跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/01/31 06:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王嘉瑋
研究生(外文):Chia-Wei Wang
論文名稱:同步輻射X光還原法合成奈米銀修飾複合材料及其生醫與抗菌應用
論文名稱(外文):Biomedical and Antimicrobial Applications of Silver Decorated Nanocomposites by Synchrotron X-ray Reduction
指導教授:林中魁
指導教授(外文):Chung-Kwei Lin
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:125
中文關鍵詞:聚苯乙烯微球奈米銀修飾聚苯乙烯微球奈米銀修飾生物活性玻璃基因傳遞同步輻射X光抗菌
外文關鍵詞:transgene deliverySynchrotron X-rayspolystyrene spheresAg-PS nanocompositesAg-BG nanocompositesantimicrobial
相關次數:
  • 被引用被引用:0
  • 點閱點閱:425
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用同步輻射X光還原法(Synchrotron X-rays irradiation method),成功地以一步驟合成聚苯乙烯微球(PS spheres)、奈米銀修飾聚苯乙烯微球(Ag-PS) 和奈米銀修飾生物活性玻璃(Ag-BG)之奈米複合材料。以苯乙烯、球型/多孔型生物活性玻璃和硝酸銀(AgNO3)為前驅物,並且加入聚乙烯吡咯烷酮(Polyvinylpyrrolidone,PVP)當作表面活性劑,合成複合材料。Ag-PS奈米複合材料的合成機制包含乙醇溶液中的自由基生成,苯乙烯的聚合,以及金屬銀的還原。以調整曝光時間、苯乙烯濃度、表面活性劑量,系統性地檢測聚苯乙烯的大小分佈與分子量。
實驗結果顯示,聚苯乙烯微球具有狹窄的分子量分佈(PDI)、均勻的球狀形貌和對人體細胞的低毒性。在乙醇溶液中合成多晶的奈米銀顆粒得到直徑範圍約4至12 nm的顆粒大小。在Ag-PS奈米複合材料中,調整Ag離子對苯乙烯單體之體積比比例(5/1~10/1)可獲得更多奈米顆粒量修飾於聚苯乙烯微球表面上。由於聚苯乙烯微球擁有負值之界面電位(Zeta potential),奈米銀顆粒的分佈位置接近或附著於聚苯乙烯微球表面。另外,以噴霧熱解法製備之球型或多孔型生物活性玻璃作為銀修飾複合材料之基板,其生物相容性之特質令其為生醫應用上具潛力之奈米材料。在Ag-BG奈米複合材料中,奈米銀顆粒的分佈和直徑大小與Ag-PS奈米複合材料中的差異不大。
陽離子苄乙基三甲基铵單體經過光聚合形成低毒性的正性TMA-PS微球作為基因傳遞。以Ag-PS奈米複合材料抵抗革蘭氏陰性與革蘭氏陰性陽性之菌體(大腸桿菌和金黃色葡萄糖球)展現極佳的抗菌效果。此外,Ag-BG奈米複合材料只對於大腸桿菌具有抗菌能力。
In this research, polystyrene spheres, silver nanoparticles decorated polystyrene nanocomposites and silver nanoparticles decorated bioactive glass nanocomposites have been successfully synthesized using synchrotron X-rays irradiation method in a one-step process. Styrene monomer, spherical/mesoporous bioactive glass, and silver nitrate were used as precursors. Polyvinylpyrrolidone was included as surfactant for all samples. The proposed mechanism of the formation of the Ag-PS nanocomposite spheres involves the generation of radicals in the aqueous solution to induce PS polymerization and the reduction of Ag. The distribution of the sizes and the molecular weight of the core PS spheres in the Ag-PS nanocomposite spheres were systematically examined as a function of irradiation time, concentration of styrene, and amount of PVP.
Experimental results show that PS spheres exhibited low polydiversity value, uniformly spherical shapes and low cytotoxicity to human cells. Polycrystalline silver nanoparticles were synthesized in aqueous solution with particle size range from 4 to 12 nm in diameter. In Ag-PS nanocomposites, increasing Ag+-to-styrene volume ratios (5/1~10/1) enabled the increase of silver nanoparticles amount decorated around PS spheres. The silver nanoparticles were either close or on the surface of PS spheres due to negative zeta potential values. Furthermore, spherical and mesoporous bioactive glass produced by spray pyrolysis method were selected as templates in silver decorated nanocomposites as potential biocompatible nanomaterials in biomedical applications. The distribution and size of the silver nanoparticles decorated on Ag-BG nanocomposites have little differences compared with the ones in Ag-PS nanocomposites.
