跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/19 00:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林聖惟
研究生(外文):Sheng-wei Lin
論文名稱:以常壓電漿合成可撓性氧化鋰鐵薄膜之製備、電化學性質與鋰離子傳導機制之研究
論文名稱(外文):A study on preparation, electrochemical properties and lithium conduction mechanism of flexible atmospheric pressure plasma-synthesized LixFeOyCz thin film
指導教授:林永森林永森引用關係
指導教授(外文):Yung-sen Lin
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:114
中文關鍵詞:常壓電漿氧化鋰鐵電解質電致色變
外文關鍵詞:APPJElectrochromicIron and Lithium oxideElectrolyte
相關次數:
  • 被引用被引用:0
  • 點閱點閱:260
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
電致色變(Electrochromism, EC )材料其具有低驅動電壓、記憶性及有較短的響應時間等,且於市場走向可撓式電致色變元件也日益受到重視,又因其具有輕、薄、耐衝擊、可撓曲性及能夠大量生產(Roll to Roll)等優勢,故在未來具有較大的發展潛力。近年來,在電致色變元件上離子傳導層中的無機氧化物的材料方面榮獲研究學者們高度討論且考慮取代以往的有機高分子,進而使得電致色變元件變得更輕薄、環境耐候性及有較長的循環使用壽命。
本研究係利用常壓電漿(Atmospheric Pressure Plasma)方式,以(C2H5)2Fe與(CH3)3COLi為前驅物單體於PET/ITO上製備可撓性氧化鋰鐵薄膜。在氧化鐵方面,它本身具有良好的離子儲存能力,但由於本身材料性質的離子植入遷出可逆性(Reversibility)差,離子傳導率(Ion conductivity)低、體積變化率大,因此藉由混合鐵、鋰以改善薄膜材料可逆性、提升穿透率並且降低體積變化。
故本研究使用常壓電漿製備可撓性氧化鋰鐵薄膜材料,並利用循環伏安法、階梯電位法、紫外光-可見光光譜儀及交流阻抗分析儀來探討材料電化學、光學及物性。除了上述方式以外還利用冷場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FE-SEM )分析薄膜厚度與表面形貌,再藉由化學分析影像能譜儀(Electron Spectroscopy for Chemical Analysis, ESCA)分析氧化鋰鐵薄膜材料之化學成份組成。
本研究已成尼Q用常壓電漿鍍膜方式,於可撓性塑膠基板上製備出具有良好的離子植入遷出特性,可逆性達98.4%、穿透率可至85%、離子傳導率為1.0×10-8S/cm,並經過200Cycles之循環伏安測試之後,仍具有相當良好的穩定性。
Electrochromism (EC) material with a low drive voltage, memory, and a shorter response time, and market trends can be flexible electrochromic components are gaining in important, because of its lightweight、flexibility and mass production (can use reels of roll to roll production) and other advantages, it has a large potential for development in the future. In recent years, the ion conduction layer of inorganic oxide materials in electrochromic element won the researchers have a high degree of discussion and consideration to replace the organic polymer, and thus makes the electrochromic elements become thinner、environmental weathering resistance and longer cycle life.

In this study, use the atmospheric pressure plasma synthesized method to utilize monomer (C2H5) 2Fe and (CH3) 3COLi preparation of flexible thin film for iron-lithium oxide deposited on PET / ITO (Polyrthyleneterephthate/Indium Tin Oxide) plastic substrate. In iron oxide, althought it has a good ion storage capacity, but the material properties has the poor reversibility of intercalation/de-intercalation, change of volume. So by mixing iron and lithium to improve the film of ions reversibility, good contrast od transmittance and reduce the volume change .In this study, using APPJ preparation of flexible iron- lithium oxide thin film materials, and use of cyclic-voltammetry and step potential method, the UV - visible spectroscopy method and AC- impedance analyze to investigate the electrochemical properties、optical properties and physical properties .In addition to the described above, using FE-SEM analysis of the film thickness and surface morphology, and then by ESCA to analysis the chemical configuration in the iron-lithium oxide thin film material.

