跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 15:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李宗翰
研究生(外文):LIZONGHAN
論文名稱:高壓與常壓之A356鋁合金消失模型鑄件微結構機械性能的比較
論文名稱(外文):Comparison of Microstructure and Mechanical Performance of A356 Aluminum EPC Casting Solidified at High Pressure and Normal Atmosphere
指導教授:胡瑞峰
指導教授(外文):HUJUIFENG
口試委員:鄭朝旭張舜長胡瑞峰
口試委員(外文):Cheng Chao HsuChang Shun ChangHu Jui Feeng
口試日期:2012-07-09
學位類別:碩士
校院名稱:大葉大學
系所名稱:機械與自動化工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:173
中文關鍵詞:消失模鑄造法A356鋁合金機械性能高壓凝固模式顯微結構
外文關鍵詞:EPC processA356 aluminum alloymechanical performancehigh-pressure solidification modesmicrostructure
相關次數:
  • 被引用被引用:1
  • 點閱點閱:471
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係分析與比較常壓凝固以及高壓凝固之A356鋁合金消失模型鑄件的機械性能及顯微結構,以瞭解A356鋁合金消失模型鑄件在常壓凝固模式和高壓凝固模式之特性差異。並針對兩者模式之消失模型鑄造的製程參數對A356鋁合金消失模型鑄件的機械性能以及顯微結構之影響,進行綜合分析與比較,以獲致不同壓力凝固模式之較佳的A356鋁合金消失模型鑄件製程條件,且能藉由該製程條件提高產學合作廠商的良品率及產能。

研究結果發現在高壓凝固模式確實可提升A356鋁合金消失模型之機械性能及降低鑄件孔洞率。惟對於不同的常壓或高壓凝固模式,欲獲得較佳鑄件機械性能的製程條件亦會不同。經過機械性能檢驗測試之後發現,在澆注溫度720℃所鑄造的ASTM標準抗拉試棒鑄件,其抗拉強度、降伏強度、伸長率、硬度皆會有所差別。而在使用塗層厚度0.3mm之ASTM標準抗拉試棒鑄件以及具有五種不同厚度的階梯型板狀鑄件,其強度、硬度皆會優於使用0.6mm塗層厚度的鑄件。最後,針對ASTM標準抗拉試棒鑄件使用持壓時間6分鐘的高壓持壓時間,其抗拉強度、降伏強度、伸長率、硬度以及金相組織等皆會優於高壓持壓時間3分鐘以及10分鐘鑄件。

對於常壓及高壓凝固下A356鋁合金消失模型鑄件的顯微結構之分析比較方面,發現高壓凝固之鑄件顯微結構會較常壓凝固之金相顯微組織佳,其原因為在高壓凝固模式中,鑄件之晶粒尺寸較小,且共晶組織分布較均勻,而常壓凝固模式中鑄件的金相顯微組織有許多共晶堆積現象,進而嚴重影響A356鋁合金消失模型鑄件機械性能。

This study analyzes and compares the effect of one atmospheric pressure and high-pressure solidification modes on the mechanical properties and microstructures of A356 aluminum alloy EPC castings to underatand the difference between two casting pressure modes. Comprehensive analysis and comparison about the influence of the EPC process parameters on the characteristics of A356 aluminum alloy castings were evaluated to provide better manufactueing condictions for the industry-university co-operation partners, and the yield of casting as well as production capacity of co-operation partners can be improved via this study.

The result of study reveals that the high-pressure solidification mode on EPC process can indeed enhance the mechanical properties and reduce the porosity of A356 aluminum alloy castings. After mechanical property testing, it was found that the ASTM standard tensile test bar castings of 720 ° C pouring temperature show different tensile strength, yield strength, elongation, hardness for two pressure solidification modes. For five different section thicknesses of the step-type plate castings with pattern coated with 0.3 mm coating thickness, their strength and hardness are better than those with 0.6 mm coating thickness. Finally, the tensile strength, yield strength, elongation, hardness and microstures of ASTM standard tensile test bar castings at 6 minutes duration time of of high-pressure mode are better than those of 3 minutes or 10 minutes duration time.

It was found that the metallographic microstructures and ditribution of A356 aluminum alloy castings at high-pressure solidification mode are better than those at one atmospheric solidification one. The reason for this result is that the castings at high-pressure solidification mode possess smaller grain size and more uniform distribution of eutectic mixture then those at one atmospheric pressure mode. In addition, many segregations of eutectic accumulation occurred in the microstructure of castings at one atmospheric pressure mode, and this phonmenon will be seriously   detrimental to the mechanical properties of A356 aluminum alloy EPC castings.

