跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/16 10:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾瑋雯
研究生(外文):Wei-wen Tseng
論文名稱:蔗渣生物轉化產氫之研究
論文名稱(外文):A study on bioconverting bagasse into hydrogen
指導教授:李國興李國興引用關係林屏杰
指導教授(外文):Kuo-shing LeePing-jei Lin
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:118
中文關鍵詞:蔗渣固定化酵素酵素水解木糖醱酵產氫葡萄糖與木糖共醱酵產氫
外文關鍵詞:xylose fermentation hydrogen productionglucose and xylose fermentative hydrogen productBagasseenzymatic hydrolysisimmobilized enzymes
相關次數:
  • 被引用被引用:2
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
利用廢棄纖維物質經酵素水解後之糖類進行暗醱酵產氫,為本研究之主軸,主要分為纖維物質水解及醱酵產氫兩大部分。
纖維物質水解方面,首先以反應曲面法(response surface methodology, RSM)找出蔗渣鹼處理之最適化條件為NaOH 2.5%、浸泡時間10 h,並進一步於最適酵素水解之條件20 g BTB/L (BTB: base treated bagasse)、pH 5.0獲取還原糖產量約15 g/L (產率為0.753 g RS/g BTB),其中包含葡萄糖11 g/L、木糖3.3 g/L。另外測試數種固定化酵素之方法企圖重複利用水解酵素以降低成本,但結果並不如預期。
在醱酵產氫方面,首先以CSTR (continuous flow stirred tank reactor)反應器探討木糖濃度對產氫之影響,結果顯示最佳之基質濃度為15 g COD/L,其HPR (H2 production rate)、HPE (overall H2 production efficiency)及HY (H2 yield)分別為0.212 mol/L/d、34.2%及7.44 mmol H2/g COD。而後以模擬蔗渣水解產物之葡萄糖/木糖(C6/C5))配比3:1進行各種操作策略之試驗,結果顯示當基質濃度為10 g COD/L、HRT 6 h呈現較佳之產氫表現,其HPR、HPE及HY分別為0.327 mol/L/d、39.1%及8.20 mmol H2/g COD。另以UFR (upflow reactor)反應器進行C6/C5=3/1 (20 g COD/L)之各種不同的HRT產氫實驗,改善CSTR系統木糖利用率不佳的問題,結果顯示其各試程之HPE仍不及CSTR系統。
Waste fiber material by the enzymatic hydrolysis of sugars to dark fermentative hydrogen of this study, the two parts of the divided into fiber material hydrolysis and fermentation hydrogen production.
In terms of fiber material hydrolysis, at first, we find the optimal conditions for alkali pretreatment of bagasse including NaOH 2.5%, and soaking time of 10 h by using response surface methodology (RSM). Then, the enzymatic hydrolysis substrate concentration is 20 g BTB/L (BTB: base treated bagasse) and pH 5.0 that is the optimal enzymatic hydrolysis conditions.That can gets reducing sugar about 15 g/L, which contains glucose 11 g/L, and xylose 3.3 g/L. Another, we try the immobilized enzymes attempt to reuse the hydrolytic enzymes to reduce costs, but the results are not as expected.
In terms of fermentative hydrogen, at first,we confer that xylose concentration of hydrogen production by continuous flow stirred tank reactor (CSTR), then the results showed that the optimum substrate concentration of 15 g COD / L,and the H2 production rate (HPR), overall H2 production efficiency (HPE) and H2 yield (HY) is 0.212 mol/L/d, 34.2% and 7.44 mmol H2/g COD, respectively.
