跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 12:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:沈世權
研究生(外文):Shen, Shih Chuan
論文名稱:磨漿酵素對闊葉漂白木漿之作用-以越南紙業漿紙一貫廠為例
論文名稱(外文):Refining with Enzyme for BHKP in an Intergrated Pulp and Paper Mill - A Case Study in the VINAPACO, Vietnam
指導教授:彭元興彭元興引用關係
指導教授(外文):Perng, Y.S.
口試委員:王益真陳信泰郭蘭生
口試委員(外文):Wang, Y. C.Chen, S.T.Kuo, L.S.
口試日期:2012-07-23
學位類別:碩士
校院名稱:大葉大學
系所名稱:工學院碩士在職專班
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:85
中文關鍵詞:磨將酵素漿紙一貫廠闊葉漂白木漿前處理時間添加劑量叩解度紙張性質
外文關鍵詞:Refining with enzymeintergrated mill,BHKPpre-treated timedosageslownesssheet properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:258
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:1
漿紙一貫廠是直接以濕漿形式把闊葉漂白漿送到紙廠產出紙品,其纖維性質是最原始的;纖維素與半纖維素剛經過機械與化學力的作用,在這一階段再直接讓它們與纖維酵素混合半纖維酵素的商業磨漿酵素反應,可以催化纖維的帚化,水解纖細物,以期降低磨漿作業之負載,成品紙張展現較佳的物性與光學性質。
參考各種酵素應用的歷史文獻並且執行現場實驗室測試;以越南紙業總公司為研究場所,取用漿紙合一廠現場剛產出的闊葉漂白木漿樣品,執行實驗與研究。應用22階層設計,探討主效應X1前反應時間的變化,以及主效應X2的酵素劑量組合,和它們的相互效應影響;以實驗室荷蘭式打漿模擬磨漿作用,在不同的磨漿階段0、10、20、30與40 min 重複實驗,在每一組實驗後,主效應與的相互效應的結果可以探查變數間的作用與影響。
實驗結果磨漿叩解度受到磨漿酵素作用影響,而手抄紙的紙張物性,在嵩度的變化隨著劑量與前處理時間的增加明顯提升,抗張強度則在沒有磨漿力時展現酵素對BHKP的協助,破裂強度與撕裂強度都在酵素與機械磨漿力作用20 min 後,就不再有太多的變化,驗證了磨漿酵素改變著纖維的性質;多種數據證明了新鮮的BHKP漿料容易受到酵素改質,在適當的生物催化與機械作力後,它們可以表現出最佳的纖維帚化與更緊密的結合力,但當不適宜的酵素劑量或反應時間,又施以過多的機械作用力在纖維上,此一漿料就容易有過度磨漿的反效果。

各實驗組的光學反應並沒有顯著的影響,所有的白度測試都維持在合理的降級範圍,磨漿力傷害光學反射效果,而酵素磨漿並沒有特別突出地維持或者減緩白度降低。
闊葉漂白木漿剛從漿線產出仍維持最新鮮的狀態,很容易接納催化作用,因此應用磨漿酵素在這一種漿紙一貫廠的環境,特別需要控制酵素劑量、反應時間與磨漿力道;整個研究過程與數據,相信當前商業酵素大致上可以廣泛的應用,卻還未精準地發揮效果,所以後續的研究與開發仍有很大的突破空間與優化可能!

An integrated paper mill in Vietnam applies BHKP, Bleach Hardwood Kraft Pulp, slurry for printing and writing paper production. These pulps are without pressing and drying, the fibers maintain their natural characteristics. Cellulose and hemi-cellulose are fibrillated after mechanical attrition in a refiner of pulp mill, we treat pulp fibers directly with a commercial enzyme, AZ-7567, which is compounded cellulase and hemi-cellulase could be expected more fibrillation on fiber surface. It is concerned to reduce refiner loading and present different paper physical and optical properties.
There are many historic articles and references discussing enzyme applied in pulp and paper industries, we also learned more about refining with enzyme to BHKP from a laboratory test in VINAPACO, Vietnam. The BHKP samples for testing are taken from pulp chest which before feeding to paper lines. In this study, a 22 factorial experimental design was adopted to examine main effect X1 as pre-treatment time and main effect X2 of enzyme dosage, the interaction effects were also studied and analysis. Various pre-treatment times with different dosage levels are combined to conduct repeated tests at 0, 10, 20, 30 and 40 min refining times. The paper mill is using laboratory-type Holland Beater to simulate refiners of stock preparation, record 0SR and make handsheet papers to find the effects between beating factors and response variables.
By using 22 factorial analysis Schopper Riegler readings indicated inverse ratio to main effects X1 and X2; handsheet strength showed that bulks are increased while burst and tear strength all are reversed after 20 min refining. Effects from refiner and enzyme caused burst and tear strength loss as a result of inadequate refining with enzyme. Although many previous studies indicated fibers could be modified with enzyme, and suitable bio-catalyzed mechanism would enhance fibers bonding for more fibrillations, however, unsuitable refining and enzyme conditions could degrade BHKP strength in refining process.
Theoretically brightness decrease of pulp sheets are due to more optical contact between fibers after refining. Enzyme treated fibers enhance fiber contacting but the brightness level did not maintain or dropped sharply after refining, so refining with enzyme does not improve the optical properties of fibers.
BHKP from an intergrated pulp line are fresh form, so they are easier to be catalyised. Therefore, controls of enzyme dosage and refining degree must be optimized carefully when paper mills apply this technology. At present, the commercial enzymes are broadly applied to different fields in pulp and paper industries, but the optimum dosage should be examined further. However, this green products still interested papermakers to some extents.