The cationic (vinylbenzyl)trimethylammonium (TMA) monomer was photopolymerized to form positively charged TMA-PS spheres as gene carriers with uniquely low cytotoxicity. Ag-PS nanocomposites demonstrated excellent antimicrobial ability when challenged against Gram negative and Gram positive bacteria (Escherichia coli and Staphylococcus aureus). Additionally, Ag-BG nanocomposites exhibited antimicrobial activity only against Escherichia coli.
ACKNOWLEDGEMENTS I
中文摘要 III
ABSTRACT V
CONTENTS VII
List of Tables IX
List of Figures X
Chapter 1 INTRODUCTION 1
Chapter 2 LITERATURE REVIEW 3
2.1 Polystyrene synthesis techniques 3
2.2 Bioactive glass synthesis techniques 8
2.3 Silver nanoparticles reduction techniques 12
2.4 Photoinitiated synthesis by synchrotron X-rays 15
2.5 Biomedical applications for PS spheres, Ag-PS and Ag-bioactive glass 17
Chapter 3 EXPERIMENTAL PROCEDURES 22
3.1 Experimental preparation 22
3.2 Preparation of polystyrene spheres 27
3.3 Preparation of silver-polystyrene nanocomposites 28
3.4 Preparation of silver-bioactive glass nanocomposites 29
3.5 Cell culture 30
3.6 Materials characterization 30
3.6.1 Transmission electron microscopy (TEM) 30
3.6.2 Dynamic light scattering (DLS) and zeta-potential analysis 31
3.6.3 Gel permeation chromatography (GPC) 32
3.6.4 Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) 32
3.6.5 Cytotoxicity tests 33
3.6.6 Ultraviolet-visible spectroscopy (UV-Vis) 34
3.6.7 Fourier transformed infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) 34
3.6.8 X-ray related analysis - X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD) and selected-area diffraction (SAD) 36
3.7 Transgene delivery test 39
3.8 Antibacterial assay 40
Chapter 4 RESULTS AND DISCUSSIONS 42
4.1 Polystyrene spheres, PS 42
4.1.1 Morphology observation of PS 44
4.1.2 Size identification and molecular weight of PS 46
4.1.3 Thermal analysis of PS 50
4.1.4 Zeta potential and Cytotoxicity of PS 52
4.1.5 Transgene delivery of PS 54
4.2 Silver-polystyrene nanocomposites, Ag-PS 57
4.2.1 Morphology observation of Ag-PS 59
4.2.2 UV-Vis spectroscopy of Ag-PS 65
4.2.3 XAS analysis of Ag-PS 69
4.2.4 Structural investigation of Ag-PS 70
4.2.5 Antibacterial assay of Ag-PS 80
4.3 Silver-bioactive glass nanocomposites, Ag-BG 83
4.3.1 Morphology observation of Ag-BG 83
4.3.2 UV-Vis spectroscopy of Ag-BG 88
4.3.3 Structural investigation of Ag-BG 91
4.3.4 Antibacterial assay of Ag-BG 94
Chapter 5 CONCLUSIONS 97
Chapter 6 FUTURE WORKS 99
REFERENCES 102
. V. Siva Kumar, B. M. Nagaraja, V. Shashikala, A. H. Padmasri, S. Shakuntala Madhavendra, B. David Raju and K. S. Rama Rao, “Highly Efficient Ag/C Catalyst Prepared by Electro-chemical Deposition Method in Controlling Microorganisms in Water”, Journal of Molecular Catalysis A: Chemical, 223 (2004) 313-319.
. K. Kim, K. L. Kim and S. J. Lee, “Surface Enrichment of Ag Atoms in Au/Ag Alloy Nanoparticles Revealed by Surface Enhance Raman Scattering Spectroscopy”, Chemical Physics Letters, 403 (2005) 77-82.
. J. Zhao, Y. Luo and G. Wang, “Tight-Binding Study of Structural and Electronic Properties of Silver Clusters”, European Physical Journal D, 14 (2001) 309-316.
. J. S. Kim, E. Kuk, K N Yu, J. H. Kim, S. J. Park, H. J. Lee, S. H. Kim, Y. K. Park, Y. H. Park, C. Y. Hwang, Y. K. Kim, Y. S. Lee, D. H. Jeong and M. H. Cho, “Antimicrobial Effects of Silver Nanoparticles”, Nanomedicine: Nanotechnology, Biology, and Medicine, 3 (2007) 95-101.
