跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 15:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃郁翔
研究生(外文):Yu-Hsiang Huang
論文名稱:屏蔽金屬機殼對單極平面天線的影響
論文名稱(外文):Influence of Metallic Enclosures on Monopole-like Planar Antennas
指導教授:邱政男邱政男引用關係
指導教授(外文):Cheng-Nan Chiu
口試委員:邱政男吳俊德林明星
口試委員(外文):Cheng-Nan ChiuChun-Te WuMing-Shing Lin
口試日期:2012-07-17
學位類別:碩士
校院名稱:大葉大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:48
中文關鍵詞:無線通訊單極天線平面天線電磁相容
外文關鍵詞:Wireless communicationsMonopole AntennasPlanar AntennasElectromagnetic Compatibility (EMC)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:115
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文將探討現今電子設備周遭導電體對於類單極天線性能之影響。經由研究顯示,鄰近導體不僅對於天線輻射效應有影響並且對於天線之饋入結構也有一定程度的影響。本篇論文將採取八種組合,包括四種饋入結構以及兩種典型天線,來做分析比較。分別為單端饋入微帶線結構、單端饋入帶線結構、平衡式饋入微帶線結構及平衡式饋入帶線結構,並且使用於相同玻璃纖維板為基材以及相同尺寸和厚度;而天線部分則由兩種典型的類單極天線組成,分別為單極天線以及T型單極天線,並且設計應用在相同頻帶IMT-2000以及幾近一致的頻寬,此設計目的在於可更嚴謹的判斷出其差異性。本實驗根據此八種組合,並以模擬及實際量測相互佐證,尋找出對於周遭導體最具高免疫力之組合。
Abstract-This paper investigates in detail the influence of neighboring conductive objects on the performance of planar monopole-like antennas for modern electronic devices. These objects influence not only the antenna radiating structures but also the antenna feeds, resulting in apparent degradation in antenna performance and device electromagnetic compatibility (EMC). For this investigation, four representatives of antenna feeds (single-ended microstrip-line, single-ended strip-line, balanced microstrip-line, and balanced strip-line) and two typical monopole-like antennas (monopole and T-monopole) are created; eight combinations are presented. According to their experimental results obtained, the influence of neighboring conductive objects is compared and the best combination with the highest immunity is highlighted.

目錄

封面內頁
簽名頁
中文摘要.............................iii
ABSTRACT............................iv
誌謝.................................v
目錄.................................vi
圖目錄...............................viii
表目錄...............................xii

第一章 緒論
1.1 前言.............................1
1.2 研究動機與目的...................3
1.3 論文架構.........................4
第二章 平衡式饋入結構概念
2.1 簡介.............................5
2.2 平衡式元件的優點.................5
2.3 新型DCL balun....................9
2.4 新型Marchand balun...............12
第三章 天線與饋入結構設計
3.1 單極天線設計.....................15
3.2 T型單極天線設計.................18
3.3 單端饋入結構設計.................21
3.4 平衡式饋入結構設計...............23
第四章 屏蔽機殼對於天線效能之影響
4.1屏蔽機殼之設計....................28
4.2單端饋入微帶線結構之探討..........29
4.3單端饋入帶線結構之探討............33
4.4平衡式饋入微帶線結構之探討........35
4.5平衡式饋入帶線結構之探討..........39
4.6尋找具有最高免疫力之組合..........43
第五章 結論 45
參考文獻 46


