跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/27 09:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張育誠
研究生(外文):Chang, Yuchen
論文名稱:利用陽極氧化法於鈦合金表面製備奈米管陣列與生物活性表面之研究
論文名稱(外文):Fabrication Of Nanotube Arrays By Anodization And Their Bioactive Surface On Titanium Alloy
指導教授:何文福
指導教授(外文):Ho, Wenfu
口試委員:何文福許學全吳世經
口試委員(外文):Ho, WenfuHsu, HsuehchuanWu, Shihching
口試日期:2012-07-05
學位類別:碩士
校院名稱:大葉大學
系所名稱:機械與自動化工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:142
中文關鍵詞:鈦合金陽極氧化奈米管生物活性磷灰石人工模擬體液
外文關鍵詞:Titanium alloysAnodizationNanotubeBioactivityApatiteSimulated body fluid (SBF)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:322
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
本研究於鈦合金表面以陽極氧化法製作氧化鈦奈米管陣列。首先,於純鈦表面探討各種參數的影響,如電解液溫度、pH 值、濃度、工作電壓與反應時間,並觀察其表面形貌差異。結果顯示,其最佳參數分別為電解液溫度為常溫、pH 值P2、工作電壓V3、反應時間t9 與電解液濃度X1 S1 + Y2 S2。使用恆電位儀進行陽極氧化實驗,其工作電壓為V1 與V3,反應時間為t9。接著於T1℃、持溫t11小時進行熱處理,之後將熱處理後的試片浸泡於人工模擬體液(SBF)中ta、tb 和tc 天。此目的為評估此兩種材料製備出之不同奈米管內徑與管長對磷灰石形成之差異。最後使用場發射掃描式電子顯微鏡(FE-SEM)、能量散佈光譜儀(EDS)、X 光光電子能譜儀(XPS)與高解析X 光繞射儀(HR-XRD)分別觀察表面奈米管之微觀結構、化學組成元素與晶體結構。
結果顯示,當工作電壓從V1 遞增至V3 時,Ti 合金奈米管單孔直徑分別約為23~27 nm 與31~44 nm,管長則為550±20 nm 與700±20 nm;而c.p. Ti 奈米管單孔直徑分別約為24~30 nm 與35~53nm,管長則為590±20 nm 與730±40 nm。此外,陽極氧化處理後獲得之奈米管均為非晶質結構,此結構較不利於磷灰石的形成,需進行熱處理使其結晶方可誘導磷灰石的形成。隨後將非晶質的奈米管進行熱處理T1ºC、持溫t11 小時使其產生銳鈦礦相。接著浸泡SBF tc天後,發現未陽極處理的Ti 合金與c.p. Ti 均無觀察到磷灰石的形成。另實驗指出Ti 合金經陽極處理V3 後於SBF 中浸泡ta 天即可觀察到部份的磷灰石形成。然而,兩者之氧化鈦奈米管經熱處理後浸泡於SBF tc 天,發現磷灰石均完全覆蓋於金屬表面,且以Ti 合金的磷灰石層最厚。Ti 合金與c.p. Ti 鈣磷層的厚度均隨電壓的遞增而逐漸變厚。Ti 合金經陽極處理V1 與V3,接著浸泡SBF tc 天後,此鈣磷層平均厚度分別為200±20 nm 與280±30 nm,而c.p. Ti 則為170±20 nm 與190±10 nm。
In this study, the self-organized titanium nanotubes grown by anodization of commercially pure titanium (c.p. Ti) and Ti alloy were investigated. First, effects of anodization condition such as the electrolyte temperature, pH value, concentration, applied voltage and anodizing time of c.p. Ti were researched. The results indicated that the optimal parameter of electrolyte room temperature、pH value P2、concentration X1 S1 + Y2 S2、applied voltage V3 and anodizing time t9. The anodic oxidation was carried out at V1 or V3 for t9 using a potentiostat. The nanotube arrays were annealed at T1 ℃ for t11, and subsequently immersed in simulated body fluid (SBF) at 37 ℃ for ta, tb and tc days. The purpose of this experiment was to evaluate the apatite-formation abilities of anodized nanotubular Ti alloy and c.p. Ti with different tube diameter and length. The surface morphologies, chemical compositions and phases were investigated using field-emission scanning electron microscope (FE-SEM), energy dispersive spectroscopy (EDS), high resolution X-ray diffractometer (HR-XRD), and X-ray photoelectron spectroscopy (XPS).
It was found that, when the anodizing potential was increased from V1 to V3, Ti alloy the single-pore diameter of the nanotube increased from about 23~27 nm to 31~44 nm, and the tube length was increased from about 550±20 nm to 700±20 nm; c.p. Ti the single-pore diameter of the nanotube increased from about 24~30 nm to 35~53 nm, and the tube length was increased from about 590±20 nm to 730±40 nm. Furthermore, the coatings were amorphous in this condition, and that cannot nucleate apatite easily and require crystallization heat-treatments for apatite induction. Amorphous titanium oxide nanotubes were crystallized to anatase by heat-treatment at T1 ℃ for t11. After tc days of soaking SBF, no apatite can be found on the surfaces of untreated Ti alloy and c.p. Ti. In vitro SBF testing of heat-treated nanotube arrays indicated that a quick Ca-P formation on these nanostructures occurred after only ta days of Ti alloy immersion in the SBF, especially for those anodized at V3. Upon immersion of tc days in SBF, the surfaces of Ti alloy and c.p. Ti were entirely covered by apatite. It is worth noting that the anodized Ti alloy had thicker apatite layers than its c.p. Ti counterpart. The thickness of the Ca-P layer increases with increasing applied potential for Ti alloy and c.p. Ti. The average thickness of the Ca-P layer on Ti alloy and c.p. Ti anodized at V1 and V3 was about 200±20 nm to 280±30 nm and 170±20 nm to 190±10 nm after immersion in SBF for tc days, respectively.