And then, we have tests of various operating strategies by the simulate bagasse hydrolyzate, and the substrate including glucose and xylose that ratio is 3:1. The results showed that when the substrate concentration 10 g COD/L, HRT 6 h presents a better performance of hydrogen production., and the HPR,HPE and HY is 0.327 mol/L/d, 39.1% and 8.20 mmol H2/g COD, respectively. Another, we use upflow reactor (UFR) to improve the problem of a poor the CSTR system xylose utilization of a variety of HRT hydrogen production experiment, and the results showed that process of HPE is not better then the CSTR system.
摘要 i
Abstrct ii
目錄 iv
圖目錄 viii
表目錄 ix
第一章 緒論 1
1-1前言 1
1-2研究動機與目的 2
第二章 原理與文獻回顧 5
2-1 生質能源 5
2-1-1 生質能概述 5
2-1-2 生質氫能 6
2-2 纖維物質 6
2-3 纖維物質預處理 8
2-3-1物理法 8
2-3-1-1蒸氣爆裂法 8
2-3-1-2水熱法 9
2-3-2 化學法 10
2-3-2-1鹼前處理 10
2-3-2-2酸前處理 10
2-3-2-3其他 11
2-3-3生物法 11
2-4 纖維素酵素水解 12
2-4-1外切型纖維素分解酵素 13
2-4-2內切型纖維素分解酵素 15
2-4-3葡萄糖苷酵素 16
2-5 固定化酵素 17
2-5-1 固定化酵素之理論 17
2-5-2 固定化技術與方法 18
2-6 反應曲面法 20
2-7 生物產氫 21
2-7-1 光合作用 22
2-7-2光醱酵 25
2-7-3暗醱酵 27
2-8 環境因子對暗醱酵產氫之影響 29
2-8-1 進料基質種類與濃度 30
2-8-2水力滯留時間(HRT) 31
2-8-3有機負荷 32
2-8-4營養鹽及微量金屬 32
2-8-5溫度 32
2-8-6 pH值 33
2-9 暗醱酵產氫系統 35
2-9-1 CSTR 35
2-9-2 UASB 36
第三章 實驗材料與方法 38
3-1 藥品試劑與培養基 38
3-1-1纖維物質材料 38
3-1-2暗醱酵產氫之碳源 38
3-1-3緩衝鹽類 38
3-1-4無機鹽類 38
3-1-5其他 39
3-2 碳源濃度 40
3-2-1 木糖醱酵產氫之不同碳源濃度配方 40
3-2-2葡萄糖與木糖共醱酵產氫之不同碳源濃度配方 40
3-3 分析儀器及方法 41
3-3-1液相組成分析 41
3-3-2氣相組成分析 42
3-3-3還原糖分析 43
3-3-4菌量分析 43
3-3-5緩衝溶液配置 44
3-4 纖維物質組成分析 45
3-4-1全纖維素測定 45
3-4-2纖維素測定 45
3-4-3酸不可溶性木質素含量測定 45
3-4-4酸可溶性木質素含量測定 46
3-4-5醇苯萃取物測定 46
3-5 纖維物質前處理 47
3-5-1常溫鹼浸泡 47
3-5-1-1實驗裝置與方法 47
3-5-1-2實驗設計 47
3-6 前處理過之纖維物質進行酵素水解 49
3-6-1各前處理操作之酵素水解實驗評比 50
3-6-2 基質濃度對酵素水解的影響 50
3-6-3 還原糖產率 50
3-7 固定化酵素 50
3-8 厭氧醱酵批次產氫 51
3-9 厭氧醱酵產氫 52
3-9-1產氫污泥及培養基配方 52
3-9-2 CSTR之產氫操作 53
3-9-3 UFR之產氫操作 53
第四章 結果與討論 54
4-1 蔗渣經前處理之酵素水解 54
4-1-1常溫鹼處理 54
4-1-2基質濃度對酵素水解之影響 59
4-1-3 pH對酵素水解之影響 59
4-2 固定化酵素 61
4-2-1固定化方法 61
4-3 木糖醱酵產氫 64
4-3-1 木糖於不同基質濃度之醱酵產氫 64
4-3-2 木糖於不同基質濃度下醱酵產氫之動力學分析 69
4-4 葡萄糖與木糖共醱酵產氫 69
4-4-1葡萄糖與木糖於不同HRT之共醱酵產氫 69
4-4-2 葡萄糖與木糖於不同基質濃度之共醱酵產氫 (HRT 12 h) 73
4-4-3葡萄糖與木糖於不同基質濃度之共醱酵產氫 (HRT 6 h) 79
4-4-4葡萄糖與木糖於不同HRT之共醱酵產氫(10 g COD/L) 82
4-4-5 有機負荷 87
4-4-6以UFR進行葡萄糖與木糖之共醱酵產氫 88
4-4-6-1 系統以HRT 12 h啟動 88
4-4-6-2 系統以HRT 6 h啟動 89
第五章 結論 95
參考文獻 98
附錄一 110
附錄二 113
附錄三 115
誌謝 117
中文文獻
圖書
王三郎,1994,應用微生物學,高立圖書有限公司。