目錄

封面內頁
簽名頁
中文摘要 iii
ABSTRACT v
誌謝 vii
目錄 viii
圖目錄 xi
表目錄 xiii
第一章 緒論 1
1.1 研究起源 1
1.2 研究動機 1
1.3 研究目的 2
第二章 背景資料 4
2.1 酵素 4
2.1.1 酵素的特性 5
2.1.2 酵素的機制 6
2.1.3 酵素製劑 7
2.1.4 環境影響酵素 9
2.2 酵素在造紙製漿之應用 10
2.2.1 酵素反應在木質結構 12
2.2.2 纖維性質改變 14
2.2.3 磨漿負載下降 15
2.2.4 脫水度提升 15
2.3 造紙與磨漿作業流程 17
2.3.1 備漿流程 17
2.3.2 磨漿作業 18
2.3.3 磨漿效應 19
2.2.4 漿料游離度或叩解度 20
2.4 實驗背景 21
2.5 因子實驗設計 23
第三章 文獻回顧 25
3.1 實驗室 26
3.2 紙機試驗 30
第四章 實驗設計及方法 34
4.1 實驗目的 34
4.2 實驗設計與方法 36
4.2.1 實驗設計 36
4.2.2 實驗材料 39
4.2.3 實驗儀器 39
4.2.4 實驗步驟 43
第五章 實驗結果與討論 46
5.1磨漿酵素與叩解度影響 46
5.2 磨漿酵素與嵩度影響 51
5.3 磨漿酵素與抗張強度影響 55
5.4 磨漿酵素與破裂強度影響 59
5.5 磨漿酵素與撕裂強度影響 62
5.6 磨漿酵素與白度影響 66
第六章 結論 70
參考文獻 72
附錄1 22階層實驗設計各實驗組之測試項目及數據 74
附錄2 分析實驗結果之計算式 80

1.永豐餘造紙公司 (2005),e-learning課程講義。
2.林德財、藍浩繁、柯淳函 (2010),微生物及酵素前處理對於機械製漿動力節能之展望。林業研究專訊,17(4):28-33。
3.吳詩光、周琳 (2002),對酶概念的再認識。生物學通報, 04:38。
4.彭元興 (1988),統計設計—節省成本的利器。漿與紙,9(5):5-8。
5.葉創興、周昌清、王金發 (2006),生命科學基礎教程。
6.黎正中、陳源樹 (2007),實驗設計與分析。高立圖書公司。
7.聶劍初,吳國利等 (2007),生物化學簡明教程。高等教育出版社。
8.Anfinsen C.B. (1973), “Principles that Govern the Folding of Protein Chains”. Science 181 (4096):223-230.
9.Bajpai P., Mishra S.P., Mishra O.P., Kumar S., Bajpai P.K., (2006), “Use of enzymes for reduction in refining energy – laboratory studies”, TAPPI J. 5(11): 25-32.
10.Diehm, R.A. (1942), “Process of Manufacturing Paper”, U.S. Pat. 2,289,307.
11.Doug Y. (2006), “Fiber modification with enzymes: improvements in energy consumption, fiber rationalization and quality”, TAPPI Papermaking Conference.
12.Gill R., (2008), “Advances in use of fibre modification enzymes in paper making”, Conference Aticelca XXXIX Congresso Annuale, Fabriano, Italy.
13.Hult K, Berglund P (2003), “Engineered enzymes for improved organic synthesis”. Curr Opin Biotechnol. 14(4):395-400.

14.Inge L. (2009), “Modifying the Quality of Fiber with Enzymes”, SEPTEMBER/OCTOBER PaperAge : 20-22.
15.Jaeger K.E, Eggert T. (2004), “Enantioselective biocatalysis optimized by directed evolution”. Curr Opin Biotechnol. 15(4): 305-313.
16.Kumar R. (2010), “Enzyme technology in pulp and paper”, Managers Meeting, Amazon Papyrus Chemicals, Macau.
17.Kumar S.A., Sharma S.K., Gupta A., (2012), “Fiber modification with enzymes for improving refining and drainage”, IPPTA J. 24( 1): 161-166.
18.Lilley D. (2005), Structure “Folding and mechanisms of ribozymes”. Curr Opin Struct Biol. 15(3):313-323.
19.Maximino M. G. (2010), “Application of Hydrolitic Enzymes and Refining on Recycled Fibers”, Cellulose Chem. Technol. 45(5-6): 397-403.
20.Smith A.D., Cammack R., Atwood T, Campbell P., Parish H., Smith T., Stirling J., Vella F., (2006), Oxford Dictionary of Biochemistry and Molecular Biology. 2nd Ed. Oxford University Press.
21.Venditti R. (2008), ”Enzyme applications in pulp and paper: an introduction to applications”, Buckman Products Seminar.
22.Viikari L. (2000), “Enzymes in The Pulp and Paper Industry”, Pulping Process & Product Quality Conference Proceedings.
23.Watzig D. (2011), Reducing energy costs through closed 100p refiner control, Papercon, 1176-1179.
24.Young D.D., Nichols J., Kelly R.M., Deiters A., (2008), Microwave activation of enzymatic catalysis. J Am Chem Soc. 130: 10048-10049

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top