跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/01 17:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林士敬
研究生(外文):Lin, Shi-jing
論文名稱:複合造渣劑對冶金級矽硼磷含量影響之研究
論文名稱(外文):The Influence Of Boron And Phosphorus Content By Multi-Fluxes Addition In Metallurgical Grade Silicon
指導教授:廖芳俊
指導教授(外文):Liao, Fang-jun
口試委員:王立民洪博彥廖芳俊
口試委員(外文):Wang, Li-minHong, Bo-yanLiao, Fang-jun
口試日期:2012-07-13
學位類別:碩士
校院名稱:大葉大學
系所名稱:機械與自動化工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:90
中文關鍵詞:冶金級矽複合造渣劑定向凝固純化
外文關鍵詞:Metallurgical Grade SiliconMulti-FluxesDirectional SolidificationRefining
相關次數:
  • 被引用被引用:0
  • 點閱點閱:301
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
對於太陽能級多晶矽純度提純研究的焦點皆以降低成本、減少污染及減低能耗為方向。故本實驗採取低成本、低污染之氧化物造渣製程,來去除冶金級矽中所存在之雜質元素。
研究規劃將配製多種不同類型之複合造渣劑及調整所添加的比例,施以真空熔融、定向凝固等製程,並對所得矽錠進行殘留雜質含量的檢測分析,藉由複合造渣劑種類、相對添加比例和添加量的改變,對冶金級矽中雜質去除之影響情形做探討。
實驗結果發現採真空熔融及定向凝固製程的施作,對矽料的純化確實有所提升;雖然去除硼元素的效果不明顯,但對鐵、磷等元素均有良好的去除成效。藉由9種不同配比參數之複合造渣劑成果交叉比對發現,二氧化矽對於多晶矽純化扮演很重要的角色;且添加少量高氧親和力之氧化鈣與氧化鋁對雜質元素的去除均有助益;添加微量碳酸氫鈉確實可降低熔融矽液之黏滯性、增加流動性,對雜質浮渣的上浮有幫助。
因此建議參數8SiO2-1CaO-1Al2O3為最佳造渣劑配比,於添加量10 wt.%時,對鐵元素的去除由原粉190 ppm.降至7 ppm.,去除率高達96%;至於磷元素之去除效果由原本9 ppm.而完全去除,去除率為100%;此造渣劑雖對硼元素的去除效果有限,仍有10%左右的去除率。

The focal points of this solar-grade poly-silicon refinement study are following the directions of reduction of cost, pollution, and energy consumption. Therefore, this research adopted the process of oxide fluxes with low cost and low pollution to eliminate the impurities from metallurgical grade silicon.
In here, various types of multi-fluxes with different adding quantity were designed. Then, process with vacuum melting and directional solidification, after that silicon ingots were sliced to analyze the content of impurities. Therefore, we can figure out the relations between types, relative ingredient, and adding quantity of multi-fluxes with impurities removal in metallurgical grade silicon.
Experimental results shown that the implementation of vacuum melting and directional solidification processes indeed improve the purity of silicon. Although the removal of Boron was not so outstanding, the effectiveness of element elimination, such as Iron and Phosphorus were superior. By cross-examining the results of 9 combinations of multi-fluxes found that silicon dioxide plays an important role in poly-silicon refinement, and adding small amount of calcium oxide and alumina can further facilitate the removal of impurities with their high oxygen affinity nature. We also find that, with little amount of sodium bicarbonate addition, the viscosity of liquefaction silicon can be reduced and improved the fluidity to assist impurities float.
Therefore, researcher suggested that the best combination of multi-fluxes to purify the metallurgical grade silicon is 8SiO2-1CaO-1Al2O3, and with 10 wt.% addition. For Iron content can be reduced from 190 ppm. to 7 ppm. with almost 96% removal rate. As for the Phosphorous content, it can be reduced from 9 ppm. to zero, leading to 100% removal rate. Although this flux has shown limited effectiveness in Boron removal, it still reached a removal rate of around 10%.