封面內頁
簽名頁
中文摘要 .....iii
英文摘要 .....vii
誌謝 .....vii
目錄 .....ix
圖目錄 .....xvii
表目錄 .....xvii
第一章 緒論 .....1
1.1 前言 .....1
1.2 研究動機與目的 .....6
1.3 生醫材料 .....7
1.3.1 生醫材料的定義 .....7
1.3.2 生醫材料的分類 .....7
1.4 鈦與鈦合金簡介 .....12
1.4.1 純鈦(c.p. Ti) .....12
1.4.2 鈦合金 .....15
1.4.3 Ti 合金 .....18
1.5 二氧化鈦簡介 .....18
第二章 文獻回顧 .....21
2.1 奈米材料之簡介 .....21
2.2 奈米碳管之簡介 .....22
2.3 二氧化鈦奈米管之簡介與應用 ......23
2.4 二氧化鈦奈米管的製備方式 .....26
2.5 二氧化鈦奈米管的形成機制 .....28
2.6 形成奈米管的影響參數 .....31
2.6.1 電解液pH 值 .....31
2.6.2 工作電壓 .....34
2.6.3 陽極氧化反應時間 .....36
2.6.4 電解液濃度 .....39
2.6.5 電解液中添加不同的陰離子 .....41
2.6.6 不同合金元素與含量 .....42
2.7 熱處理對二氧化鈦的影響 .....47
2.8 二氧化鈦奈米管表面沉積磷灰石鍍層 .....52
2.9 二氧化鈦奈米管的生物活性 .....53
2.9.1 SBF 浸泡 .....53
2.9.2 細胞培養 .....56
第三章 材料及實驗方法 .....59
3.1 實驗流程 .....59
3.2 材料及實驗藥品 .....60
3.3 實驗機台與分析儀器 .....61
3.4 材料製備與表面處理 .....62
3.4.1 試片製備與研磨處理 .....62
3.4.2 酸洗處理 .....65
3.4.3 陽極氧化處理 .....65
3.4.4 電解液調配 .....67
3.4.5 熱處理 .....67
3.5 生物活性評估 .....68
3.5.1 人工模擬體液(SBF)浸泡 .....68
3.6 分析儀器觀察 .....70
3.6.1 場發射掃描式電子顯微鏡(FE-SEM) .....70
3.6.2 能量分散光譜儀(EDS) .....71
3.6.3 高解析X 光繞射儀(HR-XRD) .....71
3.6.4 X 射線光電子能譜儀(XPS) .....72
第四章 結果與討論 .....73
4.1 c.p. Ti 與Ti 合金經研磨處理後之表面形貌觀察 .....73
4.2 c.p. Ti 與Ti 合金經酸洗處理後之表面形貌觀察 .....74
4.3 c.p. Ti 製備氧化鈦奈米管陣列之參數探討 .....75
4.3.1 電極方向的影響 .....75
4.3.2 電解液溫度的影響 .....76
4.3.3 電解液pH 值的影響 .....77
4.3.4 工作電壓的影響 .....78
4.3.5 反應時間的影響 .....80
4.3.6 電解液濃度的影響 .....86
4.3.7 c.p. Ti 之最佳參數整理 .....90
4.4 探討不同工作電壓,於c.p. Ti 與Ti 合金製備氧化鈦奈米管陣列之影響 .....92
4.4.1 c.p. Ti 與Ti 合金經陽極處理後之FE-SEM分析 .....92
4.4.1.1 c.p. Ti 與Ti 合金經陽極處理後之表面形貌觀察 .....92
4.4.1.2 c.p. Ti 與Ti 合金經陽極處理後之橫截面觀察 .....93
4.4.1.3 c.p. Ti 與Ti 合金經陽極處理後之奈米管底部觀察 .....95
4.4.2 c.p. Ti 與Ti 合金經陽極處理後熱處理之FE-SEM 分析 .....96
4.4.2.1 c.p. Ti 與Ti 合金經陽極處理後熱處理之表面形貌觀察 .....96
4.4.2.2 c.p. Ti 與Ti 合金經陽極處理後熱處理之橫截面觀察 .....97
4.5 c.p. Ti 與Ti 合金前處理之HR-XRD 分析 .....98
4.5.1 c.p. Ti 前處理之HR-XRD 分析 .....98
4.5.2 Ti 合金前處理之HR-XRD 分析 .....100
4.6 c.p. Ti 經陽極處理之XPS 分析 .....101
4.7 c.p. Ti 經陽極處理後熱處理之XPS 分析 .....105
4.8 c.p. Ti 與Ti 合金浸泡人工模擬體液(SBF)後之表面形貌觀察 .....107
4.9 c.p. Ti 浸泡人工模擬體液(SBF)後之EDS 分析 .....112
4.10 c.p. Ti 與Ti 合金浸泡人工模擬體液(SBF) tc 天之HR-XRD 分析 .....116
4.11 c.p. Ti 與Ti 合金浸泡人工模擬體液(SBF) tc 天之橫截面觀察 .....118
第五章 結論 .....120
參考文獻 .....124
圖目錄
圖1.1 β 型鈦合金之平衡相圖(a) β-isomorphous (b) β-eutectoid .....17
圖1.2 Rutile、Anatase 與Brookite 之晶體結構 .....20
圖2.1 鈦片於HF 電解液中進行陽極處理之電流時間曲線圖 .....30
圖2.2 陽極氧化法於定電壓下二氧化鈦奈米管之形成機構示意圖 .....31
圖3.1 實驗流程圖 .....59
圖3.2 真空精密鑄造機示意圖 .....64
圖3.3 工作電極組裝示意圖 .....66
圖3.4 陽極氧化實驗裝置圖 .....66
圖3.5 高溫熱處理爐之示意圖 .....67
圖4.1 c.p. Ti 與Ti 合金經研磨處理後之表面形貌 .....73
圖4.2 c.p. Ti 與Ti 合金經酸洗處理後之表面形貌 .....74
圖4.3 電極方向之示意圖 .....76
圖4.4 以不同電極方向對c.p. Ti 進行陽極處理之表面形貌 .....76
圖4.5 以不同溫度對c.p. Ti 進行陽極處理之表面形貌 .....77
圖4.6 以不同pH 值對c.p. Ti 進行陽極處理之表面形貌 .....78
圖4.7 以不同工作電壓對c.p. Ti 進行陽極處理之表面形貌 .....79
圖4.8 電壓為V3 時(低溫),以不同反應時間對c.p. Ti 進行陽極處理之表面形貌 .....81
圖4.9 電壓為V5 時,以不同反應時間對c.p. Ti 進行陽極處理之表面形貌 .....83
圖4.10 電壓為V3 時(常溫),以不同反應時間對c.p. Ti 進行陽極處理之表面形貌 .....85
圖4.11 以不同S1 濃度對c.p. Ti 進行陽極處理之表面形貌 .....86
圖4.12 低溫環境下,以不同S2 濃度對c.p. Ti 進行陽極處理之表面形貌 .....87
圖4.13 低溫條件下,固定S2 濃度改變S1 濃度,並對c.p. Ti進行陽極處理之表面形貌 .....88
圖4.14 常溫條件下,固定S2 濃度改變S1 濃度,並對c.p. Ti進行陽極處理之表面形貌 .....90
圖4.15 c.p. Ti 與Ti 合金經陽極處理後之表面形貌 .....93
圖4.16 c.p. Ti 與Ti 合金經陽極處理後之橫截面觀察 .....94
圖4.17 c.p. Ti 與Ti 合金經陽極處理後之奈米管底部 .....95
圖4.18 c.p. Ti 與Ti 合金經陽極處理後熱處理之表面形貌 .....97
圖4.19 c.p. Ti 與Ti 合金經陽極處理後熱處理之橫截面觀察 .....98
圖4.20 c.p. Ti 經陽極處理與陽極處理後熱處理之XRD 分析 .....99
圖4.21 Ti 合金經陽極處理與陽極處理後熱處理之XRD 分析 .....101
圖4.22 c.p. Ti 經陽極處理(V1)之XPS 分析 .....103
圖4.23 c.p. Ti 經陽極處理(V3)之XPS 分析 .....104
圖4.24 c.p. Ti 經陽極處理(V1)後熱處理之XPS 分析 .....106