封面內頁
簽名頁
中文摘要...................................iii
ABSTRACT...................................v
誌謝......................................vii
目錄.......................................ix
圖目錄....................................xiii
表目錄....................................xxvi
符號表...................................xxvii

第一章 前言...................................1
第二章 文獻探討................................3
2.1 A356鋁合金...............................3
2.2 消失模鑄造法...............................3
2.2.1 模型製作................................3
2.2.2 塗層...................................7
2.2.3 振砂造模...............................10
2.2.4 熔煉與澆鑄過程..........................11
2.2.5 高壓凝固...............................14
2.3鋁合金析出硬化熱處理........................16
2.3.1 固溶處理...............................17
2.3.2 淬火處理...............................17
2.3.3 時效處理...............................18
2.4 機械性能測試..............................19
2.4.1 拉伸試驗...............................20
2.4.2 衝擊試驗...............................21
2.4.3 洛氏硬度測試............................21
第三章 實驗方法及步驟...........................27
3.1 模型與模具................................27
3.1.1 鑄件模型設計............................27
3.1.2 模具製作...............................29
3.2 製程參數.................................29
3.2.1 鑄造壓力...............................29
3.2.2 澆注溫度...............................30
3.2.3 塗層..................................31
3.2.4 鑄件厚度...............................31
3.2.5 高壓持壓時間............................32
3.3 震砂造模.................................32
3.4 熔煉澆鑄與調質細化處理......................33
3.5 析出硬化熱處理............................35
3.5.1 固溶處理...............................34
3.5.2 淬火處理...............................35
3.5.3 人工時效................................35
3.6 密度及孔洞率量測...........................36
3.6.1 密度量測................................36
3.6.2 孔洞率量測..............................37
3.7 材料機械性能測試...........................37
3.7.1 拉伸試驗...............................38
3.7.2 衝擊試驗...............................38
3.7.3 洛氏硬度測試............................39
3.8 金相顯微組織觀察...........................39
3.8.1光學顯微鏡(OM)觀察........................40
3.8.2掃描式電子顯微鏡(SEM)觀察..................40
3.8.3能量散射光譜儀(EDS)分析....................41
第四章 結果與討論..............................53
4.1常壓與高壓凝固模式下對鑄件機械性能之影響.........53
4.1.1澆注溫度對UTS、YS以及ε%之影響...............53
4.1.2澆注溫度對硬度之影響........................54
4.1.3澆鑄溫度對衝擊韌性之影響.....................56
4.1.4塗層厚度對UTS、YS以及ε%之影響................57
4.1.5塗層厚度對硬度之影響.........................58
4.1.6塗層厚度對衝擊韌性之影響......................60
4.1.7鑄件厚度對UTS、YS以及ε%之影響.................61
4.1.8鑄件厚度對硬度之影響..........................62
4.1.9鑄件厚度對衝擊韌性之影響.......................63
4.1.10鑄件厚度對硬度之影響.........................63
4.1.11持壓時間對衝擊韌性之影響......................64
4.2常壓與高壓凝固模式下製程參數對鑄件孔洞率影響..........64
4.2.1鑄件厚度對衝擊韌性之影響........................64
4.2.2塗層厚度對鑄件孔洞率之影響......................65
4.2.3持壓時間對鑄件孔洞率之影響......................66
4.2.4熱處理對鑄件孔洞率之影響........................67
4.3常壓與高壓凝固模式對試棒鑄件顯微結構之影響............67
4.3.1常壓與高壓下澆注溫度對試棒鑄件顯微結構之影響........68
4.3.2 常壓與高壓下澆注溫度對試棒鑄件顯微結構之影響.......75
4.3.3 持壓時間對鑄件顯微結構之影響....................77
4.4常壓與高壓凝固對於階梯型板狀鑄件顯微結構影響..........80
4.4.1 常壓與高壓下澆注溫度對階梯型板狀鑄件顯微結構之影響..80
4.4.2 常壓與高壓下塗層厚度對階梯型板狀鑄件顯微結構之影響..81
4.4.3 常壓與高壓下鑄件厚度對階梯型板狀鑄件顯微結構之影響..82
4.4.4 持壓時間對階梯型板狀鑄件顯微結構之影響............83
第五章 結論.......................................165
參考文獻..........................................168