This results of this study prove the successful coating of iron-lithium oxide thin film on the PET/ITO plastic substrate by atmospheric plasma process. The thin film has good reversibility of the ions intercalation and de-intercalation can reach to 98.4%, the transmittance can reach to 85% under a wavelength of 550nm, ion conductivity can reach to 1.00×10-8S/cm and the 200cycles of testing by cyclic- voltamogram method ,the LixFeOyCz thin film still had good stability.
摘要…………………………………………………………..…i
Abstract………………………………………………………..iii
表目錄…………………………………………………………ix
圖目錄………………………………………………………….x
符號說明……………………………………………………..xiv
第一章 前言
1-1概論………………………………………………………...1
1-2 研究動機與目的………………………………………......3
第二章 文獻回顧
2-1電致色變元件介紹…………………..……..……………...7
2-1-1電解質(離子傳導層)………………………………….9
2-2氧化鐵簡介………………………………………………..11
2-2-1氧化鐵薄膜製程方法…………………………….….11
2-3鋰離子傳輸機制探討……………………………………..12
2-4常壓電漿(Atmospheric Pressure Plasma)………………...14
第三章 實驗方法與步驟
3-1 實驗流程…………………………………….…………...18
3-1-1實驗基材前處理………………………………………20
3-1-2 實驗材料………………………………….…………..21
3-1-3 實驗儀器設備………………………………………...22
3-2 常壓電漿鍍膜系統………………………………………23
3-3薄膜之電化學性質探討………………………………….26
3-3-1 循環伏安法 (Cyclic Voltammetry)…………………26
3-3-2交流阻抗分析 (AC-Impedance)…………………….29
3-3-3 階梯電位分析 (Potential Step)……………….…….32
3-3-4 鋰離子(Li+)植入/遷出計算…………………………33
3-4 薄膜基本性質分析…………………………………........34
3-4-1X-ray低掠角繞射分析(XRD)……………….……….34
3-4-2薄膜厚度測量(FE-SEM)………………………..……35
3-4-3薄膜沉積速率分析…………………….…….………36
3-4-4化學分析影像能譜儀量測(ESCA)……….….….…..36
第四章 結果與討論
4-1製備參數於可撓性氧化鋰鐵薄膜光學性質之影響….…37
4-1-1 不同鐵、鋰混合百分比之影響……………………..37
4-1-2 不同氧氣流量之影響……………………….………40
4-2 製備參數對可撓性氧化鋰鐵薄膜電化學性質影響……43
4-2-1不同鐵、鋰混合百分比之影響……………………..44
4-2-1-1鋰離子初遷出電量分析………………………...44
4-2-1-2 循環伏安曲線分析…………………………….46
4-2-1-3 可見光穿透率之影響………………………….49
4-2-1-4階梯電位法與電量之影響………….…………..51
4-2-1-5鋰離子植入參數X值計算……………….…… 53
4-2-1-6交流阻抗分析與離子傳率……………………...54
4-2-2不同氧氣流量之影響……………………….……….58
4-2-2-1 鋰離子初遷出分析 …………………………...58
4-2-2-2 循環伏安曲線分析…………………………….60
4-2-2-3 可見光穿透率之影響………………………….62
4-2-2-4階梯電位法與電量之影響……………………...63
4-2-2-5鋰離子植入參數X值計算…………….……… 65
4-2-2-6交流阻抗分析與離子傳率……………………...66
4-3可撓性氧化鋰鐵薄膜物性……………………………….69
4-3-1不同鐵、鋰混合百分比之影響………………………69
4-3-1-1薄膜厚度及沉積速率…………………………...69
4-3-1-2薄膜表面型態分析……………………………...71
4-3-1-3薄膜表面之化學元素及成分分析……………...73
4-3-1-4 X-ray繞射分析…………………………………79
4-3-2不同氧氣流量之影響……………………………….80
4-3-2-1薄膜厚度及沉積速率…………………………...80
4-3-2-2薄膜表面型態分析……………………………...82
4-3-2-3薄膜表面之化學元素及成份分析……………...84
4-3-2-4 X-ray繞射分析…………………………………89
第五章 結論………………………………………………….90
參考文獻……………………………………………………...92
[1]Hammarberg, E. and A. Roos, Thin Solid Films 2003, 422, 222.
