參考文獻
[1]V. Akopian and A. Chirkov, “EMI shielding fabric and fabric articles made therefrom”, United States, No. 5968854 (1999).
[2]R. E. Wilson and D. C. Butzer, “Sandal socks”, United States, No. 20040261290 A1 (2004).
[3]K. Biedermann, “Anti-viral face mask and filter material”, United States, No. 20090320849 A1 (2009).
[4]C. E. Cronn, “Textile based heating apparatus and method”, United States, No. 20080223844 A1 (2008).
[5]C. J. Chung, H. I. Lin, H. K. Tsou, Z. Y. Shi and J. L. He, “An antimicrobial TiO2 coating for reducing hospital-acquired infection”, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 1 (2007) 220–224.
[6]R. Czajka, “Development of medical textile market”, Fibres and Textiles in Eastern Europe, 13 (2005) 13–15.
[7]T. Moretro and S. Langsrud, “Effects of materials containing antimicrobial compounds on food hygiene”, Journal of Food Protection, 74 (2011) 1200–1211.
[8]M. Raffi, S. Mehrwan, T. M. Bhatti, J. I. Akhter, A. Hameed, W. Yawar and M. M. ul Hasan, “Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli”, Annals of Microbiology, 60 (2010) 75–80.
[9]A. Anders, Handbook of Plasma Immersion Ion Implantation and Deposition, John Wiely and Sons, Inc, (2000).
[10]J. Bohlmark, J. Alami, C. Christou, A. P. Ehiasarian and U. Helmersson, “Ionization of sputtered metals in high power pulsed magnetron sputtering”, Journal of Vacuum Science and Technology A, 23 (2005) 18–22.
[11]S. Konstantinidis, J. P. Dauchot and M. Hecq, “Titanium oxide thin films deposited by high-power impulse magnetron sputtering”, Thin Solid Films, 515 (2006) 1182–1186.
[12]A.P. Ehiasarian, R. New, W. D. Munz, L. Hultman, U. Helmersson and V. Kouznetsov, “Influence of high power densities on the composition of pulsed magnetron plasmas”, Vacuum, 65 (2002) 147–154.
[13]A. Wiatrowski, W. M. Posadowski and Z. J. Radzimski, “Pulsed-dc selfsputtering of copper”, Journal of Physics: Conference Series, 100 (2004) 062004.
[14]G. F. Reddish, Antiseptics, disinfectants, fungicides, and chemical and physical sterilization, Lea and Febiger, (1954).
[15]H. Kourai, “Surface science and microbiology: Antimicrobial finishings”, Journal of the Surface Science Society of Japan, 22 (2001) 663–670.
[16]H. J. Lee, S. Y. Yeo and S. H. Jeong, “Antibacterial effect of nanosized silver colloidal solution on textile fabrics”, Journal of Materials Science, 38 (2003) 2199–2204.
[17]K. Ghule, A. V. Ghule, B. J. Chen and Y. C. Ling, “Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study”, Green Chemistry, 8 (2006) 1034–1041.
[18]C.J. Chung, H.I. Lin and J.L. He, “Antimicrobial efficacy of photocatalytic TiO2 coatings prepared by arc ion plating”, Surface and Coatings Technology, 202 (2007) 1302–1307.
[19]T. N. Kim, Q. L. Feng, J. O. kim, J. Wu, H. Wang, G. C. Chen and F. Z. Cui, “Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite”, Journal of Materials Science: Materials in Medicine, 9 (1998) 129–134.
[20]V. C. Nageli, “Leben die oligodynamischen Erscheinungen an lebenden Zellen”, Denkschr. Schweiz. Naturforsch. Ges., 33 (1893) 174.
[21]Q. L. Feng, J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim and J. O.Kim, “A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus”, Journal of Biomedical Materials Research, 52 (2000) 662–668.