. C. G. Tian, E. B. Wang, Z. H. Kang, B. D. Mao, C. Zhang, Y. Lan, C. L. Wang and Y. L. Song, “Synthesis of Ag-Coated Polystyrene Colloids by an Improved Surface Seeding and Shell Growth Technique”, Journal of Solid State Chemistry, 179 (2006) 3270-3276.
. G. Schneider and G. Decher, “From Functional Core/Shell Nanoparticles Prepared via Layer-by-Layer Deposition to Empty Nanospheres”, Nano Letters, 4 (2004) 1833-1839.
. T. G. Shutava, S. S. Balkundi, P. Vangala, J. J. Steffan, R. L. Bigelow, J. A. Cardelli, D. P. O’Neal and Y. M. Lvov, “Layer-by-Layer-Coated Gelatin Nanoparticles as a Vehicle for Delivery of Natural Polyphenols”, ACS Nano, 3 (2009) 1877-1885.
. Z. J. Jiang and C. Y. Liu, “Seed-Mediated Growth Technique for the Preparation of a Silver Nanoshell on a Silica Sphere”, Journal of Physical Chemistry B, 107 (2003) 12411-12415.
. H. H. Huang, X. P. Ni, G. L. Loy, C. H Chew, K. L. Tan, F. C. Loh, J. F. Deng and G. Q. Xu, “Photochemical Formation of Silver Nanoparticles in Poly(N-vinylpyrrolidone)”, Langmuir, 12 (1996) 909-912.
. D. Z. Wu, X. W. Ge, Y. H. Huang, Z. C. Zhang and Q. A. Ye, “Gamma-Radiation Synthesis of Silver-Polystyrene and Cadmium Sulfide-Polystyrene Nanocomposite Microspheres”, Materials Letters, 57 (2003) 3549-3553.
. C. M. Doudna, M. F. Bertino, F. D. Blum, A. T. Tokuhiro, D. Lahiri-Dey, S. Chattopadhyay and J. Terry, “Radiolytic Synthesis of Bimetallic Ag-Pt Nanoparticles with a High Aspect Ratio”, Journal of Physical Chemistry B, 107 (2003) 2966-2970.
. G. Odian, “Principles of Polymerization: Fourth Edition”, Wiley-Interscience, John Wiley & Sons, Inc. (2004).
. S. M. Tinetti, B. J. Faulkner, R. M. Nelson and D. B. Priddy, “Approaches to Branched Polystyrene Using Bulk Free-Radical Polymerization”, Journal of Applied Polymer Science, 64 (1997) 683-687.
. S. Salehpour, M. A. Dube and M. Murphy, “Solution Polymerization of Styrene Using Biodiesel as a Solvent: Effect of Biodiesel Feedstock”, Canadian Journal of Chemical Enginnering, 87 (2009) 129-135.
. Y. J. Kim, K. S. Kim and S. H. Cho, “Synthesis of Polystyrene Microspheres by Precipitation Polymerization in Polymer Solution”, Polymer (Korea), 21 (1997) 347-351.
K. Kotti and C. Kiparissides, “Synthesis of Composite Polystyrene/Silica Nanoparticles via Precipitation and Emulsion Polymerization Methods”, Macromolecular Reaction Engineering, 4 (2010) 347-357.
. M. Tanaka, T. Takahashi and Isao Kimura, “Effect of Double Agitation on Particles Size in Suspension Polymerization of Styrene with a Loop Reactor”, Chemical Engineering and Technology, 19 (1996) 97-102.
. A. Mathew and P. C. Deb, “Synthesis of Spherical Copolymer Beads of Styrene-Maleic Anhydride by Aqueous Suspension Polymerization”, Journal of Polymer Science: Part A: Polymer Chemistry, 34 (1996) 1605-1607.
. S. E. Shim, Y. J. Cha, J. M. Byun and S. Choe, “Size Control of Polystyrene Beads by Multistage Seeded Emulsion Polymerization”, Journal of Applied Polymer Science, 71 (1999) 2259-2269.
. H. G. Oh, H. Shin, H. Jung, B. H. Lee and S. Choe, “Control of Molecular Weight of Polystyrene Using the Reverse Iodine Transfer Polymerization (RITP) – Emulsion Technique”, Journal of Colloid and Interface Science, 353 (2011) 459-466.