李國鏞,1992,普通微生物學,九州圖書文物有限公司,P.304。

林秋裕,1996,下水道工程,茂昌圖書有限公司。

林秋裕,1995,環境工程微生物學,國彰出版社。

陳國誠,2000,生物固定化技術與產業應用,茂昌圖書有限公司,p.45

期刊
李國興、張嘉修、林屏杰、林秋裕、吳石乙、洪俊雄,2007,厭氧生物產氫之研發,化工,第54卷第1期,第69-106頁。

吳石乙、白景成、林祺能、陳政群,2004,生質產氫之三相流反應器介紹,化工技術,第12卷第12期,第129-146頁。

林俊杰,1989,微生物菌體之固定化及其應用. 製酒科技專論彙編. 11:141-154

陳文恆,郭家倫,黃文松,王嘉寶,2007,纖維酒精技術之發展。農業生技產業季刊,9,62-69

張嘉修,2009,科學發展2009 年1 月, 433 期

黃啟裕,2008,農業生技產業季刊,植物種苗生技 p.54-60

蔡國均、廖學賢,1997,造紙廢水兩段式生物處理實廠操作經驗談,化工技術,第5卷第6期,第 162-170頁。

碩博士論文
甘乃如,2001,酸鹼度、水力停留時間及食微比對高濃度酒糟廢液生化產氫之影響,國立高雄第一科技大學環境與安全衛生工程系碩士論文。

李晉嘉,2003,以反應曲面法研究生化柴油之最優化酵素合成,大葉大學食品工程學系碩士論文

李國興,2004,以顆粒污泥程序進行高速厭氧醱酵產氫,逢甲大學化學工程學系博士論文。

林祺能,2006,矽膠固定化細胞暗醱酵產氫技術‧博士論文‧逢甲大學化學工程學系‧

吳柔賢,2008,食品廢水之厭氧醱酵產氫‧博士論文‧逢甲大學土木及水利工程博士學位學程‧

周積孚,2004,黑麴菌β-葡萄醣苷酶II之結構基因分析,大同大學生物工程研究所碩士論文

陳子逸,2010,預處理方法對纖維物質酵素水解之影響‧碩士論文‧逢甲大學化學工程學系‧

張仕旻,2001,利用薄膜反應器於高溫厭氧產氫生物程序之研究‧碩士論文‧成奶j學環境工程學系研究所‧

黃郁欣,2006,以創新之攪拌式顆粒污泥床進行厭氧醱酵產氫,逢甲大學化學工程學系碩士論文。

趙禹杰,2004,澱粉及蛋白腖複合基質厭氧醱酵產氫程序之弁鉞?禲E碩士論文‧國立成奶j學環境工程系碩士論文‧

蔡佳蓉,2004,迴流式連續攪拌混合反應槽系統之厭氧產氫‧碩士論文‧逢甲大學水利工程學系。

賴志揚,2008,米飯澱粉醱酵產氫之研究‧碩士論文。逢甲大學化學工程學系‧

賴欣宏,2002,不同環境下完全混合式反應槽厭氧產氫效率及反應動力學之比較研究,國立台中師範學院環境教育研究所碩士論文。

謝裕翔,2011,醱酵產氫之模場操作‧碩士論文‧逢甲大學綠色能源科技碩士學位學程‧

英文文獻

Akkerman I, Janssen M, Rocha J, Wijffels RH. 2002. Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrog Energy 27(11-12): 1195-1208.