[22]羅文麟,“製作具有表面抗菌膜的衛浴產品之方法及其製品”,中華民國專利,1264471,(2005)。
[23]G. Grass, C. Rensing and M. Solioz, “Metallic copper as an antimicrobial surface”, Applied and Environmental Microbiology, 77 (2011) 1541–1547.
[24]X. Xia, C. Xie, S. Cai, Z. Yang and X. Yang, “Corrosion characteristics of copper microparticles and copper nanoparticles in distilled water”, Corrosion Science, 48 (2006) 3924–3932.
[25]Y. M. Chung, M. J. Jung, S. J. Lee, J. G. Han, C. G. Park, S. H. Ahn and J. G. Kim, “A study of pulsed plasma oxidation effects on the corrosion resistance of brass”, Surface and Coatings Technology, 1 88–189 (2004) 473–477.
[26]A. M. Alfantazi, T. M. Ahmed and D. Tromans, “Corrosion behavior of copper alloys in chloride media”, Materials and Design, 30 (2009) 2425–2430.
[27]劉新民,秦始皇兵馬俑秘聞:世界第八大奇蹟,新疆美術攝影,2012。
[28]L. M. Prescott, J. P. Harley and D. A. Klein, Microbiology, fifth edition, New York: McGrawHill Company, (2002).
[29]G. J. Tortora, B. R. Funke and C. L. Case, Microbiology: An Introduction, eighth edition, San Francisco: Benjamin Cummings Publishing Company, (2004).
[30]M. P. Amy, L. R. Michelle, R. B. Kevin, E. S. Daniel, O. Michael, N. K. Barry, P. S. Eric and R. D. Frank, “Neutrophil microbicides induce a pathogen survival response in community-associated methicillin-resistant Staphylococcus aureus”, Journal of Immunology, 180 (2008) 500–509.
[31]劉偉時,抗菌纖維的發展及抗菌紡織品的應用,化學與紡織技術,40,(2011),22–27。
[32]戴怡德,“奈米級加工材料於紡織及生醫材上之應用研究”,行政院原子能委員會委託研究計畫研究報告,932001 INER 022,(2004)。
[33]K. Nischala, T. N. Rao and N. Hebalkar, “Silica-silver core-shell particles for antibacterial textile application”, Colloids and Surfaces B: Biointerfaces, 82 (2011) 203–208.
[34]R. Lupoi and W. O''Neill, “Deposition of metallic coatings on polymer surfaces using cold spray”, Surface and Coatings Technology, 205 (2010) 2167–2173.
[35]Y. X. Lu, S. H. Jiang and Y. M. Huang, “Ultrasonic-assisted electroless deposition of Ag on PET fabric with low silver content for EMI shielding”, Surface and Coatings Technology, 204 (2010) 2829–2833.
[36]C. W. M. Yuen, S. Q. Jiang, C. W. Kan and W. S. Tung, “Influence of surface treatment on the electroless nickel plating of textile fabric”, Applied Surface Science, 253 (2007) 5250–5257.
[37]Y. Dietzel, W. Przyborowski and G. Nocke, “Investigation of PVD arc coatings on polyamide fabrics”, Surface and Coatings Technology, 135 (2000) 75–81.
[38]Y. Li, D. X. Wu, J. Y. Hu and S. X. Wang, “Novel infrared radiation properties of cotton fabric coated with nano Zn/ZnO particles”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 300 (2007) 140–144.
[39]S. Shahidi and M. Ghoranneviss, “Investigation on dye ability and antibacterial activity of nanolayer platinum coated polyester fabric using dc magnetron sputtering”, Progress in Organic Coatings, 70 (2011) 300–303.
[40]J. Scholz, G. Nocke, F. Hollstein and A. Weissbach, “Investigations on fabrics coated with precious metals using the magnetron sputter technique with regard to their anti-microbial properties”, Surface and Coatings Technology, 192 (2005) 252–256.