. I. Miloševic, V. Mauroy, H. Dabboue, S. Serieye, F. Warmont, J. P. Salvetat, M. L. Saboungi, and S. Guillot, “Synthesis and Size Control of Polystyrene Nanoparticles via ‘Liquid Crystalline’ Nanoemulsion”, Microporous and Mesoporous Materials, 120 (2009) 7-11.
. H. Shiho and N. Kawahashi, “Iron Compounds as Coating on Polystyrene Latex and as Hollow Spheres”, Journal of Colloid and Interface Science, 226 (2000) 91-97.
. N. Kawahashi and C. Persson, “Zirconium Compounds as Coating on Polystyrene Latex and as Hollow Spheres”, Journal of Materials Chemistry, 1 (1991) 577-582.
. N. Kawahashi and H. Shiho, “Copper and Copper Compounds as Coatings on Polystyrene Particles and as Hollow Spheres”, Journal of Materials Chemistry, 10 (2000) 2294-2297.
. X. Ding, Y. Jiang, K. Yu, H. Bala, N. Tao, J. Zhao and Z. Wang, “Silicon Dioxide as Coating on Polystyrene Nanoparticles in situ Emulsion Polymerization”, Materials Letters, 58 (2004) 1722-1725.
. A. J. Paine, W. Luymes and J. McNulty, “Dispersion Polymerization of Styrene in Polar Solvents. 6. Influence of Reaction Parameters on Particle Size and Molecular Weight in Poly(N-vinylpyrrolidone)-Stabilized Reactions”, Macromolecules, 23 (1990) 3104-3109.
. K. P. Lok and C. K. Ober, “Particle Size Control in Dispersion Polymerization of Polystyrene”, Canadian Journal of Chemistry, 63 (1985) 209-216.
. C. M. Tseng, Y. Y. Lu, M. S. El-Aasser and J. W. Vanderhoff, “Uniform Polymer Particles by Dispersion Polymerization in Alcohol”, Journal of Polymer Science: Part A: Polymer Chemistry, 24 (1986) 2995-3007.
. C. H. Ho, S. A. Chen, M. D. Amiridis and J. W. Van Zee, “Dispersion Polymerization of Styrene in Alcohol Media: Effect of Initiator Concentration, Solvent Polarity, and Temperature on the Rate of Polymerization”, Journal of Polymer Science: Part A: Polymer Chemistry, 35 (1997) 2907-2915.
. K. Y. Hsu, S. P. Hung, T. C. Chang and H. T. Huang, “Preparation of Polystyrene by Dispersion Polymerization”, Chung Yuan Jounal, 30 (2002) 5-11.
. V. Mortazavi, M. Mehdikhani Nahrkhalaji, M. H. Fathi, S. B. Mousavi and B. Nasr Esfahani, “Antibacterial Effects of Sol-Gel-Derived Bioactive Glass Nanoparticle on Aerobic Bacteria”, Journal of Biomedical Materials Research Part A, 94A (2010) 160-168.
. L. L. Hench, “The Story of Bioglass (R)”, Journal of Materials Science-Materials in Medicine, 17 (2006) 967-978.
. L. L. Hench, “Bioactive Glasses and Glass-ceramics”, Bioceramics, 293 (1999) 37-63.
. A. M. El-Kady, A. F. Ali, R. A. Rizk and M. M. Ahmed, “Synthesis, Characterization and Microbiological Response of Silver Doped Bioactive Glass Nanoparticles”, Ceramics International, 38 (2012) 177-188.
. R. Li, A. E. Clark and L. L. Hench, “An Investigation of Bioactive Glass Powders by Sol-Gel Processing”, Journal of Applied Biomaterials, 2 (1991) 231-239.
. J. Gallardo, P. Galliano and A. Duran, “Bioactive and Protective Sol-Gel Coatings on Metals for Orthopaedic Prostheses”, Journal of Sol-Gel Science and Technology, 21 (2001) 65-74.
. O. M. Goudouri, E. Kontonasaki, A. Theocharidou, L. Papadopoulou, N. Kantiranis, X. Chatzistavrou, P. Koidis and K. M. Paraskevopoulos, “Modifying a Dental Ceramic by Bioactive Glass via the Sol-gel Route: Characterization and Bioactivity Investigation”, Materials Chemistry and Physics, 125 (2011) 309-313.
. J. S. Cho and Y. C. Kang, “Synthesis of Spherical Shape Borate-Based Bioactive Glass Powders Prepared by Ultrasonic Spray Pyrolysis”, Ceramics International, 35 (2009) 2103–2109.