圖目錄

圖2.2.1 平衡式饋入傳輸線與單端饋入傳輸線耦合形式的比較..................................6
圖2.2.2 單端饋入電路示意圖..............................................................7
圖2.2.3 非平衡式元件傳輸過程示意圖......................................................7
圖2.2.4 平衡式饋入電路示意圖............................................................8
圖 2.2.5 平衡式元件傳輸過程示意圖.......................................................8
圖 2.3.1 平行耦合微帶線在電場與磁場中兩種模態的耦合方式.................................10
圖 2.3.2 四埠網路.......................................................................10
圖 2.3.3 4-port coupled lines...........................................................11
圖 2.3.4 Dumbbell-shaped DGS結構........................................................11
圖 2.4.1 Marchand balun的形式...........................................................13
圖 2.4.2八埠網路........................................................................14
圖 2.4.3四種模態的耦合方式..............................................................14
圖3.1.1 單極天線........................................................................15
圖3.1.2單極天線的反射損耗...............................................................16
圖3.1.3單極天線的輻射效應以及增益.......................................................16
圖3.1.4單極天線在2GHz時X-Z平面場型圖....................................................17
圖3.1.5單極天線在2GHz時Y-Z平面場型圖....................................................17
圖3.2.1 T型單極天線.....................................................................18
圖3.2.2 T型單極天線的反射損耗...........................................................19
圖3.2.3 T型單極天線的輻射效應以及增益...................................................19
圖3.2.4 T型單極天線在2GHz時X-Z平面場型圖................................................20
圖3.2.5 T型單極天線在2GHz時Y-Z平面場型圖................................................20
圖3.3.1 單端饋入微帶線示意圖............................................................21
圖3.3.2 單端饋入帶線示意圖..............................................................22
圖3.3.3 單端饋入微帶線實際結構..........................................................22
圖3.3.4 單端饋入帶線實際結構............................................................23
圖3.4.1平衡式饋入微帶線示意圖...........................................................25
圖3.4.2平衡式饋入帶線示意圖.............................................................25
圖3.4.3平衡式饋入微帶線實際結構.........................................................25
圖3.4.4平衡式饋入帶線實際結構...........................................................26
圖3.4.5平衡式饋入微帶線結構的反射損耗...................................................26
圖3.4.6平衡式饋入帶線結構的反射損耗.....................................................27
圖4.1.1內部天線與金屬機殼之相對位置.....................................................28
圖4.1.2天線與金屬平面之相對位置.........................................................29
圖4.2.1 T型單極天線和單極天線連接單端饋入微帶線結構,並放置於金屬機殼內部的反射損耗...............30
圖4.2.2 T型單極天線以及類單極天線於2GHz時X-Z平面場型圖............................................31
圖4.2.3 T型單極天線以及類單極天線於2GHz時Y-Z平面場型圖............................................31
圖4.2.4 T型單極天線和單極天線連接單端饋入微帶線結構,並放置於金屬機殼內部的增益變化...............32
圖4.2.5模擬及量測T型單極天線連接單端饋入微帶線結構,並放置於金屬機殼內部的反射損耗................32
圖4.3.1 T型單極天線連接單端饋入帶線結構,並在周遭放置金屬導體的反射損耗...........................33
圖4.3.2 T型單極天線於2GHz時X-Z平面場型圖..........................................................34
圖4.3.3 T型單極天線於2GHz時Y-Z平面場型圖..........................................................34
圖4.3.4 T型單極天線連接單端饋入微帶線結構,並在周遭放置金屬導體的增益變化.........................35
圖4.4.1 T型單極天線連接平衡式饋入微帶線結構,並在周遭放置金屬導體的反射損耗.......................36
圖4.4.2 T型單極天線於2GHz時X-Z平面場型圖..........................................................37
圖4.4.3 T型單極天線於2GHz時Y-Z平面場型圖..........................................................37
圖4.4.4 T型單極天線連接平衡式饋入微帶線結構,並在周遭放置金屬導體的增益變化.......................38
圖4.4.5模擬及量測T型單極天線連接平衡式饋入微帶線結構,並放置於金屬機殼內部的反射損耗..............38
圖4.5.1 T型單極天線連接平衡式饋入帶線結構,並在周遭放置金屬導體的反射損耗.........................39
圖4.5.2單極天線連接平衡式饋入帶線結構,並在周遭放置金屬導體的反射損耗.............................40
圖4.5.3 T型單極天線於2GHz時X-Z平面場型圖..........................................................40
圖4.5.4 T型單極天線於2GHz時Y-Z平面場型圖..........................................................41
圖4.5.5單極天線於2GHz時X-Z平面場型圖..............................................................41
圖4.5.6單極天線於2GHz時Y-Z平面場型圖..............................................................42
圖4.5.7 T型單極天線連接平衡式饋入帶線結構,並在周遭放置金屬導體的增益變化.........................42
圖4.5.8單極天線連接平衡式饋入帶線結構,並在周遭放置金屬導體的增益變化.............................43
圖4.6.1天線與金屬平面之相對位置...................................................................37


表目錄

表一、常用的無線通訊頻帶................................................................2
表二、最佳組合的性能比較................................................................37
參考文獻