[1]J. R. Davis, “Aluminum and Aluminum Alloys,” ASM Specialty Handbook,Ohio, ASM, 1994.
[2]邱弘興,“鋁-矽-鎂合金(A356)凝固特性及顯微組織之研究”,國立台灣大學機械研究所80年學年度博士論文
[3]譚安宏、李勝隆、鄭榮瑞、林於隆,“Al-Si-Mg鑄造合金之熱處理”,鑄工季刊第86期,pp. 68-74,民國84年
[4]翁毓翔,“影響A356鋁合金照明上蓋消失模鑄件顯微組織的探討”,大葉大學機械與自動化研究所100學年度碩士論文
[5]邱曜嘉,“消失模型A356鋁合金剎車泵外殼之研製”,國立臺灣大學機械工程學研究所,民國88年
[6]李文興,“消失模型鑄造法之介紹”,鑄工月刊,pp. 32-35,民國82年
[7]R. W. Monroe, “Expandable Pattern Casting,” AFS Trans, vol. 101, pp. 11-70, 1993
[8]R. Lmmel, “Expandable Polystyrene and Its Processing into Patterns for the Evaporative Casting Process,” AFS Trans, vol. 87, pp. 545-550, 1979.
[9]楊榮顯、查輔慶、孫銘田,“EPS 模型製作條件對模型重量及尺寸變化之影響”,鑄工季刊第88期,pp. 28-29,民國85年
[10]廖高宇,“消失模型鑄造法之模型熱分解現象及A356鋁合金流動充模特性研究”,國立台灣大學機械研究所87學年度博士論文
[11]呂仲欽,“製程參數對消失模性模型鑄造法生產石墨鑄鐵之影響”,國立台灣大學機械研究所79學年度碩士論文
[12]劉生銀,“消失模鑄鋁圖料的研發及其應用”,亞仕蘭中國投資有限公司鑄造部
[13]H. J. Heine, “A Progress Report:Evaporative PolystyrenePattern –Part I,” Foundry M & T, pp.22-55, Dec 1982
[14]O. A. Martinez, “A Supplier’s Overview of Lost RefractoryCoating, ” AFS Trans., Vol.98, pp241-244, 1990.
[15]林良清、潘國同、黃營芳, “消失模型鑄造法應用於精密複雜鋁合金鑄件” , 鑄工月刊37期,pp. 1-14, 1983.
[16]B. Matz, D. C. Kearney, “Microwave Drying of Refractory Coated Foam Patterns for the Evaporative Casting Process,” AFS Trans., vol.95, pp.417-422,1987.
[17]黃道欣,“影響A356鋁合金照明上蓋消失模鑄件機械性質的研究”,大葉大學機械與自動化研究所100學年度碩士論文
[18]黃天佑,“鑄造手冊(第四卷) [M]”,北京機械工業出版社,2003.
[19]Warner M. H,Miller B. A. “Pattern pyrolysis defect reduction in lost foam castings[J].” AFS Trans.,106;777-785 ,1998.
[20]J. S. Hansen and P. C. Turner, “Casting P-900 Armorplate by the Expandable Pattern Casting Process”, Report of Investigations 9436,United States Department of INTERIOR, 1992.
[21]蘇昭源,“冶金與製程參數對於消失魔球墨鑄鐵顯微組織之影響”,國立臺灣大學機械工程學研究所碩士論文,民國85年
[22]許光良,“消失模鋁合金充模現象之探討”,國立臺灣大學機械工程學研究所,民國87年
[23]潘國桐,“消失模型鑄造模型法-未來鑄造廠的新方向”,鑄工月刊,pp. 24-25,民國77年
[24]Lu Weihua, Wang Ruyao, "Microstructure and Mechanical Behavior of Nodular Silicon Al-Si Alloy ", Proceedings of the Fifth Asian Foundry Congress, AFC-5.
[25]J. R. Davis, “Aluminum and Aluminum Alloys,” ASM Specialty Handbook,Ohio, ASM, 1994.
[26]John E. Gruzleski, Bernard M. Closset, "The Treatment of Liquid Aluminum-Silicon Alloys ", The American Foundrymen’s Society, Inc,1990.
[27]Sigworth, G. K., S. and Apelian, D., ”The Influence of Molten Metal Processing on Mechanical Properties of Cast Al-Si-Mg Alloys,“ AFS Transactions, Vol. 89-139, pp. 811-824,1989.
[28]Sigworth, G. K. and Guzowski, M. M., ”Grain Refining of Hypoeutectic Al-Si Alloys, “AFS Transactions, Vol. 78-116, pp. 501-504,1985.
[29]Berry, J. T., , ”Effects of Solidification Conditions on Mechanical Behavior of Al casting Alloys, “AFS Transactions, Vol. 85-27, pp. 421-428,1985.