. M. P. Pileni, “The Role of Soft Colloidal Templates in Controlling the Size and Shape of Inorganic Nanocrystals”, Nature Materials, 2 (2003) 145-150.
. N. Zhao, Y. J. Wang, X. F. Chen, Y. X. Yang, K. Wei and G. Wu, “Preparation of Bioactive Nanoparticles in the System CaO-P2O5-SiO2 Using Microemulsions”, Key Engineering Materials, 288-289 (2005) 179-182.
. F. J. Arriagada and K. Osseo-Asare, “Synthesis of Nanosize Silica in a Nonionic Water-in-Oil Microemulsion: Effects of the Water/Surfactant Molar Ratio and Ammonia Concentration”, Journal of Colloid and Interface Science, 211 (1999) 210-220.
. A. R. Boccaccini, M. Erol, W. J. Stark, D. Mohn, Z. K. Hong and J. F. Mano, “Polymer/Bioactive Glass Nanocomposites for Biomedical Applications. A Review”, Composites Science and Technology, 70 (2010) 1764-1776.
. Y. L. Song, S. C. Tsai, C. Y. Chen, T. K. Tseng, C. S. Tsai, J. W. Chen and Y. D. Yao, “Ultrasonic Spray Pyrolysis for Synthesis of Spherical Zirconia Particles”, Journal of the American Ceramic Society, 87 (2004) 1864-1871.
. A. Šileikaite, I. Prosycevas, J. Puišo, A. Juraitis and A. Guobiene, “Analysis of Silver Nanoparticles Produced by Chemical Reduction of Silver Salt Solution”, Materials Science (MedZiagotyra), 12 (2006) 287-291.
. S. Y. Liau, D. C. Read, W. J. Pugh, J. R. Furr and A. D. Russell, “Interaction of Silver Nitrate with Readily Identifiable Groups: Relationship to the Antibacterial Action of Silver Ions”, Letters in Applied Microbiology, 25 (1997) 279-283.
. K. H. Cho, J. E. Park, T. Osaka and S. G. Park, “The Study of Antimicrobial Activity and Preservative Effects of Nanosilver Ingredient”, Electrochimica Acta, 51 (2006) 956-960.
. C. H. Bae, S. H. Nam and S. M. Park, “Formation of Silver Nanoparticles by Laser Ablation of a Silver Target in NaCl Solution”, Applied Surface Science, 197-198 (2002) 628-634.
. F. Mafune, J. Y. Kohno, Y. Takeda and T. Kondow, “Formation and Size Control of Silver Nanoparticles by Laser Ablation in Aqueous Solution”, Journal of Physical Chemistry B, 104 (2000) 9111-9117.
. Y. S. Shon and E. Cutler, “Aqueous Synthesis of Alkanethiolate-Protected Ag Nanoparticles Using Bunte Salts”, Langmuir, 20 (2004) 6626-6630.
. A. Taleb, C. Petit and M. P. Pileni, “Synthesis of Highly Monodisperse Silver Nanoparticles from AOT Reverse Micelles: A Way to 2D and 3D Self-Organization”, Chemistry of Materials, 9 (1997) 950-959.
. N. R. Jana and X. G. Peng, “Single-Phase and Gram-Scale Routes toward Nearly Monodisperse Au and Other Noble Metal Nanocrystals”, Journal of the American Chemical Society, 125 (2003) 14280-14281.
. P. Raveendran, J. Fu and S. L. Wallen, “Completely ‘Green’ Synthesis and Stabilization of Metal Nanoparticles”, Journal of the American Chemical Society, 125 (2003) 13940-13941.
. Y. G. Sun, B. Mayers and Y. N. Xia, “Transformation of Silver Nanospheres into Nanobelts and Triangular Nanoplates through a Thermal Process”, Nano Letters, 3 (2003) 675-679.
. I. Pastoriza-Santos and L. M. Liz-Marzan, “Formation and Stabilization of Silver Nanoparticles through Reduction by N,N-Dimethylformamide”, Langmuir, 15 (1999) 948-951.
. O. Eksik, M. A. Tasdelen, A. T. Erciyes and Y. Yagci, “In Situ Synthesis of Oil-Based Polymer/Silver Nanocomposites by Photoinduced Electron Transfer and Free Radical Polymerization Processes”, Composite Interfaces, 17 (2010) 357-369.
. H. Remita, I. Lampre, M. Mostafavi, E. Balanzat and S. Bouffard, “Comparative Study of Metal Clusters Induced in Aqueous Solutions by γ-rays, electron or C6+ ion beam irradiation”, Radiation Physics and Chemistry, 72 (2005) 575–586.