圖4.25 c.p. Ti 經陽極處理(V3)後熱處理之XPS 分析 .....107
圖4.26 c.p. Ti 與Ti 合金未經陽極處理浸泡SBF t0、ta、tb 及tc 天之表面形貌 .....109
圖4.27 c.p. Ti 與Ti 合金經陽極處理(V1)後熱處理浸泡SBF t0、 ta、tb 及tc 天之表面形貌 .....110
圖4.28 c.p. Ti 與Ti 合金經陽極處理(V3)後熱處理浸泡SBF t0、 ta、tb 及tc 天之表面形貌 .....111
圖4.29 c.p. Ti 未經陽極處理浸泡SBF t0、ta、tb 及tc 天之EDS 分析 .....113
圖4.30 c.p. Ti 經陽極處理(V1)後熱處理浸泡SBF t0、ta、tb 及 tc 天之EDS 分析 .....114
圖4.31 c.p. Ti 經陽極處理(V3)後熱處理浸泡SBF t0、ta、tb 及 tc 天之EDS 分析 .....115
圖4.32 c.p. Ti 未經陽極處理與經陽極處理後熱處理浸泡SBF tc 天之XRD 分析 .....117
圖4.33 Ti 合金未經陽極處理與經陽極處理後熱處理浸泡SBF tc 天之XRD 分析 .....118
圖4.34 c.p. Ti 與Ti 合金經陽極處理後熱處理浸泡SBF tc 天之橫截面觀察 .....119
表目錄
表1.1 生醫材料依不同原料組成之分類 .....11
表1.2 商業用純鈦之化學組成(wt%).....13
表1.3 純鈦之物理性質 .....14
表1.4 二氧化鈦之基本物理性質 19
表2.1 陽極處理之電解液組成 .....42
表3.1 人工模擬體液(SBF)之藥品及成份 .....69
表3.2 人體血漿(Blood plasma)和人工模擬體液(SBF)之離子濃度(mM)比較 .....69
[1] Park HH, Park IS, Kim KS, Jeon WY, Park BK, Kim HS, Bae TS, Lee MH, Bioactive and electrochemical characterization of TiO2 nanotubes on titanium via anodic oxidation. Electrochimica Acta 55:6109-6114, 2010.
[2] Matsuda T, Davies JE, The in vitro response of osteoblasts to bioactive glass. Biomaterials 8:275-284, 1987.
[3] Black J, Hasting G, Handbook of Biomaterial Properties, Chapman & Hall, London, p.179, 1998.
[4] Ratner BD, Hoffman AS, Schoen FJ, Lemons JE, Biomaterials Science, Academic Press, San Diego, CA, 1996.
[5] Kerrzo MA, Conroy KG, Fenelon AM, Farrell ST, Breslin CB, Electrochemical studies on the stability and corrosion resistance of titanium-based implant materials. Biomaterials 22:1531-1539, 2001.
[6] Santos Jr, E, Kuromoto NK, Soares GA. Mechanical properties of titania films used as biomaterials. Materials Chemistry and Physics 102:92-97, 2007.
[7] Tsuchiya H, Macak JM, Muller L, Kunze J, Muller F, Greil SP, Virtanen S, Schmuki P, Hydroxyapatite growth on anodic TiO2 nanotubes. Journal of Biomedical Materials Research Part A 77:534-541, 2006.
[8] Albrektsson T, Branemark PI, Hansson HA, Lindstrom J, Osseointegrated titanium implants: requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthopaedica Scand. 52:155-170, 1981.
[9] Yao C, Webster TJ, Anodization: a promising nano-modification technique of titanium implants for orthopedic applications. Journal of Nanoscience and Nanotechnology 6:2682-2692, 2006.
[10] Assad M, Lemieux N, Rivard CH, Yahia LH, Comparative in vitro biocompatibility of nickel-titanium, pure nickel, pure titanium, and stainless steel: genotoxicity and atomic absorption evalution. Bio-Medical Materials ad Engineering 9:1-12, 1999.
[11] Liu XY, Chu PK, Ding CX, Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering: R: Reports 47:49-121, 2004.
[12] Long M, Rack HJ, Titanium alloys in total joint replacement - A materials science perspective. Biomaterials 19:1621-1639, 1998.
[13] Brunette DM, Tengvall P, Textor M, Thomsen P, Titanium in Medicine, Springer, Part 1, 2001.
[14] Chen CC, Chen JH, Chao CG, Say WC, Electrochemical characteristics of surface of titanium formed by electrolytic polishing and anodizing. Journal of Materials Science 40:4053-4059, 2005.
[15] Eisenbarth E, Velten D, Muller M, Thull R, Breme J, Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials 25:5705-5713, 2004.
[16] Khan MA, Williams RL, Williams DF, The corrosion behaviour of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr in protein solutions. Biomaterials 20:631-637, 1999.
[17] Niinomi M, Mechanical biocompatibilities of titanium alloys for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials 1:30-42, 2008.