Alain Bugat ,"Future Means of Hydrogen Production," WHEC, ,Lyon, France,13-16 June,2006.

APHA. 1997. Standard Methods for the Examination of Water and Wastewater (19th ed.). New York, USA: American Public Health Association.

Bailey JE, Ollis DF. 1986. Biochemical engineering fundamentals. 2nd edn. McGraw-Hill. New York.

Beguin P, Aubert JP. 1994. The biological degradation of cellulose. FEMS Microbiology, 13(1): 25-58.

Benemann JR. 1997. Feasibility analysis of photobiological hydrogen production. Int J Hydrog Energy 22: 979-987.

Benemann JR. 2000. Hydrogen production by microalgae. J Appli Phycol12: 291-300.

Bhat, M.K. and S. Bhat. Cellulose degrading enzymes and their potential industrial applications. Biotechnology Advances,
1997, 15: 583-620。

Brijwani K, Oberoi HS, Vadlani PV. 2010. Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran. Process Biochemistry 45 (1) 120-128.

Brock TD, Madigan MT, Martiko JM, Parker J. 1994. Biology of Microorganisms. 7th ed. Englewood Cliffs: Prentice Hall. Inc.

Chang FY, Lin CY. 2004. Biohydrogen production using an up-flow anaerobic sludge blanket reactor. Int J Hydrogen Energy 29: 33-39.

Chen CC, Lin CY. 2001. Start-up of Anaerobic Hydrogen Producing Reactors Seeded with Sewage Sludge. Acta Biotechnol 21(4): 371-379.

Chibata, I. 1978. Applications of immobilized enzymes and microbial cells. In:Immobilized Enzyme: Research and Development. Chapter 4. Halsted press. New York. p. 148-264.

Chin HL, Chen ZS, Chou CP. 2003. Fedbatch operation using Clostridium acetobutylicum suspension culture as biocatalyst for enhancing hydrogen production. Biotechnol Prog 19: 383-388.

Cosgrove DJ. 1998. Cell Walls: Structures, Biogenesis and Expansion. Plant Physiology, 409-443.

Dabrock B, Bahl H, Gottschalk G. 1992. Parameters affecting solvent production by Clostridium pasteurianum. Appl Envir Microbiol 58(4): 1233-1239.

Das D, Veziroglu TN. 2001. Hydrogen production by biological process: a survey of literature. Int J Hydrogen Energy 26: 13-28.

Desvaux, M., E. Guedon, and H. Petitdemange. 2000. Cellulose catabolism by Clostridium cellulolyticum growing in batch culture on defined medium. Appl. Environ. Microbiol 66: 2461-2470.

Endo G, Noike T, Matsumoto J. 1982. Characteristics of cellulose and glucose decomposition in acidogenic phase of anaerobic disgestion. Proceedings of the American Society of Civil Engineers, 325: 61-68.

Evvyernie D, Yamazaki S, Morimoto K, Karita S, Kimura T, Sakka K, Ohmiya K. 2000. Identification and characterization of Clostridium paraputrificum M-21, a chitinolytic, mesophilic and hydrogen producing bacterium. J Biosci Bioeng 89(6): 596-601.

Fang Wang, Rong-Xin Su, Wei Qi, Ming-Jia Zhang, and Zhi-Min He, 2010. Preparation and activity of bubbling-immobilized cellobiase within chitosan-alginate composite. Preparative Biochemistry & Biotechnology, 40:57–64.