第一章 前言............................1
第二章 文獻回顧............................3
2.1矽純化簡介............................3
2.1.1矽資源及提煉 ............................3
2.2矽的應用領域............................4
2.2.1單晶矽應用領域............................4
2.2.2多晶矽應用領域............................5
2.2.3單晶與多晶矽差異............................6
2.3矽純化製程............................6
2.3.1氣態矽化合物分餾還原法............................6
2.3.2冶金矽精煉法 ............................7
2.4定向凝固............................8
2.5造渣原理............................10
2.5.1矽造渣純化............................11
第三章 實驗方法............................22
3.1 實驗材料............................22
3.2 實驗規劃............................22
3.3 實驗步驟............................23
3.4造渣劑的選擇............................24
3.4.1造渣劑的配製比例和添加量............................24
3.5實驗器具與設備............................26
3.5.1熔煉坩堝............................26
3.5.2熔煉狀態............................27
3.6試件取樣分析............................28
3.6.1消化、取樣與分析............................30
3.7 感應耦合電漿放射光譜儀(ICP-OES)............................31
第四章 實驗結果分析與討論............................34
4.1實驗用粉狀矽料之ICP成份分析............................34
4.1.1添加5SiO2-5CaO (A)進行冶金矽之純化分析............................36
4.1.2添加5SiO2-3CaO-2Al2O3 (B)進行冶金矽純化分析............................40
4.1.3添加5SiO2-2CaO-2Al2O3-1NaHCO3 (C)進行冶金矽純化分析............................43
4.1.4添加8SiO2-2CaO (D)進行冶金矽之純化分析............................46
4.1.5添加8SiO2-1CaO-1Al2O3 (E)行冶金矽之純化分析............................49
4.1.6添加2SiO2-2CaO-6Al2O3 (F)進行冶金矽之純化分析............................52
4.1.7 添加2SiO2-4CaO-4Al2O3 (G)進行冶金級矽之純化分析............................55
4.1.8 添加2SiO2-6CaO-2Al2O3 (H)進行冶金矽之純化分析............................58
4.1.9添加2SiO2-6CaO-1Al2O3-1NaHCO3 (I)進行冶金矽之純化分析............................61
4.2各配比含量造渣劑對矽錠底段之磷、鐵雜質去除之分析比較............................64
4.2.1複合式造渣劑(80 wt.%二氧化矽)對雜質元素之趨勢圖............................64
4.2.2複合式造渣劑(50 wt.%二氧化矽)對雜質元素之趨勢圖............................66
4.2.3複合式造渣劑(20 wt.%二氧化矽)對雜質元素之趨勢圖............................67
4.2.4不同二氧化矽添加配比之最佳參數對雜質元素趨勢圖比較............................69
4.2.5實驗參數(D)與(F)相互比較對於雜質元素之趨勢圖............................71
第五章 結論............................73
參考文獻............................75

[1] 陳子秦,“太陽能電池產業製程及污染防治簡介”,財團法人台灣產業服務基金會。
[2] 維基百科,http://zh.wikipedia.org/zh-tw/。
[3] 香港矽片回收網,http://www.gdfpw.com/show.asp?id=271。
[4] 單晶矽及多晶矽相關知識彙總,http://www.energytrend.com.tw /bbs/viewthread.php?tid=44。
[5] 王旭昇,“太陽能光電產業(二) ”,台灣工業銀行,2007年。
[6] 吳雅萍,張劍,高學鵬,李廷舉,“多晶矽的真空感應熔煉與定向凝固研究”,特種鑄造及有色合金,2006年第12期。
[7] 蘇英源,郭金國,“冶金學”,全華科技圖書公司,2001。
[8] Da-wei LUO, Ning LIU, Yi-ping LU, Guo-liang ZHANG, Ting-ju LI, “Removal of boron from metallurgical grade silicon by electromagnetic induction slag melting”, Trans. Nonferrous Met. Soc. China 21, pp.1178-1184, 2011.
[9] 梁達科,“工業矽精煉的試驗研究”,輕金屬,1988年第7期。
[10] 王新國,丁偉中,沈虹,張靜江,“金屬矽的氧化精煉”,中國有色金屬,2002年第4期。
[11] M.D. Johnston and M. Barati, “Distribution of impurity elements in slag-silicon equilibria for oxidative refining of metallurgical silicon for solar cell applications”, Solar Energy Materials & Solar Cells 94, pp. 2085-2090, 2010.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top