[18] Head WC, Bauk DJ, Emerson RH, Titanium as the material of choice for cementless femoral components in total hip arthroplasty. Clinical Orthopaedics and Related Research 311:85-90, 1995.
[19] Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P, TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Current Opinion in Solid State and Materials Science 11:3-18, 2007.
[20] Gotic M, Ivanda M, Sekulic A, Music S, Popovic S, Turkovic A, Furic K, Microstructure of nanosized TiO2 obtained by sol-gel synthesis. Materials Letters 28:225-229, 1996.
[21] Lakshmi BB, Patrissi CJ, Martin CR, Sol−gel template synthesis of semiconductor oxide micro- and nanostructures. Chemistry of Materials :2544-2550, 1997.
[22] Li W, Shah SI, Haung CP, Ni C, Metallorganic chemical vapor deposition and characterization of TiO2 nanoparticles. Materials Science and Engineering: B 96:247-253, 2002.
[23] Xie H, Gao G, Tian Z, Bing N, Wang L, Synthesis of TiO2 nanoparticles by propane/air turbulent flame CVD process. Particuology 7:204-210, 2009.
[24] Choi J, Wehrspohn RB, Lee J, Gosele U, Anodization of nanoimprinted titanium: a comparison with formation of porous alumina. Electrochimica Acta 49:2645-2652, 2004.
[25] Sander MS, Cote MJ, Gu W, Kile BM, Tripp CP, Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates. Advanced Materials 16:2052-2057, 2004.
[26] Tsai CC, Teng HS, Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment. Chemistry of Materials 16:4352-4358, 2004.
[27] Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC, Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of Materials Research 16:3331-3334, 2001.
[28] Beranek R, Hildebrand H, Schmuki P, Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes. Electrochemical and Solid-State Letters 6:B12-B14, 2003.
[29] Macak JM, Sirotna K, Schmuki P, Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes. Electrochimica Acta 50:3679-3684, 2005.
[30] Tsuchiya H, Macak JM, Ghicov A, Taveira L, Schmuki P, Self-organized porous TiO2 and ZrO2 produced by anodization. Corrosion Science 47:3324-3335, 2005.
[31] Oh SH, Finones RR, Daraio C, Chen LH, Jin S, Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials 26:4938-4943, 2005.
[32] Kar A, Raja KS, Misra M, Electrodeposition of hydroxyapatite onto nanotubular TiO2 for implant applications. Surface and Coatings Technology 201:3723-3731, 2006.
[33] Macak JM, Tsuchiya H, Taveira L, Ghicov A, Schmuki P, Self-organized nanotubular oxide layers on Ti-6Al-7Nb and Ti-6Al-4V formed by anodization in NH4F solutions. Journal of Biomedical Materials Research Part A: 75:928-933, 2005.
[34] Yasuda K, Schmuki P, Control of morphology and composition of self-organized zirconium titanate nanotubes formed in (NH4)2SO4/NH4F electrolytes. Electrochimica Acta 52:4053-4061, 2007.
[35] Tsuchiya H, Macak JM, Taveira L, Schmuki P, Fabrication and characterization of smooth high aspect ratio zirconia nanotubes. Chemical Physics Letters 410:188-191, 2005.
[36] Mohapatra SK, Raja KS, Misra M, Mahajan VK, Ahmadian M, Synthesis of self-organized mixed oxide nanotubes by sonoelectrochemical anodization of Ti–8Mn alloy. Electrochimica Acta 53:590-597, 2007.
[37] Feng XJ, Macak JM, Albu SP, Schmuki P, Electrochemical formation of self-organized anodic nanotube coating on Ti–28Zr–8Nb biomedical alloy surface. Acta Biomaterialia 4:318-323, 2008.
[38] Sul YT, The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant. Biomaterials 24:3893-3907, 2003.
[39] Zhu X, Chen J, Scheideler L, Reichl R, Geis-Gerstorfer J, Effects of topography and composition of titanium surface oxides on osteoblast responses. Biomaterials 25:4087-4103, 2004.
[40] Ishizawa H, Fujino M, Ogino M, Mechanical and histological investigation of hydrothermally treated and untreated anodic titanium oxide films containing Ca and P. Journal of Biomedical Materials Research 29:1459-1468, 1995.
[41] Yang BC, Uchida M, Kim HM, Zhang XD, Kokubo T, Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials 25:1003-1010, 2004.
[42] Mor GK, Varghese OK, Paulose M, Mukgerjee N, Grimes CA, Fabrication of tapered, conical-shaped titania nanotubes. Journal of Materials Research 18:2588-2593, 2003.
[43] Macak JM, Tsuchiya H, Schmuki P, High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angewandte Chemie International Editon 44:2100-2102, 2005.
[44] Choi J, Wehrspohn RB, Lee J, Gosele U, Anodization of nanoimprinted titanium: a comparison with formation of porous alumina. Electrochimica Acta 49:2645-2652, 2004.
[45] Bestetti M, Franz S, Cuzzolin M, Arosio P, cavallotti PL, Structure of nanotubular titanium oxide templates prepared by electrochemical anodization in H2SO4/HF solutions. Thin Solid Films 515:5253-5258, 2007.
[46] Zhang Yunhuai, Hu Fu, Xiao Peng, Fan Xiaoyan, Preparation of high-orderly TiO2 nanotubes in different conditions and electrolyte solutions. International Journal of Modern Physics B 21:3506-3510, 2007.
[47] Zwilling V, Darque-Ceretti E, Boutry-Forveille A, Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach. Electrochimica Acta 45:921-929, 1999.
[48] Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin MY, Aucouturier M, Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surface and Interface Analysis 27:629-637, 1999.
[49] Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA, Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Letters 6:215-218, 2006.
[50] Macak JM, Tsuchiya H, Ghicov A, Schmuki P, Au nanoparticles self-assembled onto Nafion membranes for use as methanol-blocking barriers. Electrochemistry Communications 7:1138-1142, 2005.
[51] Zhu K, Neale NR, Miedaner A, Frank AJ, Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Letters 7:69-74, 2007.
[52] Xie Y, Photoelectrochemical application of nanotubular titania photoanode. Electrochimica Acta 51:3399-3406, 2006.
[53] Fujishima A, Rao TN, Tryk DA, Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemstry Reviews 1:1-21, 2000.
[54] Asahi R, Taga Y, Mannstadt W, Freeman AJ, Piezospectroscopy of the p3/2 and Fano series of singly ionized zinc in germanium. Physical Review B 61:7459-7478, 2000.
