1. Voltage reflection from a mismatched load.
Figure 3.2. Block diagram for computing fields radiated by electric and magnetic sources [16].
Figure 3.3. Dipole antenna [16].
Figure 3.4. Current distribution on linear dipole [16].
Figure 3.5. Quarter-wavelength monopole on an infinite perfect electric conductor (a) and equivalent of it (b).
Figure 4.1. Conventional coplanar waveguide structure.
Figure 4.2. The geometry of conventional CPW fed monopole antenna.
Figure 4.3. The simulated return loss for conventional CPW fed monopole antenna at resonant frequency of 666 Mhz.
Figure 4.4. Ground plane width variation studies (L = 133 mm, L1 = 113 mm, W1 = 4.6 mm, L2 = 20 mm).
Figure 4.5. Ground plane lenght variation studies (W = 58.6 mm, L1 = 113 mm, W1 = 4.6 mm, W2 = 26.6 mm).
Figure 4.6. Geometry of the proposed compact coplanar waveguide fed monopole antenna (a) top view and (b) side view (unit: millimeters).
Figure 4.7. The photograph of fabricated antenna.
Figure 4.8. Simulated and measured return loss of proposed antenna.
Figure 4.9. Simulated excited surface current distribution. (a) The proposed antenna at 547 Mhz. (b) The proposed antenna at 778 Mhz.
Figure 4.10. Simulated return losses as function of L, all remained parameters are the same as figure 4.6.
Figure 4.11. Simulated input impedance as function of L, all remained parameters are the same as figure 4.6.
Figure 4.12. Simulated return losses as function of s, all remained parameters are the same as figure 4.6.
Figure 4.13. Simulated input impedance as function of s, all remained parameters are the same as figure 4.6.
Figure 4.14. Simulated return losses as function of u, all remained parameters are the same as figure 4.6.
Figure 4.15. Simulated radiation pattern of the propose antenna at 547 Mhz.
Figure 4.16. Simulated radiation pattern of the proposed antenna at 778 Mhz.
Figure 4.17. Simulated maximum antenna gain and radiation efficiency of the proposed antenna.


LIST OF TABLES

Table 2.1. DVB-T and DVB-H parameters.
Table 2.2. DVB-H parameters [12].
Table 4.1. The parameters of conventional CPW fed monopole antenna at resonant frequency of 666 Mhz.

[1] DVB Timeline – History of DVB http://www.dvb.org/about_dvb/history/dvb_timeline/.

[2] DVB – History of the DVB Project http://www.dvb.org/.

[3] Arjona Andres - Internet Protocol Datacasting Telecommunications Software and Multimedia Laboratory, Espoo, 2005.

[4] Broadcasting to Handhelds - Digital Terrestrial Mobile TV, May 2011. http://www.dvb.org/technology/fact_sheets/DVB-H_Factsheet.pdf

[5] DVB-H: Digital Broadcast Services to Handheld Devices
http://www.dvb-h.org/PDF/01566629_DVB-H.pdf

[6] Herrero, Carlos and Vuorimaa, Petri - Delivery of Digital Television to Handheld Devices, Telecommunications Software and Multimedia Laboratory, Helsinki University of technology.

[7] Kornfeld, Michael - DVB-H - The emerging standard for mobile data communication.

[8] Reimers, Ulrich – DVB - The Family of International Standards for Digital Video Broadcasting, Springer-Verlag Berlin Heidelberg, 2005.

[9] Amitabh Kumar , “Mobile TV DVB-H, DMB, 3G Systems and Rich Media applications”, 2007.

[10] DVB Document A080, Apr 2004.

[11] Pekowsky, Stuart and Maalej, Khaled - DVB-H architecture for mobile communications systems, Apr 2005.

[12] ETSI EN 301 192: “Digital Video Broadcasting (DVB) and DVB specification for broadcasting”.

[13] EICTA: Mobile and Portable DVB-T/H Radio Access - Interface Specification, version 2.0, 2007.

[14] DVB Project, DVB-H Implementation Guidelines, DVB Document A092 Rev. 2 May 2007, http://www.dvb.org -> Standards & Technology.

[15] Compact Integrated Antennas, Freescale semiconductor, Nov 2004.

[16] Constantine A. Balanis - Antenna theory, John Wiley & Sons, Inc., 2005.

[17] W. L. Stutzman and G.A. Thiele, Antenna Theory and Design. New York: John Wiley & Sons Inc., 1998.

[18] K. Fujimoto, J.R. James - Mobile Antenna Systems Handbook, Artech house, INC, 2001.

[19] Gardiol, Fred – Microstrip circuits, John Wiley & Sons Inc, 1994.

[20] Y. W. Chi, K. L. Wong, and S. W. Su, “Broadband printed dipole antenna with a step-shaped feed gap for DTV signal reception,” IEEE Trans. Antennas Propag., vol. 55, no. 11, pp. 3353–3356, Nov. 2007.

[21] Y. W. Chi, K. L.Wong, and S. H. Yeh, “End-fed modified planar dipole antenna for DTV signal reception,” Microw. Opt. Technol. Lett., vol. 49, no. 3, pp. 676–680, Mar. 2007.

[22] C. Y. Huang, B. M. Jeng, and J. S. Kuo, “Grating monopole antenna for DVB-T applications,” IEEE Trans. Antennas Propag., vol. 56, no. 6, pp. 1175–1176, Jun. 2008.

[23] B.-M. Jeng, C.-M. Lee, and C.-H. Luo, “Multiple-ring monopole antenna with sleeve-shaped ground for DVB-T applications,” Progress In Electromagnetics Research C, vol. 14, 155-161, 2010.

[24] Mau-Phon Houng, Yu-Jen Chou, Ding-Bing Lin, and I-Tseng Tang, “A Monopole Antenna with CPW-fed for Digital Video Broadcasting Applications,” PIERS Proceedings, Marrakesh, MOROCCO, March 20-23, 2011.

[25] Rainee N. Simons - Coplanar Waveguide Circuits, Components, and Systems. John Wiley & Sons, Inc., 2001.

[26] DVB-H implemented Guidelines: ETSI: TR 102 337 V1.1.1 (2005–02), European Telecommunications Standards Institute.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top