跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/25 07:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊明勳
研究生(外文):ZHUANG,MING XUN
論文名稱:壓電致動有閥微泵浦之設計與製作及其於電子散熱之應用
論文名稱(外文):Design and Fabrication of Piezoelectric Actuated Micropump with Check Valve and Application to Electronic Cooling
指導教授:鄭江河鄭江河引用關係
指導教授(外文):Chiang-Ho Cheng
口試委員:鄭江河林志哲羅正忠
口試委員(外文):Chiang-Ho ChengChih-Jer LinJeng-Jong Ro
口試日期:2012-07-06
學位類別:碩士
校院名稱:大葉大學
系所名稱:機械與自動化工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:92
中文關鍵詞:壓電致動器單向閥散熱
外文關鍵詞:micro-pumpcheck valvepiezoelectric actuatorelectronic cooling
相關次數:
  • 被引用被引用:3
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,電子產品在性能上不斷進步,使得電子元件的散熱裝置日趨重要,而常見的風冷散熱也漸漸被水冷散熱取代。本論文將利用壓電致動器的特性,設計、製作壓電致動有閥微泵浦並且驗證此微泵浦在電子散熱之效能。
本論文主要是設計、製作及測試新型壓電致動有閥式微泵浦,其具有微小化、質量輕及低消耗功率等優點。微泵浦是由壓電致動器、具有振膜結構之不鏽鋼材料的艙體層、還有流道及閥座結構之壓克力材料的流道層,及兩個由聚二甲基矽氧烷所製作之懸臂樑結構的單向閥所組合而成。此元件設計需要有最大的壓縮比,如此即可當液體泵浦或氣體泵浦使用,並且能夠自我汲取及可容許氣泡在液體中。如要達到此目的,需要有最小的艙體及流道體積並且能產生最大的致動體積變形。並探討驅動電壓、操作頻率對壓電致動有閥微泵浦的流量與位移的影響,找出最大的流量與最高背壓配合散熱鰭片達到最佳的散熱設計。
In recent years, electronic products in the continuous improvement in performance. This trend urges the heat sink of electronic chip to become gradually important, and then that will develop many type of heat sink, which is water cooling system. This study aims to demonstrate the performance of the piezoelectric actuated micro-pump with check valve and their applications in Personal Computer cooling.
This project aims to present the design, fabrication and test of a novel piezoelectric actuated, check-valves embedded micro-pump having the advantages of miniature size, light weight and low power consumption. The micropump consists of a piezoelectric actuator, a stainless steel chamber plate with membrane, an acrylic channel plate with two valve seats, and two cantilever-type PDMS-made check valves. This device is designed to pump gases and liquids with the capability of performing the self-priming and bubble-tolerant work mode by maximizing the stroke volume of the membrane as well as the compression ratio via minimization of the dead volume of the micro-pump chamber and channel. And explore the driving to voltage, operating frequency of piezoelectric dynamic flow valve micropump with the displacement. Find the maximum flow rate and maximum back pressure with the heat sink to achieve the best thermal design.
封面內頁
簽名頁
中文摘要...iii
英文摘要...iv
誌謝...v
目錄...vi
圖目錄...viii
表目錄...xii
符號說明...xiv
第一章 緒論...1
1.1 前言...1
1.2 研究動機...2
1.3 文獻回顧...4
第二章 散熱式微泵浦之設計與分析...14
2.1 壓電有閥式微泵浦之原理...14
2.2 壓電有閥式微泵浦結構設計...16
2.3 散熱系統之原理...19
2.3.1 微泵浦應用於散熱系統之...19
第三章 微泵浦結構元件製作...21
3.1 黃光製程...21
3.2 蝕刻製程...22
3.3 元件製作...23
3.4 壓電致動器之製作...25
3.5 PDMS特性與調配...28
3.6 閥體的製作...28
3.7 壓電有閥微泵浦組裝...30
第四章 實驗設備與架設...32
4.1 流量之量測實驗...32
4.2 揚程實驗量測...34
4.3 壓電致動器位移量測設備架構...36
4.4 散熱系統之流阻架設...39
4.5 微泵浦應用於散熱系統實驗架設...40
第五章 實驗結果與討論...44
5.1 微泵浦之水流量實驗量測...44
5.1.1 閥體厚度對流量之影響...44
5.1.2 操作電壓對流量之影響...48
5.2 微泵浦之揚程實驗量測...50
5.2.1 閥體厚度對揚程的影響...50
5.2.2 操作頻率對揚程的影響...52
5.3 微泵浦之空氣流量實驗量測...53
5.4 散熱系統之流阻實驗量測...55
5.5 微泵浦應用於散熱系統實驗...57
第六章 結論...67
6.1 結論...67
6.2 未來發展...68
參考文獻...70
[1] Nguyen N-T, Huang X and Chuan T K, “MEMS-micropumps: a review,” ASME J. Fluids Eng., 124, 384–392, 2002.