[55] Mor GK, Carvalho MA, Varghese OK, A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamin-ation. Journal of Materials Research 19:628-634, 2004.
[56] Vatghese OK, Gong D, Paulose M, Ong KG, Dichey EC, Grimes CA. Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Advanced Materials 15:624-627, 2003.
[57] Adachi M, Murata Y, Okada I, Yoshikawa S, Formation of titania nanotubes and applications for dye-sensitized solar cells. Journal of the Electrochemical Society 150:G488-G493, 2003.
[58] Chu SZ, Inoue S, Wada K, Li D, Haneda H, Awatsu S, Highly porous (TiO2−SiO2−TeO2)/Al2O3/TiO2 composite nanostructures on glass with enhanced photocatalysis fabricated by anodization and sol−gel process. The Journal of Physical Chemistry B 107:6586-6589, 2003.
[59] Oh S, Jin S, Titanium oxide nanotubes with controlled morphology for enhanced bone growth. Materials Science and Engineering: C 26:1301-1306, 2006.
[60] Propat KC, Eltgroth M, LaTempa TJ, Grimes CA, Desai TA, Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials 28:4880-4888, 2007.
[61] Propat KC, Eltgroth M, LaTempa TJ, Grimes CA, Desai TA, Titania nanotubes: a novel platform for drug-eluting coatings for medical implants? Small 3:1878-1881, 2007.
[62] Park J, Bauer S, von der Mark K, Schmuki P, Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Letters 7:1686-1691, 2007.
[63] Kunze J, Müller L, Macak JM, Greil P, Schmuki P, Müller FA. Time-dependent growth of biomimetic apatite on anodic TiO2 nanotubes. Electrochemica Acta 53:6995-7003, 2008.
[64] Wang YQ, Tao J, Wang L, He PT, Wang T, HA coating on titanium with nanotubular anodized TiO2 intermediate layer via electrochemical deposition. Transactions of Nonferrous Metals Society of China 18:631-635, 2008.
[65] Song Y, Schmidt-Stein F, Bauer S, Schmuki P, Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system. Journal of the American Chemical Society 131:4230-4232, 2009.
[66] Shrestha NK, Macak JM, Schmidt-Stein F, Hahn R, Mierke CT, Fabry B, Schmuki P, Magnetically guided titania nanotubes for siteselective photocatalysis and drug release. Angewandte Chemie International Edition 48:969-972, 2009.
[67] Brammer KS, Oh S, Gallagher JO, Jin S, Enhanced cellular mobility guided by TiO2 nanotube surfaces. Nano Letters 8:786-793, 2008.
[68] Propat KC, Leoni L, Grimes CA, Desai TA, Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials 28:3188-3197, 2007.
[69] Kokubo T, Kim HM, Kawashita M, Nakamura T, Review bioactive metals: preparation and properties. Joural of Materials Science: Materials in Medicine 15:99-107, 2004.
[70] Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R, Enhanced osteoclast-like cell functions on nanophase ceramics. Biomaterials 22:1327-1333, 2001.
[71] Ishizawa H, Ogino M, Formation and characterization of anodic titanium oxide films containing Ca and P. Journal of Biomedical Materials Research 29:65-72, 1995.
[72] Laing PG, Ferguson AB Jr, Hodge ES, Tissue reaction in rabbit muscle exposed to metallic implants. Journal of Biomedical Materials Research 1:135-149, 1967.
[73] Healy KE, Ducheyne P, Oxidation kinetics of titanium thin film in model physiologic environments. Journal of Colloid and Interface Science 150:404-417, 1992.
[74] Maeusli PA, Bloch PR, Geret V, Christel SGP, Meunier A, Lee AJ, Surface characterization of titanium and titanium-alloy, in biological and biomechanical performance of biomaterial. Amsterdam: Elsevier 565, 1986.
[75] Suchanek W, Yoshimura M, Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. Journal of Materials Research 13: 94-117, 1998.
[76] Weng J, Liu Q, Wolke JG, Zhang X, de Groot K, Formation and characteristics of the apatite layer on plasma-sprayed hydroxyapatite coatings in simulated body fluid. Biomaterials 18:1027-1035, 1997.
[77] Peng P, Kumar S, Voelcker NH, Szili RSE, Smart C, Griesser HJ, Thin calcium phosphate coatings on titanium by electrochemical deposition in modified simulated body fluid. Journal of Biomedical Materials Research Part A 76:347-355, 2006.
[78] You C, Oh S, Kim S. Influences of heating condition and substrate-surface roughness on the characteristics of sol-gel-derived hydroxyapatite coatings. Journal of sol-gel science and technology 21:49-54, 2001.
[79] Li P, Kangasniemi I, de Groot K, Kokubo T, Bonelike hydroxyapatite induction by a gel-derived titania on a titanium substrate. Journal of the American Ceramic Society 77:1307-1312, 1994.
[80] Cooley DR, Van Dellen AF, Burgess JO, Windeler AS, The advantages of coated titanium implants prepared by radiofrequency sputtering from hydroxyapatite. Journal of Prosthetic Dentistry 67:93-100, 1992.
[81] Andrade MCD, Sader MS, Filgueiras MRT, Ogasawara T, Microstructure of ceramic coating on titanium surface as a result of hydrothermal treatment. Journal of Materials Science: Materials in Medicine 1:751-755, 2000.
[82] Uchida M, Kim HM, Kokubo T, Fujibayashi S, Nakamura T, Structural dependence of apatite formation on titania gels in a simulated body fluid. Journal of Biomedical Materials Research Part A 64:164-170, 2003.
[83] Wang BC, Chang E, Lee TM, Yang CY, Changes in phase and crystallinity of plasma-sprayed hydroxyapatite coatings under heat treatment a quantitative study. Journal of Biomedical Materials Research 29:1483-1492, 1995.
[84] Rodriguez R, Kim K, Ong JL, In vitro osteoblast response to anodized titanium and anodized titanium followed by hydrothermal treatment. Journal of Biomedical Materials Research Part A 65:352-358, 2003.
[85] Filiaggi MJ, Coombs NA, Pilliar RM, Student research award in the undergraduate, Master candidate category, or health science degree candidate category, 17th annual meeting of the society for biomaterials, scottsdale, AZ may 1–5,1991. Characterization of the interface in the plasma-sprayed HA coating/Ti-6Al-4V implant system. Journal of Biomedical Materials Research Part A 25:1211-1229, 1991.