[30]Willard, T. A. and Robert, N. D., ”A Review of Hydrogen Gas Measuring Techniques in Molten Aluminum Alloys,“ AFS
2nd Conference, pp. 19-1~10, 1989.
[31]P. P. Chintalapati, J.A. Griffin, R.D. Griffin, “Improved Mechanical Properties of Lost Foam Cast A356 and A319 Aluminum Solidified under Pressure”, AFS Transactions, Vol. 117, pp. 881-897, 2007.
[32]胡瑞峰,”製程參數對A356鋁合金孔洞影響之探討,” 國立臺灣大學機械工程學研究所碩士論文,民國79年
[33]S. Z. Uram, M. C. Flemings, H. F. Taylor, “Effect of Pressure during Solidification on Microporosity in Aluminum Alloys”, AFS Transactions, Vol. 66, pp. 129-134, 1958.
[34]K. S. S. Murthy, E. O. Edwards, “Effect of Pressure Applied During Solidification on the Soundness of A1-7% Si-03% Mg (SG7O-British Equivalent, BS 1490;LM 25)Alloy Sand Castings”, The British Foundryman, Vol. 68, pp 294-304,1975
[35]J. M. Boileau, J. W. Zindel, J. E. Allison , “The Effect of Solidification Time on the Mechanical Properties in a CastA356-T6 Aluminum Alloy”, SAE Special
Publications, Vol.1251, pp 61-72,1997
[36]K. Radhakrishna, S. Seshan, M. R. Seshadri, “Effect of Porosity on Mechanical Properties of Aluminum Alloy Castings”, Transactions of the Indian Institute of Metals, Vol. 34, No. 2, pp. 169-171,1981
[37]昆山市丰浩熱處理有限公司http://qihaoht.com/newsmore.asp?id=896&owner=0
[38]J. W. Martin, "Micromechanisms in Particle-hardened Alloys", Cambridge University Press, pp.1-78 , 1980
[39]A. Kelly and R.B. Nicholson, "Precipitation Hardening", Progress in Metals Physics vol. 10, The MacMillan Company, New York, pp.151-292 , 1963.
[40]陳克昌,"非鐵金屬材料的熱處理",材料科技,逢甲大學材料科學系,第71-78頁,1983。
[41]金重勳,"熱處理",復文書局,第463-475頁,1991。
[42]葉均蔚,"鋁合金之析出硬化"、工程材料實驗(I)-金屬材料實驗,洪敏雄主編,中國材料科學學會,第181-203頁,1999。
[43]C.R. Brooks, "Heat Treatment, Structure and Properties of Nonferrous Alloys", ASM handbook, pp.18 and 106-114, 1992.
[44]R.E. Reed-Hill and R. Abbaschian, “Physical Metallurgy Principles”3rd. Ed.PWS Publishing Company, pp.515-534,1994.
[45]P. Haasen, “Mechanical Properties of Solid Solution and Intermetallic Compounds”, Physical Metallurgy, Part II, R. W. Cahn and P. Haasen Ed., Elsevier Science Publishers, B. V., pp.1376-1381 , 1983.
[46]李勝隆,“鋁合金熱處理技術”,鑄造鋁合金工業技術講習會講義,國立中央大學機械研究所,民國85年
[47]D. Apelian, S. Shivkumar and G. Sigworth, “Foundmental aspects of heat treatment of cast Al-Si-Mg alloys,” AFS Trans., pp. 727-742, 1989.
[48]巫佳芸,“經防火、防腐處理之木材機械性能 – 以高壓注入工法探討之“,國立成功大學建築研究所碩士論文,民國94年
[49]金屬中心,檢測驗證網站,”機械性能實驗室”
[50]93夜二技四甲,“鋁合金6061 – T6摩擦攪拌熔接之製程及機械性質“
[51]許興旺,“鑄品檢測能力本位訓練教材 – 衝擊試驗“,中華民國職業訓練局,PMF – CQC0305
[52]黃喜雄,“鑄品檢測能力本位訓練教材 – 硬度試驗“,中華民國職業訓練局,PMF – CQC0304
[53]謝志浩,“A356鋁合金消失模鑄件之顯微組織分析”,國立台灣大學機械工程研究所,民國75年
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top