[2]何國川,“電化學與無窗簾時代”,化工,第37 卷,第3 期,1990
年,32-41 頁。
[3]焦小浣、胡文玲、陳玲,“光窗透明材料的實驗研究”,太陽能學報,第8 卷,第4 期,1997 年,365-370 頁。
[4]S.E. Selkowitz and C.M. Lampert, SPIE, (1988) 22-45.
[5]C.G. Granqvist, E. Avendano and A. Azens, Thin Solid Films, 442 (2003) 201-211.
[6]http://www.mercedes-benz.com/.
[7]http://dcwww.epfl.ch/.
[8]G. Brauer, “Large Area Glass Coating”, Surface and Technology, 112(1999)358-365.
[9]M.Filipescu, S.Orlando,V.Russo,A.Lamperti,A.Purice,A.Moldovan, M. Dinescu, RCA Review 253 (2007)8258–8262.
[10]Z. Dimitrova, D. Gogova, Mater. Res. Bull. 40 (2005) 333–340.
[11]Wright P.V.,J. Macromol.Sci.Chem.A26,519-550 (1989)
[12]C.G. Granqvist, E. Avendano and A. Azens, Thin Solid Films, 442(2003) 201-211.
[13]P. M. S. Monk, R. J. Mortimer and D. R. Rosseinsky, Electrochromism :Fundaments and Applications, VCH, Weinheim (1995) 45-46.
[14]Farrington G.C. and J.L Briant. Master. Res Bull. 13, 763-773 (1978).
[15]Truong V.-V., F.G.Girouard and P.V.Ashrit, in Large-area Chromogenics:Materials and Devices for Transmittance Control,edited by C.M.Lampert and C.G.Granqvist(SPIE Opt. Engr.Press,Bellingham,USA,1990),Vol.IS4.pp.386-401.
[16]Burke L.D. and O.J. Murphy,J. Electroanal.Chem.109,379-383 (1980)
[17]Gampet G.,S.J.Wen, S.D Han, M.C.R Shastry,J.Portier, C. Guizard, L. Cot, Y. Xu and J. Salardenne, Master. Sci. Engr. B 18, 201-208 (1993).
[18]J.H. Kennedy, D.J. Dunnwald, Electrochem. Soc. 130 (1983) 2013.
[19]P.S. Patil, C.D. Lokhande, S.H. Pawar, Bull. Electrochem. 5 (1989) 271.
[20]S. Kenichi, J. Akinide, T. Kiyohide, Japan Patents 61, 24 (1986) 147.
[21]F. Sanehiro, Y. Sejji, N. Toshiyuki, Japan Patents 62, 160 (1981) 651.
[22]L.I. Maissel, R. Glang (Eds.), Handbook of Thin Film Technology,
McGraw-Hill, New York, 1970.
[23]K.L. Chopra, L.K. Malhotra (Eds.), Thin Film Technology and pplication, McGraw-Hill, New Delhi, 1985.
[24]K.M.Abraham,D.M.Pasquariello,and E.B.Willstaedt, J. Electrochem.Soc.,137,743 (1990)
[25]Z.C.Wang,X.F.Hu,P.O.Kall,Ulf Helmersson,Chem.Master.13, 2001,1976-1983.
[26]G.J,C.J.Capozzi,J.J.Xu Journal of The Electrochemical Society
[27]M.Hibino,J.Terashima,T.Yao, J. Electrochem. Soc. 154,12,(2007),A1107-A1111.