[86] Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R, Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 21:1803-1810, 2000.
[87] Balasundaram G, Sato M, Webster TJ, Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD. Biomaterials 27:2798-2805, 2006.
[88] Pezzatini S, Solito R, Morbidelli L, Lamponi S, Boanini E, Bigi A, Ziche M, The effect of hydroxyapatite nanocrystals on microvascular endothelial cell viability and functions. Journal of Biomedical Materials Research PartA 76:656-663, 2006.
[89] Jarcho M, Calcium phosphate ceramics as hard tissue prosthetics. Clinical Orthopaedics and Related Research 157:259-278, 1981.
[90] Hench LL, Bioceramics: from concept to clinic. Journal of the American Ceramic Society 74:1487-1510, 1991.
[91] Li M, Xiao X, Liu R, Synthesis and bioactivity of highly ordered TiO2 nanotube arrays. Applied Surface Science 255:365–367, 2008.
[92] Choe HC, Nanotubular surface and morphology of Ti-binary and Ti-ternary alloys for biocompatibility. Thin Solid Films 519:4652–4657, 2011.
[93] Narayanan R, Lee HJ, Kwon TY, Kim KH, Anodic TiO2 nanotubes from stirred baths: hydroxyapatite growth & osteoblast responses.Materials Chemistry and Physics 125:510–517, 2011.
[94] Kim SE, Lim JH, Lee SC, Nam SC, Kang HG, Choi J, Anodically nanostructured titanium oxides for implant applications. Electrochimica Acta 53:4846–4851, 2008.
[95] Kim WG, Choe HC, Ko YM, Brantley WA, Nanotube morphology changes for Ti–Zr alloys as Zr content increases. Thin Solid Films 517:5033-5037, 2009.
[96] Hanawa T, Metal ion release from metal implants. Materials Science and Engineering: C 24:745-752, 2004.
[97] Brammer KS, Oh SH, Cobb CJ, Bjursten LM, Heyde HVD, Jin SH, Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface. Acta Biomaterialia 5:3215-3223, 2009.
[98] 黃博偉,由日本生醫材料的進展看我國產業發展機會,工業技術研究院 產業經濟與資訊服務中心,臺灣,2004。
[99] 王盈錦,生物醫學材料,合記圖書出版社,臺灣,2002。
[100] 葉哲政、薛乃綺,生醫用金屬產業全球佈局與競爭策略,金屬工業研究發展中心,臺灣,2005。
[101] Lin FH, Lin CC, Liu HC, Huang YY, Wang YY, Sintered porous-bioglass & hydroxyapatite as bone substitute. Biomaterials 15:1087-1098, 1994.
[102] 林峰輝、王正一,生醫材料概論,晟暐電腦排版印刷有限公司,臺灣,2000。
[103] Afshar A, Yousefpour M, Xiudong Y, Li X, Yang B, Wu Y, Chen J, Xingdong Z, Investigation of morphology and bioactive properties of composite coating of HA/vinyl acetate on pure titanium. Materials Science and Engineering: B 128:243-249, 2006.
[104] Hiroaki T, Jan M, Luciano T, Patrik S, Fabrication and characterization of smooth high aspect ratio zirconia nanotubes. Chemical Physics Letters 410:188-191, 2005.
[105] 葉哲政,鈦合金在高爾夫球器材之應用市場分析,金屬工業研究發展中心,臺灣,2004。
[106] 賴耿陽,金屬鈦理論與應用,復漢出版社印行,臺灣,1990。
[107] Matthew J, Donachie Jr, Titanium atechnical guide. ASM International. Metal Park: OH 44073: 14, 1988.
[108] 日本鈦金屬協會編,鈦的加工技術,日刊工業新聞社。
[109] Collings EW, The physical metallurgy of titanium alloys. American Society for Metals, Metal Park, OH, USA, 21, 1984.
[110] Murray JL, Binary alloy phase diagrams. vol. 3, edited by Massalski TB, Murray JL, Bennett LH, Baker H, American Socity for Metals, Metals Park, Ohio:ASM, 1637-1641, 1986.
[111] Bania PJ, Beta titanium alloys and their role in the titanium industry. edited by Eylon D, Boyer R and Koss D, Beta Titanium Alloys in the 1990’s, TMS, Warrendale, PA, 3-14, 1993.
[112] Engh CA, Bobyn JD, The influence of stem size and extent of porous coating on femoral bone resorption after primary cementless hip arthroplasty. Clinical orthopaedics and related research 231:7-28, 1988.
[113] 何文福,鑄造鈦-鉬合金之結構及性質研究,成功大學博士論文,1999。
[114] 簡國明,洪長春,吳典熹,王永銘,藍怡平,奈米二氧化鈦專利地圖及分析,行政院國家科學委員會科學技術資料中心,臺灣,2003。
[115] Norman AW, Michael FA, CRC-elsevier materials selector CRC press Inc., Florida, 2000.
[116] Diebold U, The surface science of titanium dioxide. Surface Science Reports 48:53-229, 2003.
[117] 張立群 譯,光清淨革命-活躍的二氧化鈦光觸媒,協志工業叢書出版股份有限公司,臺灣,2000。
[118] 尹邦躍,奈米時代,五南圖書出版股份有限公司,臺灣,2002。
[119] 張立德,奈米材料,五南圖書出版股份有限公司,臺灣,2002。
[120] Iijima S, Helical microtubules of graphitic carbon. Nature 354:56-58, 1991.
[121] Ajayan PM, Nanotubes from Carbon. Chemical Reviews 99:1787-1800, 1999.
[122] Terrones M et al., Topics in Current Chemistry. Springer Vorlay 199:190, 1999.
[123] Chłopek J, Czajkowska B, Szaraniec B, Frackowiak E, Szostak K, Béguin F, In vitro studies of carbon nanotubes biocompatibility. Carbon 44:1106-1111, 2006.
[124] Smart SK, Cassady AI, Lu GQ, Martin DJ, The biocompatibility of carbon nanotubes. Carbon 44:1034-1047, 2006.
[125] Aryal S, Raj BS, Remant BKC, Khil MS, Lee DR, Kim HY, Carbon nanotubes assisted biomimetic synthesis of hydroxyapatite from simulated body fluid. Materials Science and Engineering A 426:202–207, 2006.
