跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/27 09:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林昱秀
研究生(外文):Lin,YuSiou
論文名稱:疊層壓電有閥式微幫浦設計與製作
論文名稱(外文):Design and Fabrication of Laminated Piezoelectric Micropump with Check Valve
指導教授:鄭江河鄭江河引用關係
指導教授(外文):Cheng, ChiangHo
口試委員:鄭江河羅正忠林志哲
口試委員(外文):Cheng, ChiangHoLo, ChengChungLin, ChihChe
口試日期:2011-09-29
學位類別:碩士
校院名稱:大葉大學
系所名稱:機械與自動化工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:中文
論文頁數:94
中文關鍵詞:疊層式微幫浦閥門壓電電鑄PDMS
外文關鍵詞:LaminatedMicropumpValvePiezoelectricElectroformingPDMS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
微幫浦系統主要功能是獲得微小流量的精確控制,本文使用疊層式手法將加工後之壓克力零件、閥體和PZT致動器模組按序組裝。本文中設計兩種不同材料及不同結構之閥體,TypeⅠ為具有四個橋接式結構的電鑄鎳材;TypeⅡ為澆注高分子材料PDMS之懸臂樑結構,搭配其組裝零件後加以組裝,組裝完成後測量流量及其相關測試。
實驗重點在於探討不同閥體材料及厚度,在各種頻率及電壓操作下,對微幫浦流率及背壓之影響。以相同的PZT致動器組成兩種不同閥體的性質進行測試,實驗結果顯示金屬鎳閥體20μm厚時,微幫浦操作電壓在160Vpp、頻率30Hz的正弦波驅動下,最大流量可達每分鐘48.06ml,最高揚程可達7.5kPa;PDMS閥體600μm厚時,操作電壓在160 Vpp、頻率30Hz的正弦波驅動下,最大流量可達每分鐘56.88ml,最高揚程可達12kPa。

The main function of the micropump system was to be able to precisely control the minimum flow rate. The research applied laminated technique to assemble processed acrylic part, valve and piezoelectric actuator according to predetermined sequences. In this paper, the micropump was designed two kinds of valves, which contained different material and structure. The type I was a Ni material which equipped with four bridged structures by electroforming. And the type II was a polymer PDMS material which design of cantilever beam by casting. After assembly, the flow and related tests will be preceded.
The main focus of this paper was to discuss how different types of valves, being operated under all kind of frequency and voltage, to affected the micro bump flow rate and blocked pressure. Two valves assembled by the same piezoelectric actuator served as the subjects for further analysis and the result showed that Ni valve would be able to reach the maximum flow rate of 48.06 ml per minute when it was 20 μm in thickness and the micropump's operational voltage and frequency were at 160 Vpp and 30 Hz. Moreover, the maximum blocked pressure would be able to reach 7.5 kPa. The PDMS valve would be able to reach the maximum flow of 58.66ml per minute when it was 600 μm in thickness and the micropump’s operational voltage and frequency were at 160 Vpp and 30Hz. In addition , the maximum blocked pressure would be able to reach 12kpa.

封面內頁
簽名頁
中文摘要 ………………………………………………………………iii
英文摘要 ………………………………………………………………iv
誌謝 ………………………………………………………………v
目錄 ………………………………………………………………vi
圖目錄 ………………………………………………………………ix
表目錄 ………………………………………………………………xiii

第一章 緒論……………………………1
1.1 前言……………………1
1.2 研究動機…………………………2
1.3 文獻回顧……………………………3
第二章 疊層壓電有閥式微幫浦設計概念……………………………13
2.1 疊層壓電有閥式微幫浦基本概念……………………………13
2.2 疊層壓電有閥式微幫浦結構尺寸……………………………14
2.3 疊層壓電有閥式微幫浦閥體介紹……………………………21
2.3.1 金屬鎳閥體材料…………………………… 21
2.3.2 高分子材料PDMS閥體材料……………………………22
2.3.3 不同材料閥體之差異……………………………26
第三章 微幫浦結構元件製作……………………………28
3.1 黃光製程……………………………28
3.2 蝕刻製程……………………………29
3.3 電鑄製程……………………………31
3.3 結構元件製作…………………………… 34
3.3.1 閥門艙體層……………………………34
3.3.2 TypeⅠ閥體製作……………………………38
3.4 壓電致動器之製作……………………………40
3.5 疊層壓電有閥式微幫浦組裝……………………………44
第四章 實驗量測與探討……………………………46
4.1 實驗量測設備與架設說明……………………………46
4.2 壓電微幫浦測試……………………………48
4.2.1 TypeⅠ之位移測試……………………………49
4.2.2 TypeⅠ之不同閥體厚度流量測試……………………………54
4.2.3 TypeⅠ之揚程測試……………………………59
4.2.4 TypeⅡ之位移測試……………………………60
4.2.5 TypeⅡ之流量測試……………………………65
4.2.6 TypeⅡ之揚程測試……………………………69
4.2.7 不同電壓對TypeⅠ和TypeⅡ之流量比較……………………………70
4.3 水溶液黏度對微幫浦流量的影響……………………………73
4.3.1 黏度對TypeⅠ流量影響……………………………74
4.3.2 黏度對TypeⅡ流量影響……………………………75
第五章 結論……………………………77
參考文獻……………………………79