[2] Laser D J and Santiago J G, “A review of micropumps,” J. Micromech. Microeng., 14, R35–R64, 2004.
[3] Woias P, “ Micropumps-past, progress and future prospects,” Sensors Actuators B, 105 , 28–38, 2005.
[4] Tsai N-C and Sue C-Y, “Review of MEMS-based drug delivery and dosing systems,” Sensors Actuators A, 134, 555–564, 2007.
[5] Lingxin Chen, Sangyeop Lee, Jaebum Choo and Eun Kyu Lee, “Continuous dynamic flow micropumps for microfluid manipulation,” J. Micromech. Microeng., 18, 1–22, 2008.
[6] Brian D. Iverson A Suresh V. Garimella, “Recent advances in microscale pumping technologies: a review and evaluation,” Microfluid Nanofluid, 5, 145–174, 2008.
[7] Amirouche F, Zhou Y and Johnson T, “Current micropump technologies and their biomedical applications,” Microsyst. Technol. 15 647-666, 2009.
[8] Muhammad Waseem Ashraf, Shahzadi Tayyaba and Nitin Afzulpurkar, “Micro Electromechanical Systems (MEMS) Based Microfluidic Devices for Biomedical Applications,” Int. J. Mol. Sci., 12, 3648-3704, 2011.
[9] Feng G H and Kim F S, “Micropump based on PZT unimorph
and one-way parylene valves,” J. Micromech. Microeng., 14, 429–435, 2004.
[10] Jianke Kang, Joseph V Mantese and Gregory W Auner, “A self-priming, high performance, check valve diaphragm micropump made from SOI wafers,” J. Micromech. Microeng., 18, 1-8, 2009.
[11] Andersson H, van der Wijngaart W, Nilsson P, Enoksson P and Stemme G, “A valve-less diffuser micropump for microfluidic analytical systems,” Sensors Actuators B, 72, 259–265, 2001.
[12] B Fan,G Song and F Hussain, “Simulation of a piezoelectrically actuated valveless micropump,” Smart Mater. Struct., 14, 400–405, 2005.
[13] R. Rapp, W.K. Schomburg, D. Maas, J. Schulz, W. Stark, “LIGA micropump for gases and liquids,” Sensors Actuators A, 40, 57–61, 1994.
[14] W.K. Schomburg, J. Fahrenberg, D. Maas, R. Rapp, “Active valves and pumps for microfluidics,”J. Micromechanics Microeng., 3, 216–218, 1993.
[15] Boehm S, Olthuis W and Bergveld P, “A plastic micropump constructed with conventional techniques and materials,” Sensors Actuators A, 77, 223–8, 1999.
[16] S. Santra, P. Holloway, D. Batich, “Fabrication and testing of a magnetically actuated micropump,” Sensors Actuators B, 87, 358– 364, 2002.
[17] Thai-Quang Truong and Nam-Trung Nguyen, “A polymeric piezoelectric micropump based on lamination technology,” J. Micromech. Microeng., 14, 632–638, 2004.
[18] Jung Ho Kim, King Tong Lau, Rod Shepherd, Yanzhe Wu, Gordon Wallace, Dermot Diamond, “Performance characteristics of a polypyrrole modified polydimethylsiloxane (PDMS) membrane based microfluidic pump,” Sensors and Actuators A, 148, 239–244, 2008.