. N. Yanagihara, K. Uchida, M. Wakabayashi, Y. Uetake and T. Hara, “Effect of Radical Initiators on the Size and Formation of Silver Nanoclusters in Poly(methyl methacrylate)”, Langmuir, 15 (1999) 3038-3041.
. Z. P. Zhang and M. Y. Han, “One-Step Preparation of Size-Selected and Well-Dispersed Silver Nanocrystals in Polyacrylonitrile by Simultaneous Reduction and Polymerization”, Journal of Materials Chemistry, 13 (2003) 641-643.
. M. Chen, L. Y. Wang, J. T. Han, J. Y. Zhang, Z. Y. Li and D. J. Qian, “Preparation and Study of Polyacryamide-Stabilized Silver Nanoparticles through a One-Pot Process”, Journal of Physical Chemistry B, 110 (2006) 11224-11231.
. S. Y. Lin, F. S. Lin, M. K. Chen, L. R. Tsai, Y. C. Jao, H. Y. Lin, C. L. Wang, Y. Hwu and C. S. Yang, “One-Pot Synthesis of Linear-Like and Photoluminescent Polyethylenimines for Intracellular Imaging and siRNA Delivery”, Chemical Communications, 46 (2010) 5554-5556.
. J. H. Zhang, Z. Chen, Z. L. Wang, W. Y. Zhang and N. B. Ming, “Preparation of Monodisperse Polystyrene Spheres in Aqueous Alcohol System”, Materials Letters, 57 (2003) 4466-4470.
. Y. Chen, H. R. Liu, Z. C. Zhang and S. J. Wang, “Preparation of Polymeric Nanocapsules by Radiation Induced Miniemulsion Polymerization”, European Polymer Journal, 43 (2007) 2848-2855.
. C. H. Wang, C. J. Liu, C. L. Wang, C. C. Chien, Y. Hwu, R. S. Liu, C. S. Yang, J. H. Je, H. M. Lin and G. Margaritondo, “Intense X-ray Induced Formation of Silver Nanoparticles Stabilized by Biocompatible Polymers”, Applied Physics A: Materials Science and Processing, 97 (2009) 295-300.
. M. Mirdamadi-Esfahani, M. Mostafavi, B. Keita, L. Nadjo, P. Koovman and H. Remita, “Bimetallic Au-Pt Nanoparticles Synthesized by Radiolysis: Application in Electro-Catalysis”, Gold Bulletin, 43 (2010) 49-56.
. C. L. Wang, B. J. Hsao, S. F. Lai, W. C. Chen, H. H. Chen, Y. Y. Chen, C. C. Chien, X. Q. Cai, I. M. Kempson, Y. Hwu and G. Margaritondo, “One-Pot Synthesis of AuPt Alloyed Nanoparticles by Intense X-ray Irradiation, Nanotechnology, 22 (2011) 065605.
. Y. C. Yang, C. H. Wang, Y. Hwu and J. H. Je, “Synchrotron X-ray Synthesis of Colloidal Gold Particles for Drug Delivery”, Materials Chemistry and Physics, 100 (2006) 72-76.
. C. H. Wang, C. C. Chien, Y. L. Yu, C. J. Liu, C. F. Lee, C. H. Chen, Y. Hwu, C. S. Yang, J. H. Je and G. Margaritondo, “Structural Properties of ‘Naked’ Gold Nanoparticles Formed by Synchrotron X-ray Irradiation”, Journal of Synchrotron Radiation, 14 (2007) 477-482.
. C. H. Wang, C. J. Liu, C. L. Wang, T. E. Hua, J. M. Obliosca, K. H. Lee, Y. Hwu, C. S. Yang, R. S. Liu, H. M. Lin, J. H. Je and G. Margaritondo, “Optimizing the Size and Surface Properties of Polyethylene Glycol (PEG)-Gold Nanoparticles by Intense X-ray Irradiation”, Journal of Physics D: Applied Physics, 41 (2008) 195301.
. H. W. Liou, W. J. Liou, H. M. Lin, Y. Hwu and W. C. Chen, “Characterization of Gold/PMMA Hybrid Nanomaterials Synthesized by Hard X-ray Synchrotron Radiation”, Particuology, 8 (2010) 234-239.
. S. C. De Smedt, J. Demeester and W. E. Hennink, “Cationic Polymer Based Gene Delivery Systems”, Pharmaceutical Research, 17 (2000) 113-126.