[1]M.M. Teymoori, E. Abbaspour-Sani, “Design and simulation of a novel electrostatic peristaltic micromachined
pump for drug delivery applications,” Sens. Actuator A-Phys., 117 , 222-229, 2005.

[2]G. H. Feng and E. S. Kim, “Micropump based on PZT unimorph and one-way parylene valves,” J. Micromech.
Microeng., 14, 429–435, 2004 .

[3]Jianke Kang, Joseph V Mantese and Gregory W Auner “A self-priming, high performance, check valve diaphragm
micropump made from SOI wafers,” J. Micromech. Microeng., 18, 2009 , 1-8.

[4]Dario P, Croce N, Carrozza M C and Varallo G “A fluid handling system for a chemical microanalyzer,” J.
Micromech. Microeng. 6, 95–8, 1996.

[5]W.K. Schomburg, J. Vollmer, B. Bustgens, J. Fahrenberg, H. Hein, W. Menz, “Microfluidic components in LIGA
technique,” J. Micromech. Microeng., 4, 186–191, 1994.

[6]Yang Y, Zhou Z, Ye X and Jiang X , Bimetallic Thermally Actuated Micropump vol. 59 ,American Society of
Mechanical Engineers, Dynamic Systems and Control Division (Publication) DSC, pp351–354, 1996

[7]Makino E, Mitsuya T and Shibata T 2001 Fabrication of TiNi shape memory micropump Sensors Actuators A 88,
256–262.

[8]H.T.G.Van Lintel, “A Piezoelectric Micropump Based on micro engineering of silicon,” Sensors and Actuators,
Vol.15, pp153-167, 1998.

[9]Shoji S.Nakagawa S.and Esashi M., “Micro pump and sample-injector forintegrated chemical analyzing systems
Sensors Actuators“, A21-23, 189-192. , 1990

[10]A. Olsson, G. Stemme and E. stemme, “A Valve-less Diffuser/ Nozzle Based Fluid Pump”, Sensors and
Actuators, Vol.39,pp.159-167, 1993.

[11]A. Olsson, G. Stemme and E. Stemme, “Diffuser-element Design Investigation for Valve-less Pumps,”Sensors
and Actuators,Vol. 57,pp. 688-695, 1996.

[12]Michael Koch, Nick Harris, Alan G.R. Evans, Neil M. White, Arthur Brunnschweiler, “A novel micromachined
pump based on thick-film piezoelectric actuation,” 1997 IEEE,pp. 353-356, 1997.

[13]R. linnemann, P. Woias, C.D.Senfft and J. A. Ditterich,“ A self-priming and bubble-tolerant piezoelectric
silicon micropump for Liquids and Gases”, Micro Electro Mechanical Systems, MEMS 98. Proceedings, The
Eleventh Annual International Workshop on , pp.532 -537, 1998 .

[14]Francis E. H. Tay, W. 0. Choong, H. Liu, G. L. Xu., “An intelligent micro-fluidic system for drug
delivery,” 2000 IEEE, pp.70-75, 2000 .

[15]M. Koop, C. Lin,“ A Novel Micro machined Micro fluid Pump”, Proceedings of the 22nd Annual
EMBSInternational Conference, July 23-23, pp. 2394-2397, 2000.

[16]Nam-Trung Nguyen, Thai-Quang Truong, “A fully polymeric Micro-pump with piezoelectric actuator,” Sensors
and Actuators B: Chemical, Vol. 97, Issue 1, pp. 137-143, 2004.

[17]Jianke Kang, Gregory W. Auner,“Simulation and verification of a piezoelectrically actuated diaphragm for
check valve micropump design, ” Sensors and Actuators A: Physical,Vol.167, pp.512-516, 2011.

[18]吳鴻昀, “壓電式薄膜微型泵的發展與應用”, 國立台灣大學 機械工程學系97級碩士班論文, 2008.

[19]曾易彬, “壓電有閥式微幫浦之設計與製作”, 大葉大學機械與自動化工程學系98級碩士論文,2009.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top