[1] J.Toftagrd, S. N. Hornsleth, and J. B. Andersen, "Effects on portable antennas of the presence of a person," IEEE Trans. Antennas Propagat., vol. 41, no. 6, pp. 739-746, Jun. 1993.
[2] M. A. Jensen and Y. Rahmat-samii, "EM interaction of handset antennas and a human in personal communications," Proceedings IEEE, vol. 83,no. 1,pp. 7-17,Jan. 1995.
[3] Steven Yu, "網路分析儀於平衡/非平衡/多埠/內箝元件的量測" ,2005
[4] D . Ahn, J. S. Park, C.S, Kim, J. Kim, Y. Qian, and T. Itoh, "A design of the low-pass filter using the novel microstrip defected ground structure, "IEEE Trans. Microwave Theory Tech., vol. 49, no. 1, pp. 86-93, Jan. 2001.
[5] Stephen H. Hall, Garrett W. Hall, James A. McCall, "High-Speed Digital System Design, " John Wiley & Sons,2002,Ch. 3.
[6] M. A. Salah-Eddin and A. M. E. Safwat, Defected-ground coupled microstrip lines and its application in wideband baluns, IET Microwave Antennas Propagat., vol. 1, no.4, pp. 893-899, Aug. 2007.
[7] T. Chen, K. W. Chang, S. B. Bui, H. Wang, G. Samuel, L. C. T. Lui, T. S. Lin, and W. S. Titus,“Broad-band monolithic passive baluns and monolithic double-balanced mixer,” IEEE Trans. Microwave Theory Tech., vol. 39, December 1991.
[8] T. Gokdemir, S. B. Economides, A. Khalid, A. A. Rezazadeh, and I. D. Robertson, “Design and performance of GaAs MMIC CPW baluns using over-laid and spiral couplers,” in IEEE MTT-S Microwave Symp. Dig., 1997, pp. 401-404.
[9] C. Cho, and K. C. Gupta,“ A new design procedure for single-layer and two-layer three-line baluns,”IEEE Trans. Microwave Theory Tech., vol. 46, December 1998.
[10] K. Nishikawa, I. Toyoda and, T. Tokumitsu, “Compact and broadband three-dimensional MMIC balun,” IEEE Trans. Microwave Theory Tech., vol. 47, January 1999.
[11] C-W. Tang, J-W. Sheen, and C-Y. Chang,“Chip-type LTCC-MLC baluns using the stepped impedance method,” IEEE Trans. Microwave Theory Tech., vol. 49, December 2001.
[12] B. Bhat and S. K. Koul, Stripline Like Transmission Lines for Microwave Integrated Circuits. New York, NY: John Wiley Sons, 1989.
[13] R. k S ettaluri and A. Weisshaar, A broadside-edge-coupled vialess balun, in IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, pp. 1251-1254, Jun. 2003.
[14] Stephen H. Hall and Garrett W. Hall and James A. McCall, High-speed Digital System Design. New York, John Wiley Sons, 2000.
[15] N. Marchand, "Transmission line conversion transformers" Electronics, vol. 17, no. 12, pp. 142-145,Dec. 1944.
[16] E. Lee, P. S. Hall, and P. Gardner, "Compact wideband planar monopole antenna," Electron. Lett., vol. 35, no. 25, pp. 2157-2158, Dec. 1999.
[17] K. L. Wong, G. Y. Lee, and T. W. Chiou, "A low-profile planar monopole antenna for multiband operation of mobile handsets, " IEEE Trans. Antennas Propagat., vol. 51, no. 1, pp. 121-125, Jan. 2003.
[18] C. S. Liu, C. N. Chiu, and S. M. Deng, "A compact disc-slit monopole antenna for mobile devices," IEEE Antennas Wireless Propagat. Lett., vol. 7, pp. 251-254, 2008.
[19] Y. L. Kuo and K. L. Wong, “Printed double-T monopole antenna for 2.4/5.2 GHz dual-band WLAN operations,” IEEE Trans. Antennas and Propagation, vol. 51, September 2003.
[20] G. Zheng, A. A. Kishk, A. W. Glisson, and A. B. Yakovlev, “A broadband printed bow-tie antenna with a simplified balanced feed,” Microwave and Optical Technology Letters, vol. 47, December 2005.
[21] C. C. Lin, Y. C. Kan, L. C. Kuo, H. R. Chuang, “A planar triangular monopole antenna for UWB communication,” IEEE Microwave and Wireless Components Letters, vol. 15, October 2005.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top