. M. B. Meza, “Bead-Based HTS Applications in Drug Discovery”, Drug Discovery Today, 1 (2000) 38-41.
. A. Bousquet, R. Perrier-Cornet, E. Ibarboure, E. Papon, C. Labrugere, V. Heroguez and J. Rodriguez-Hernandez, “Design of Polypeptide-Functionalized Polystyrene Microspheres”, Biomacromolecules, 9 (2008) 1811-1817.
. N. Symens, R. Walzack, J. Demeester, I. Mattaj, S. C. De Smedt and K. Remaut, “Nuclear Inclusion of Inert and Chromatin-Targeted Polystyrene Spheres and Plasmid DNA Containing Nanoparticles”, Journal of Controlled Release, 148 (2010) e96-8.
. J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez and M. J. Yacaman, “The Bactericidal Effect of Silver Nanoparticles”, Nanotechnology, 16 (2005) 2346-2353.
. M. Raffi, F. Hussain, T. M. Bhatti, J. I. Akhter, A. Hammeed and M. M. Hasan, “Antibacterial Characterization of Silver Nanoparticles against E. Coli ATCC-15224”, Journal of Materials Science and Technology, 24 (2008) 192-196.
. A. Panacek, L. Kvitek, R. Prucek, M. Kolar, R. Vecerova, N. Pizurova, V. K. Charma, T. Nevecna and R. Zboril, “Silver Colloid Nanoparticles: Synthesis, Characterization, and Their Antibacterial Activity”, Journal of Physical Chemistry B, 110 (2006) 16248-16253.
. C. W. Chen, T. Serizawa and M. Akashi, “Synthesis and Characterization of Poly(N-isopropylacrylamide)-Coated Polystyrene Microspheres with Silver Nanoparticles on Their Surfaces”, Langmuir, 15 (1999) 7998-8006.
. S. D. Oh, B. S. Byun, S. Lee, S. H. Choi, “Preparation of Ag-PS and Ag-PSS Particles by γ-Irradiation and Their Antiicrobial Efficiency against Staphylococcus Aureus ATCC 6538 and Klebsiella Pneumonia ATCC 4352”, Macromolecular Research, 14 (2006) 194-198.
. S. D. Oh, B. S. Byun, S. Lee, S. H. Choi, M. I. Kim and H. G. Park, “Radiolytic Synthesis of Ag-Loaded Polystyrene (Ag-PS) Nanoparticles and their Antimicrobial Efficiency against Staphylococcus Aureus and Klebsiella Pneumoniase”, Macromolecular Research, 15 (2007) 285-290.
. E. Verne, S. Di Nunzio, M. Bosetti, P. Appendino, C. V. Brovarone, G. Maina and M. Cannas, “Surface Characterization of Silver-Doped Bioactive Glass”, Biomaterials, 26 (2005) 5111-5119.
. M. Kawashita, S. Tsuneyama, F. Miyaji, T. Kokubi, H. Kozuka and K. Yamamoto, “Antibacterial Silver-Containing Silica Glass Prepared by Sol-Gel Method”, Biomaterials, 21 (2000) 393-398.
. C. Y. Chen, Y. R. Lyu, C. Y. Su, H. M. Lin, C. K. Lin, “Characterization of Spray Pyrolyzed Manganese Oxide Powders Deposited by Electrophoretic Deposition Technique”, Surface and Coatings Technology, 202 (2007) 1277–1281.
. A. Hong, I. Tasi and R. F. Louh, “Synthesis of Monodispersed Polystyrene Microspheres by Dispersion Polymerization”, Annual Conference of the Chinese Society for Materials Science, (2010) 04-0818.
. J. L. Ou, C. P. Chang, Y. Sung, K. L. Ou, C. C. Tseng, H. W. Ling and M. D. Ger, “Uniform Polystyrene Microspheres Decorated with Noble Metal Nanoparticles Formed without Using Extra Reducing Agent”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 305 (2007) 36-41.
. S. J. Tseng, C. C. Chien, Z. X. Liao, H. H. Chen, Y. D. Kang, C. L. Wang, Y. Hwu and G. Margaritondo, “Controlled Hydrogel Photopolymerization inside Live Systems by X-ray Irradiation”, Soft Matter, 8 (2012) 1420-1427.
. S. J. Tseng and S. C. Tang, “Synthesis and Characterization of the Novel Transfection Reagent Poly(amino ester glycol urethane)”, Biomacromolecules, 8 (2007) 50-58.