[19] Pol F. C. M. van de, “A pump based on micro- engineering techniques,”Ph. D. thesis, Enschede, the Netherlands: University of Twente, 1989.
[20] A. Olsson, G. Stemme, and E. Stemme, “Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps,”Sensors and Actuators A, 84, 165-175, 2000.
[21] A. Olsson, G. Stemme and E. Stemme, “The first valve-less diffuser gas pump,”Proc. 10th Int. Workshop Microelectromechanical Systems (IEEE MEMS ‘97), Nagoya, Japan, 26-30 Jan., 1997, pp.108-113.
[22] W. van der Wijnggart, H. Andersson, P. Enoksson, K. Noren and G. Stemme, “The first self-priming and bi-directional valve-less diffuser miropump for both liquid and gas,”Proc. 13th Annual International Conference on Microelectromechanical Systems (IEEE MEMS 2000), Miyazaki, Japan, 23-27 Jan., 2000,
pp.674-679.
[23] Michael Koch, Nick Harris, Alan G.R. Evans, Neil M. White, Arthur Brunnschweiler, “A novel micromachined pump based on thick-film piezoelectric actuation,” International Conference on Solid-State Sensors and Actuators, pp. 353-356, 1997.
[24] Sebastian Böhm, Wouter Olthuis, Piet Bergveld, “A plastic micropump constructed with conventional techniques and materials,” Sensors and Actuators A, 77, 223-228, 1999.
[25] Francis E. H. Tay, W. O. Choong, H. Liu, and G. L. Xu., “An intelligent micro-fluidic system for drug delivery,” 2000 IEEE, pp. 70-75, 2000.
[26] Nam-Trung Nguyen, Thai-Quang Truong, “A fully polymeric micropump with piezoelectric actuator,” Sensors and Actuators B: Chemical, Vol. 97, Issue 1, pp. 137-143, 2004.
[27] Kan Junwu, Yang Zhigang, Peng Taijiang, Cheng Guangming, Wu Boda, “Design and test of a high-performance piezoelectric micropump of drug delivery,” Sensors and Actuators A, 121, 156-161, 2005.
[28] 吳鴻昀,“壓電式薄膜微型泵的發展與應用”,碩士論文,台灣大學機械工程研究所,2008.
[29] 林政瑤,“單邊擺動壓電式薄膜泵之設計與效能分析”,碩士論文,台灣大學機械工程研究所,2008.
[30] 高仲志,“壓電式薄膜泵結合冷卻水套(散熱式微泵)應用於筆記型電腦散熱之研究”,碩士論文,台灣大學機械工程研究
所,2008.
[31] 曾易彬,“壓電有閥式微幫浦之設計與製作”,碩士論文,大葉大學機械工程研究所,2009.
[32] Suresh V. Garimella, “Advances in mesoscale thermal management technologies for microelectronics,” Microelectronics Journal, 37, 1165–1185, 2006.
[33] S.V. Garimella, C.B. Sobhan, “Transport in microchannels—a critical review, ” Annual Review of Heat Transfer 13, 1–50 (Chapter 1), 2003.
[34] V. Singhal, S.V. Garimella, A. Raman, Microscale pumping technologies for microchannel cooling systems, Applied Mechanics Reviews 57 (2004) 191–221.
[35] S.V. Garimella, Heat transfer and flow fields in confined jet impingement, Annual Review of Heat Transfer XI (2000) 413–494.
[36] S.V. Garimella, C.B. Sobhan, Recent advances in the modeling and applications of nonconventional heat pipes, Advances in Heat Transfer 35 (2001) 249–308 (Chapter 4).
[37] A.G. Evans, M.Y. He, J.W. Hutchinson, M. Shaw, Temperature distribution in advanced power electronics and the effect of phase change materials on temperature suppresion during power pulses, ASME Journal of Electronics Packaging 123 (2001) 211–217.
[38] T.J. Lu, Thermal management of high power electronics with
phase change cooling, International Journal of Heat and Mass Transfer 34 (2000) 2245–2256.
[39] F.P. Bowden, D. Tabor, The Friction and Lubrication of Solids, Oxford University Press, London, 1950, pp. 20–32.