Fennema, O. R. 1985. Food Chemistry. Marcel Dekker Inc. New York. p.434-435.

Gray KA, Zhao L, Emptage M. 2006. Bioethanol. Current Opinion in Chemical Biology, 10(2): 141-146.

Kalia VC, Jain SR, Kumar A, Joshi AP. 1994. Fermentationof bio-waste to H2 by Bacillus lichenoformis. World J Microbiol Biotechnol 10: 224-227.

Koku H, Eroglu I, Gunduz U, Yucel M, Turker L. 2002. Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides. Int J Hydrog Energy 27(11-12): 1315-1329.

Kraut, J. 1988. “How do enzymes eork? ”, Sicence, 242:533-540.

Kumar N, Das D. 2000. Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochem 35(6): 589-593.

Lee, R. L., Charles, E. W., Tillman, U. G. 1999. Biocommodity engineering. Biotechnol. Prog. 15:777-793

Lettinga G, Van Velsen AFM, Hobma SW, De Zeuw W, Klapwijk A. 1980. Use of the upflow sludge blanket (USB) reactor concept for biological waste water treatment, especially for anaerobic treatment. Biotechnol Bioeng 22: 699-734.

Lin CY, Chang RC. 1999. Hydrogen production during the anaerobic acidogenic conversion of glucose. J Chem Technol Biotechnol 74: 498-500.

Lindblad P, Christensson K, Lindberg P, Pinto F, Tsygankov A. 2002. Photoproduction of H2 by wildtype Anabaena PCC 7120 and a hydrogen uptake deficient mutant: From laboratory experiments to outdoor culture.International Journal of Hydrogen Energy 27: 1271-1281.

Lopes Pinto, F.A. Lopes Pinto, O. Troshina and P. Lindblad, 2002. A brief look at three decades of research on cyanobacterial hydrogen evolution, International Journal of Hydrogen Energy 27: 1209-1215.

Lynd LR, Weimer PJ, Zyl WH, Pretorius IS. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66(3): 506-577

Malina JF, Pohland JFG. 1992. Design of anaerobic processes for the treatment of industrial and municipal wastes. Technomic Pub Co. USA.

Mallette MF, Reece P, Dawes EA. 1974. Culture of clostridium pasteurianum in defined medium and growth as a function of sulfate concentration. Appl Microbiol 28 (6): 999-1003.

Montague L, Slayton A, and Lukas J. 2002. Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. NREL Technical Report; NREL/TP-510-32438.

Miyake J. 1998. The science of biohydrogen: An energetic view. In BioHydrogen. Zaborsky, OR Ed. Plenum Press: 7-18.

Miyake J, Miyake M, Asada Y. 1999. Biotechnological hydrogen production: research for efficient light energy conversion. J Biotechnol 70: 89-101.

Miyamoto K. 1997. Renewable biological systems for alternative sustainable energy production. 1st edn. Food and Agriculture Organization of the United Nations.

Nochur, S. V., A. L. Demain, and M. F. Roberts. 1992. Carbohydrate utilization by Clostridium thermocellum: importance of internal pH in regulating growth. Enzyme Microb. Technol 14: 338-349.

Palazzi E, Fabino B, Perego P. 2000. Process development of continuous hydrogen production by Enterobacter aerogenes in a packed column reactor. Bioprocess Eng 22: 205-13.

Rachman MA, Nakashimada Y, Kakizono T, Nishio N. 1998. Hydrogen production with high yield and high evolution rate by self-flocculated cells of Enterobacter aerogenes in a packed-bed reactor. Appl Microbiol Biotechnol 49: 450-454.

Sanchez C, 2009. Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnology Advances, 27(2): 185-194.

Schmidt JE, Ahring BK. 1996. Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors. Biotechnol Bioeng 49(3): 229-246.