[126] Wang Z, Zhao H, Fan L, Lin J, Zhuanga P, Yuan WZ, Hu Q, Sun JZ, Tang BZ, Chitosan rods reinforced by aligned multiwalled carbon nanotubes via magnetic-field-assistant in situ precipitation. Carbohydrate Polymers 84:1126–1132, 2011.
[127] Satishkumar BC, Govindaraj A, Vogl EM, Basumallick L, Rao CNR, Oxide nanotubes prepared using carbon nanotubes as templates. Journal of Materials Research 12:604-606, 1997.
[128] Fahim NF, Morks MF, Sekino T, Electrochemical synthesis of silica-doped high aspect-ratio titania nanotubes as nanobioceramics for implant applications. Electrochimica Acta 54:3255-3269, 2009.
[129] Mor GK, Shankar K, Paulose M, Varghese OK, Grimed CA. Nano Letters 5:624-627, 2005.
[130] Paulose M, Shankar K, Varghese OK, Mor GK, Grimes CA, Applicatiom of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells. Journal of Physics D: Applied Physics, 39:2498-2503, 2006.
[131] Nakamura I, Negishi N, Kutsuna S, Ihara T, Sugihara S, Takeuchi K, Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal. Journal of Molecular Catalysis A: Chemical 161:205-212, 2000.
[132] Jonasova L, Muller FA, Helebrant A, Strnad J, Greil P, Biomimetic apatite formation on chemically treated titanium. Biomaterials 25:1187-1194, 2004.
[133] Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K, Formation of titanium oxide nanotube. Langmuir, 14:3160-3163, 1998.
[134] Long H, Chen A, Yang G, Li Y, Lu P, Third-order optical nonlinearities in anatase and rutile TiO2 thin films. Thin Solid Films 517:5601-5604, 2009.
[135] Sanchez CMT, Fonseca-Filho HD, Maia da Costa MEH, Freire Jr FL, Nitrogen incorporation into titanium diboride films deposited by dc magnetron sputtering: Structural modifications. Thin Solid Films 517:5683-5688, 2009.
[136] Abramović BF, Šojić DV, Anderluh VB, Abazović ND, Čomor MI, Nitrogen-doped TiO2 suspensions in photocatalytic degradation of mecoprop and (4-chloro-2-methylphenoxy) acetic acid herbicides using various light sources. Desalination 244:293-302, 2009.
[137] Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K, Titania nanotubes prepared by chemical processing. Advanced Materials 11:1307-1311, 1999.
[138] Hoyer P, Formation of a titanium dioxide nanotube array. Langmuir, 12:1411-1413, 1996.
[139] Kobayashi S, Hanabusa K, Hamasaki N, Kimura M, Shirai H, Preparation of TiO2 hollow-fibers using supramolecular assemblies. Chemistry of Materials 12:1523-1525, 2000.
[140] Yang DJ, Kim HG, Cho SJ, Choi WY, Vertically oriented titania nanotubes prepared by anodic oxidation on Si substrates. IEEE Transactions on Nanotechnology 7:131-134, 2008.
[141] Sreekantan S, Lockman Z, Hazan R, Tasbihi M, Tong LK, Mohamed AR, Influence of electrolyte pH on TiO2 nanotube formation by Ti anodization. Journal of Alloys and Compounds 485:478-483, 2009.
[142] Paulose M, Shankar K, Yoriya S, Prakasam HE, Varghase OK, Mor GK, Latempa TA, Fitzgerald A, Grimes CA, Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length. Journal of Chemical Physics B 110:16179-16184, 2006.
[143] Yin YX, Jin ZG, Tan X, Hou F, Zhao L, Effect of Anions on the Electrochemical Formation of TiO2 Nanotube Arrays in a Glycerol Based Electrolyte. Acta Physico-Chimica Sinica 24:2133-2138, 2008.
[144] Feng XJ, Macak JM, Schmuki P, Flexible self-organization of two size-scales oxide nanotubes on Ti45Nb alloy. Electrochemistry Communications 9:2403-2407, 2007.
[145] Luo B, Yang H, Liu S, Fu W, Sun P, Yuan M, Zhang Y, Liu Z, Fabrication and characterization of self-organized mixed oxide nanotube arrays by electrochemical anodization of Ti–6Al–4V alloy. Materials Letters 62:4512-4515, 2008.
[146] 賴嘉宏,曹竣誠,許介彥,李弘彬,電解參數對二氧化鈦奈米管之製備,Proceeding of Nanometer-Scale Technology and Materials Symposium,2010.
[147] Paramasivam I, Macak JM, Selvam T, Schmuki P, Electrochemical synthesis of self-organized TiO2 nanotubular structures using an ionic liquid (BMIM-BF4). Electrochimica Acta 54:643-648, 2008.
[148] Bauer S, Kleber S, Schmuki P, TiO2 nanotubes: Tailoring the geometry in H3PO4/HF electrolytes. Electrochemistry Communications 8:1321-1325, 2006.
[149] Berger S, Jakubka F, Schmuki P, Formation of hexagonally ordered nanoporous anodic zirconia. Electrochemistry Communications 10:1916-1919, 2008.
[150] Wang LN, Luo JL, Enhancing the bioactivity of zirconium with the coating of anodized ZrO2 nanotubular arrays prepared in phosphate containing electrolyte. Electrochemistry Communications 12:1559-1562, 2010.
[151] Lee WJ, Smyrl WH, Oxide nanotube arrays fabricated by anodizing processes for advanced material application. Current Applied Physsics 8:818-821, 2008.
[152] Lee WJ, Smyrl WH, Zirconium oxide nanotubes synthesized via direct electrochemical anodization. Electrochemical Solid-State Letters 8:B7-B9, 2005.
[153] Tsuchiya H, Macak JM, Sieber I, Schmuki P, Self-organized high-aspect-ratio nanoporous zirconium oxides prepared by electrochemical anodization. Small 1:722-725, 2005.
[154] Tsuchiya H, Macak JM, Sieber I, Schmuki P, Anodic porous zirconium oxide prepared in sulfuric acid electrolytes. Materials Science Forum 512:205-210, 2006.
[155] Macak JM, Tsuchiya H, Schmuki P, High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angewandte Chemie International Editon 44:2100-2102, 2005.
[156] Masuda H, Fukuda K, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268:1466-1468, 1995.