[40] M. Toda, Theory of air flow generation by a resonant type PVF2 bimorph cantilever vibrator, Ferroelectrics 22 (1979) 911–918.
[41] T. Acıkalın, S.M. Wait, S.V. Garimella, A. Raman, Experimental investigation of the thermal performance of piezoelectric fans, Heat Transfer Engineering 25 (2004) 4–14.
[42] T. Y. Tom Lee and James Andrews, “Compact Liquid Cooling System for Small Moveable Electronic Equipment”, Eighth IEEE SEMI-THERM Symposium, pp. 30-36, 1992.
[43] Marlin R. Vogel, “Liquid Cooling Performance for a 3-D Multichip Module and Miniature Heat Sink”, IEEE Transactions on Components Hybrids and Manufacturing Technology Part A, Vol. 18, No. 1, pp. 68-73, 1995.
[44] Heinrich Baumann, Peter Heinemeyer, Wolfgang Staiger, Manfred Topfer, Katrin Unger and Dietmar Muller, “Optimized Cooling Systems for High-Power Semiconductor Devices”, IEEE Transactions on Industrial Electronics, Vol. 48, No. 2, pp. 298-306, 2001.
[45] Randall D. Dickinson, Shlomo Novotmy, Marlin Vogel and John Dunn, “A System Design Approach to Liquid-Cooled Microprocessors”, IEEE Inter Society Conference on Thermal
Phenomena, pp. 13-420, 2002.
[46] H. Y. Zhang, D. Pinjala, Y. K. Joshi, T. N. Wong and K. C. Toh, “Thermal Modeling and Design of Liquid Cooled Heat Sinks assembled with Flip Chip Ball Gird Array Packages”, IEEE Electronic Components and Technology Conference, pp. 31-437, 2003.
[47] M. Richter, R. Linnemann, and P. Woias, “Design Methodology for Gas and Liquid Micropumps,” Proceedings Eurosensors XI, Warsaw, Vol. 2, pp. 785-788, 1997.
[48] 陳律安,“電腦水冷散熱系統之效益研究”,碩士論文,成功大學機械工程研究所,2006.
[49] 葉士榮,“無閥阻抗式微泵應用於個人電腦冷卻系統之研究”,碩士論文,成功大學航太工程研究所,2006.
[50] 詹明翰,“發光二極體頭燈水冷散熱系統之最佳化設計分析”,碩士論文,逢甲大學機械工程研究所,2011.
[51] E. Aizawa, K. Tsuchiya and Y. Uetsuji, “Design of high functional ring type PZT for micropump by using FEM analysis”, IEEE Micro-NanoMechatronics and Human Science (MHS), pp. 279-284, 2011.
[52] R. Takita, “Development of sputtering conditions for PZT micro actuator with high piezoelectric property by Au-Pt buffer layer”, IEEE Micro-NanoMechatronics and Human Science (MHS), pp. 285-290, 2011.
[53] K. Sugano, H. Yoshimune, A. Nakata, Y. Hirai, T. Tsuchiya and
O. Tabata, “High-speed pulsed mixing with high-frequency switching of micropump driving and its application to nanoparticle synthesis”, IEEE Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), pp. 1773-1776, 2011.
[54] W. Zhang, C. Wang, Z. Yue, C.N. Zhan, W.D. Geng and G.H. Liu, “Travelling-wave piezoelectric micropump with low resistance microchannel”, IEEE Electronics Letters, pp. 1065-1066, 2011.
[55] L. Campbell, “Numerical prediction of the junction-to-fluid thermal resistance of a 2-phase immersion-cooled IBM dual core POWER6 processor”, IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), pp. 36-44, 2012.
[56] V. Eveloy, P. Rodgers, S. Bojanampati, “Enhancement of photovoltaic solar module performance for power generation in the Middle East”, IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), pp. 87-97, 2012.
[57] P. R. Parida, “Experimental investigation of water cooled server microprocessors and memory devices in an energy efficient chiller-less data center”, IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), pp. 224-231, 2012.
[58] F. Guedon, S. Singh, R. McMahon and F. Udrea, “Boost Converter with SiC JFETs - Comparison with CoolMOS and Tests at Elevated Case Temperature”, IEEE Transactions on, pp. 1, 2012.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