Schwartz, R. D. and Keller, F. A. 1982. Acetic acid production by Clostridium thermoacetium in pH-controlled batch fermentation at acidic pH. Appl Environ Microbiol 43: 1385-1392.

Smith GD, Ewart GD, Tucker W. 1992. Hydrogen production by cyanobacteria. Int J Hydrog Energy 17: 695-698.

Sun Y, Cheng J. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83(1): 1-11.

Taguchi F, Hasagawa K, Saito-Taki T, Hara K. 1996a. Simultaneous production of xylanase and hydrogen using xylan in batch culture of Clostridium sp. strain X53. J Ferment Bioeng 81: 178-180.

Taguchi F, Yamada K, Hasegawa K, Saito-Taki T, Hara K. 1996b. Continuous hydrogen production by Clostridium sp. No. 2 from cellulose hydrolysate in an aqueous two-phase system. J Ferment Bioeng 82:80-83.

Tanaka M, Matsuno R. 1990. n-Butylamine and acid-steam explosion pretreatments of rice straw and hardwood: effects on substrate structure and enzymatic hydrolysis. Enzyme Microbiology Technology, 12(3): 190-195.

Terracciano, J. S., W. J. A. Schreurs, and E. R. Kashket. 1987. Membrance H+ conductance of Clostridium thermoaceticum and Clostridium acetobutylicum: evidencefor electrogenic Na+/H+ antiport in Clostridium thermoaceticum. Appl. Environ.Microbiol 53: 782-786.

Terry TT. 1997. Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends in Biotechnology, 15(5): 160-167.

Thompson DN, Chen HC, Grethlein HE. 1992. Comparison of pretreatment methods on the basis of available surface area. Bioresource Technology, 39(2): 155-163.

Van-Ginkel S, Sung S, Lay JJ. 2001. Biohydrogen production as a function of pH and substrate concentration. Environ Sci Technol 35: 4726-4730.

Wei CJ, Cheng CY. 1985. Effect of hydrogen peroxide pretreatment on the structural features and the enzymatic hydrolysis of rice straw. Biotechnology and Bioengineering, 27(10): 1418-1426.

Weil J, Westgate P, Kohlmann K, Ladisch MR. 1994. Cellulose pretreatments of lignocellulosic substrates. Enzyme Microbiology Technology, 16(11): 1002-1004.

Wood TM, Bhat KM. 1988. Methods for measuring cellulase activities. Methods in Enzymology, 160: 87-112.

Wooley H and Galvez A. 1999. Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis current and futuristic scenarios. NREL Technical Report; NREL/TP-580-26157.

Xu F, Sun JX, Sun RC, Fowler P, Baird MS. 2006. Comparative study of organosolv lignins from wheat straw. Industrial Crops and Products, 23(2): 180-193.

X.Z. Shu, K.J. Zhu, 2000. A novel approach to prepare tripolyphosphate:chitosan complex beads for controlled release drug delivery. International Journal of Pharmaceutics 201 51–58

Yan RT, Zhu CX, Golemboski C, Chen JS. 1988. Expression of solvent-forming enzymes and onset of solvent production in batch culture of Clostridium butyricum. Appl Environ Microbiol 54: 642-648.

Yokoi H, Ohkawara T, Hirose J, Hayashi S, Takasaki Y. 1995. Characteristics of hydrogen production by aciduric Enterobacter aerogenes strain HO-39. J Ferment Bioeng 80: 571-574.

Yokoi H, Maeda Y, Hirose J, Hayashi S, Takasaki Y. 1997. H2 Production by immobilized cells of Clostridium butyricum on porous glass beads. Biotechnol Tech 11: 136-143.

Yokoi H, Mori S, Hirose J, Hayashi S, Takasaki Y. 1998. H2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M-19. Biotechnol Lett 20: 895-899.

Yu HQ, Mu Y. 2006. Biological hydrogen production in a UASB reactor with granules. II: reactor performance in 3-year operation. Biotechnol Bioeng 94(5): 988-995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top