S. J. Tseng and S. C. Tang, “Development of Poly(amino ester glycol urethane)/siRNA Polyplexes for Gene Silencing”, Bioconjugate. Chemistry 18 (2007) 1383-1390
. J. McMurry and E. Simanek, “Fundamentals of Organic Chemistry: Sixth Edition”, Thomson Brooks/Cole, 2007.
. J. Belloni, “Contribution of Radiation Chemistry to the Study of Metal Clusters”, Radiation Research, 150 (1998) S9-20.
. G. R. Dey, A. K. El Omar, J. A. Jacob, M. Mostafavi and J. Belloni, “Mechanism of Trivalent Gold Reduction and Reactivity of Transient Divalent and Monovalent Gold Ions Studied by Gamma and Pulse Radiolysis,” Journal of Physical Chemistry A, 115 (2011) 383-391.
. D. S. Yun, H. S. Lee, H. G. Jang and J. W. Yoo, “Controlling Size and Distribution for Nano-sized Polystyrene Spheres”, Bulletin of the Korean Chemical Society, 31 (2010) 1345-1348.
. J. N. Smith, J. Meadows and P. A. Williams, “Adsorption of Polyvinylpyrrolidone onto Polystyrene Latices and the Effect on Colloid Stability”, Langmuir, 12 (1996) 3773-3778.
. X. Du and J. H. He, “Facile Size-Controllable Syntheses of Highly Monodisperse Polystyrene Nano- and Microspheres by Polyvinylpyrrolidone-Mediated Emulsifier-Free Emulsion Polymerization”, Journal of Applied Polymer Science, 108 (2008) 1755-1760.
. Y. T. Lim, O. O. Park and H. T. Jung, “Gold Nanolayer-Encapsulated Silica Particles Synthesized by Surface Seeding and Shell Growing Method: Near Infrared Responsive Materials”, Journal of Colloid and Interface Science, 263 (2003) 449-453.
. J. M. Lee, Y. D. Jun, D. W. Kim,Y. H. Lee and S. G. Oh, “Effects of PVP on the Formation of Silver-Polystyrene Heterogeneous Nanocomposite Particles in Novel Preparation Route Involving Polyol Process: Molecular Weight and Concentration of PVP”, Materials Chemistry and Physics, 114 (2009) 549-555.
. B. S. Yin, H. Y. Ma, S. Y. Wang and S. H. Chen, “Electrochemical Synthesis of Silver Nanoparticles Under Protection of Poly(N-vinylpyrrolidone)”, Journal of Physical Chemistry B, 107 (2003) 8898-8904.
. D. K. Bhui, H. Bar, P. Sarkar, G. P. Sahoo, S. P. De and A. Misra, “Synthesis and UV-Vis Spectroscopic Study of Silver Nanoparticles in Aqueous SDS Solution”, Journal of Molecular Liquids, 145 (2009) 33-37.
. S. Link and M. A. El-Sayed, “Optical Properties and Ultrafast Dynamics of Metallic Nanocrystals”, Annual Review of Physical Chemistry, 54 (2003) 331-366.
. B. D. Cullity and S. R. Stock, “Elements of X-ray Diffraction: Third Edition”, Prentice Hall, Prentice-Hall, Inc. (2001).
. K. Y. Yoon, J. H. Byeon, J. H. Park and J. Hwang, “Susceptibility Constants of Escherichia Coli and Bacillus Subtilis to Silver and Copper Nanoparticles”, Science of the Total Environment, 373 (2007) 572-575.
. H. Kong and J. Jang, “Antibacterial Properties of Novel Poly(methyl methacrylate) Nanofiber Containing Silver Nanoparticles”, Langmuir, 24 (2008) 2051-2056.
. S. Shrivastava, T. Bera, A. Roy, G. Singh, P. Ramachandarao and D. Dash, “Characterization of Enhanced Antibacterial Effects of Novel Silver Nanoparticles”, Nanotechnology, 18 (2007) 225103.
. K. Hashimoto, H. Irie and A. Fujishima, “TiO2 Photocatalysis: A Historical Overview and Future Prospects”, Japanese Journal of Applied Physics, 44 (2005) 8269-8285.
. B. Y. Yu, K. M. Leung, Q. Q. Guo, W. M. Lau and J. Yang, “Synthesis of Ag-TiO2 Composite Nano Thin Film for Antimicrobial Application”, Nanotechnology, 22 (2011) 115603.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top