[157] Asoh H, Ono S, Electrocrystallization in Nanotechnology. Wiley-VCH Weinheim, 2007.
[158] Li AP, Müller F, Birner A, Nielsch K, Gösele U, Fabrication and microstructuring of hexagonally ordered two-dimensional nanopore arrays in anodic alumina. Advanced Materials 11:483-487, 1999.
[159] Chen X, Schriver M, Suen T, Mao SS, Fabrication of 10 nm diameter TiO2 nanotube arrays by titanium anodization. Thin Solid Films 515:8511-8514, 2007.
[160] Kuroda D, Niinomi M, Morinaga M, Kato Y, Yashiro T, Design and mechanical properties of new β type titanium alloys for implant materials. Materials Science and Engineering 243:244-249, 1998.
[161] Kim WG, Choe HC, Nanostructure and corrosion behaviors of nanotube formed Ti-Zr alloy. Transactions of Nonferrous Metals Society of China 19:1005-1008, 2009.
[162] Tsuchiya H, Akaki T, Nakata J, Terada D, Tsuji N, Koizumi Y, Minamino Y, Schmuki P, Fujimoto S, Anodic oxide nanotube layers on Ti-Ta alloys: Substrate composition, microstructure and self-organization on two-size scales. Corrosion Science 51: 1528-1533, 2009.
[163] Choe HC, Jeong YH, Brantley WA, Phenomena of nanotube nucleation and growth on new ternary titanium alloys. Journal of Nanoscience and Nanotechnology 10:4684-4689, 2010.
[164] Jang SH, Choe HC, Ko YM, Brantley WA, Electrochemical characteristics of nanotubes formed on Ti–Nb alloys. Thin Solid Films 517:5038-5043, 2009.
[165] Park JJ, Choe HC, Ko YM, Corrosion characteristics of TiN and ZrN coated Ti-Nb alloy by RF sputtering. Materials Science Forum 539-543:1270-1275, 2007.
[166] Choe HC, Ko YM, Brantley WA, Nano-surface behavior of osteoblast cell-cultured Ti-30(Nb,Ta) with low elastic modulus. NSTI-Nanotech 2:744-747, 2007.
[167] Lee K, Kim WG, Cho JY, Eun SW, Choe HC, Effects of TiN film coating on electrochemical behaviors of nanotube formed Ti-xHf alloys. Transactions of Nonferrous Metals Society of China 19:857-861, 2009.
[168] Thompson GE, Porous anodic alumina: fabrication, characterization and application. Thin Solid Films 297:192-201, 1997.
[169] Sundquvist J, Harsta A, Aarik J, Kukli K, Aidla A, Atomic layer deposition of polycrystalline HfO2 films by the HfI4-O2 precursor combination. Thin Solid Films, 427:147-151, 2003.
[170] Kaneco S, Chen Y, Westerhoff P, Crittenden JC, Fabrication of uniform size titanium oxide nanotubes: Impact of current density and solution conditions. Scripta Mater, 56:373-376, 2007.
[171] Zhang YY, Tao J, Pang YC, Wang W, Wang T, Electrochemical deposition of hydroxyapatite coatings on titanium. Transactions of Nonferrous Metals Society of China 16:633-637, 2006.
[172] 徐源鴻,賴舜仁,薛文景,鈦金屬表面之非晶質與熱處理後生成銳鈦相TiO2 奈米薄膜研究,熱處理學會,臺北,2007.
[173] Cui X, Kim HM, Kawashita M, Wang L, Xiong T, Kokubo T, Nakamura T, Preparation of bioactive titania films on titanium metal via anodic oxidation. Dental Materials 25:80-86, 2009.
[174] Tsuchiya H, Macak JM, Müller L, Kunze J, Müller F, Greil, P, Virtanen S, Schmuki1 P, Hydroxyapatite growth on anodic TiO2 nanotubes. Journal of Biomedical Materials Research Part A 534-541, 2006.
[175] Raja KS, Misra M, Paramguru K, Deposition of calcium phosphate coating on nanotubular anodized titanium. Materials Letters 59:2137-2141, 2005.
[176] Shirkhanzadeh M, Direct formation of nanophase hydroxyapatite on cathodically polarized electrodes. Journal of Materials Science: Materials in Medicine 9:67-72, 1998.
[177] Kuo MC, Yen SK, The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature. Materials Science and Engineering C 20 153–160, 2002.
[178] Kokubo T, Takadama H, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907-2915, 2006.
[179] Franceschi RT, James WM, Zerlauth G, 1α, 25-dihydroxyvitamin D3 specific regulation of growth, morphology, and fibronectin in a human osteosarcoma cell line. Journal of Cellular Physiology 123:401-409, 1985.
[180] Xu LC, Siedlecki CA, Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials 28:3273-3283, 2007.
[181] Liang YQ, Cui ZD, Zhu SL, Yang XJ, Characterization of self-organized TiO2 nanotubes on Ti-4Zr-22Nb-2Sn alloys and the application in drug delivery system. Journal of Materials Science: Materials in Medicine 22:461-467, 2011.
[182] Kim JH, Lee S, Im HS, The effect of target density and its morphology on TiO2 thin films grown on Si(100) by PLD. Applied Surface Science 151:6-16, 1999.
[183] Im HN, Jeon SY, Choi MB, Kim HS, Song SJ, Chemical stability and electrochemical properties of CaMoO3-δ for SOFC anode. Ceramics International 38:153–158, 2012.
[184] Elsener B, Addari D, Coray S, Rossi A, Nickel-free manganese bearing stainless steel in alkaline media—Electrochemistry and surface chemistry. Electrochimica Acta 56:4489–4497, 2011.
[185] Ninh TKT, Massin L, Laurenti D, Vrinat M, A new approach in the evaluation of the support effect for NiMo hydrodesulfurization catalysts. Applied Catalysis A: General 407:29-39, 2011.
[186] Qiu L, Xu G, Peak overlaps and corresponding solutions in the X-ray photoelectron spectroscopic study of hydrodesulfurization catalysts. Applied Surface Science 256:3413-3417, 2010.
[187] Ho WF, Lai CH, Hsu HC, Wu SC, Surface modification of a low-modulus Ti-7.5Mo alloy treated with aqueous NaOH. Surface and Coatings Technology 203:3142-3150, 2009.
[188] Lowenstam HA, Weiner S, On biomineralizatin. Oxford: Oxford University Press; 1989.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top