[28]M.A.Garcia-Lobato,A.I. Martinez,R.A.Zarate,M.C.Roman.Applied Physics Express 3 (2010) 115801
[29]A. Evdou. L.Nalbandian, V.T.Zaspalis, C.Agrafiotis, S.Lorentzou, A.G.Konstandopoulos Chemical Process Engineering Research Institute CPERI/CERTH P.O.Box 361,57001, Thermi-Thessaloniki, Greece 87-90 (2002).
[30]S.U.M.Khan and J.Akikusa, J Phys. Chem. B., 103 (1999)7 184-7189
[31]M. Ouyang, H Hiraoka,Master. Res.Bull 32 (8)(1997) 1099.
[32]M.A. Gondal, A Hameed, Z.H. Yamani, A. Suwaiyan, Chem. Phys. Lett. 385 (2004) 111-115.
[33]A. Hameed,M.A. Gondal, Z.H. Yamani, Catal. Comm.5 (2004) 715.
[34]T. Maruyama, T. Kanagawa, J. Electrochem. Soc.143 (1996) 1675.
[35]F. Yubero, M. Ocana, A. Justo, L. Contreas, A. Gonzales, J. Vac. Sci. Technol., A, Vac. Surf. Film 18 (5) (2000) 2244.
[36]W. Lu, D. Yang, Y. Sun, Y.Guo, S. Xie, H. Li, Appl. Surf. Sci 147 (1-4) (1999) 39.
[37]N.Ozer,F. Tepehan, Sol. Energy Master. Sol.Cells 56(2) (1998) 141.
[38]L. Armelao,G. Granozzi, E. Tondello, P. Colombo, G. Principi, P. Lottici, G. Antonioli, J.Non-Cryst.Solids 192-193 (1995) 435.
[39]T. Stenberg, P. Vuoristo, J.Keranen, T. Mantyla, M. Buchler, S. Virtanen, P. Suhmuki,H. Bohni, Thin Solid Films 312 (1-2) (1998) 46.
[40]E.L. Miller, B. Marsen, D. Paluselli, R.E. Rocheleau, Electrochemical and Soild-State Letters, 8 (2005) A247.
[41]E.L. Miller, R.E. Rocheleau, X.M. Deng, International Journal of Hydrogen Energy 28 (2003) 615.
[42]E.L. Miller, D. Paluselli, B. Marsen, R.E. Rocheleau,Solar Energy Materials and Solar Cells, 88 (2005) 131-144.
[43]A. Schutze et al., IEEE TRANSACTIONS ON PLASMA SCIENCE 1998, 26.
[44]J.R. Roth and Y. Ku, in Abstracts IEEE Int. Conf. Plasma Sci., Madison, WI 1995, 251.
[45]Pierre-Luc et al., Plasma Processes and Polymers 2005, 2, 263.
[46]庄全超,徐守冬,邱祥云,永麗,方亮,孫世剛,〝鋰離子電池的電化學阻抗譜分析〞,Prosess In Chemistry,Vol.22 No.6 Jun.,2010.
[47]Thomas M G S R, Bruce P G, Goodenough J B. J. Electrochem. Soc. 1995, 142 :2882-2890.
[48]Y. Gao, Surface & Coatings Technology SCT-12442 2006, 3.
[49]V. Hopfe et al., Chemical Vapor Deposition 2005, 11, 510.
[50]X. Zhu, F.A. Khonsari, C.P. Etienne, M. Tatoulian, Plasma Process. Polym. 2005, 2, 407.
[51]莊達人, 高立出版社, 2006年6月。
[52]Diener Plasma Beam常壓電漿機使用手冊。
[53]Se-Hee Lee et al., American Insstitute of Physics 2000, 76, 26.
[54]Granqvist,C.G., Handbook of Inorganic Electrochromic Materials. Elsevier Scirnce B. V. 1995, Chapter 1.
[55]http://en.wikipedia.org/wiki/Iron(III)_oxide
[56]林麗娟,“X光的繞射原理及其應用”, X光材料分析技術與應用專題。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top