[41]J. Yip, S. Jiang and C. Wong, “Characterization of metallic textiles deposited by magnetron sputtering and traditional metallic treatments”, Surface and Coatings Technology, 204 (2009) 380–385.
[42]S. Rickerby and A. Mattews, Advanced Surface Coatings, Chapman and Hall, New York, (1992), 94-95.
[43]S. M. Rossnagel, JJ. Cuomo, and W. D. Westwood, Handbook of plasma processing technology, Park Ridge, New Jersey: Noyes Publications (1982).
[44]D. S. Rickerby and A. Matthews, Advanced surface coatings: A handbook of surface engineering, Blackie and Son Ltd., (1991) 196.
[45]J. L. Vossen and W. Kern, Thin Film Processes II, Academic Press, Inc., Bonton (1991) 21.
[46]J. A. Thorton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings”, Journal of Vacuum Science and Technology, 11 (1974) 666–670.
[47]R. Messier, A. P. Giri and R. A. Roy, “Revised structure zone model for thin film physical structure”, Journal of Vacuum Science Technology A, 2 (1984) 500–503.
[48]R. D. Arnell and P. J. Kelly, “Recent advances in magnetron sputtering”, Surface and Coatings Technology, 112 (1999) 170-176.
[49]D. P. Dowling , K. Donnelly, M.L. McConnell , R. Eloy and Arnaud, “Deposition of anti-bacterial silver coatings on polymeric substrates”, Thin Solid Films.398 –399 (2001) 602–606.
[50]S. Y. Yeo, H. J. Lee and S. H. Jeong, “Preparation of nanocomposite fibers for permanent antibacterial effect”, Journal of Materials Science, 38 (2003) 2143–2147.
[51]W. A. Daoud and J. H. Xin, “Low temperature sol-gel processed photocatalytic titania coating”, Journal of Sol-Gel Science and Technology, 29 (2004) 25–29.
[52]F. N. R. Renaud, J. Dore, H. J. Freney, B. Coronel and J. Y. Dusseau, “Evaluation of antibacterial properties of a textile product with antimicrobial finish in hospital environment”, Journal of Industrial Textiles, 36 (2006) 89–94.
[53]K. H. Jung, M. W. Huh, W. Meng, J. Yuan, S. H. Hyun, J. S. Bae, S. M. Hudson and I. K. Kang, “Preparation and antibacterial activity of pet/chitosan nanofibrous mats using an electrospinning technique” Journal of Applied Polymer Science, 105 (2007) 2816–2823.
[54]J. Wang, J. Li, L. Ren, A. Zhao, P. Li, Y. Leng, H. Sun and N. Huang, “Antibacterial activity of silver surface modified polyethylene terephthalate by iltered cathodic vacuum arc method”, Surface and Coatings Technology, 201 (2007) 6893–6896.
[55]Y.Z. Wan, S. Raman, F. He and Y. Huang, “Surface modification of medical metals by ion implantation of silver and copper”, Vacuum, 81 (2007) 1114–1118.
[56]T. Liu, H.Q. Tang, X.M. Cai, J. Zhao, D.J. Li, R. Li and X. L. Sun, “A study on bactericidal properties of Ag coated carbon nanotubes”, Nuclear Instruments and Methods in Physics Research B, 264 (2007) 282–286.
[57]X. B. Tian, Z.M. Wang, S.Q. Yang, Z. J. Luo, R. K.Y. Fu and P. K. Chu, “Antibacterial copper-containing titanium nitride films produced by dual magnetron sputtering”, Surface and Coatings Technology, 201 (2007) 8606–8609.
[58]Y. Gao and R. Cranston, “Recent advances in antimicrobial treatments of textiles”, Textile Research Journal, 78 (2008) 60–72.
[59]S. Ravindra, Y. M. Mohan, N. N. Reddy and K. M. Raju, “Fabrication of antibacterial cotton fibres loaded with silver nanoparticles via “Green approach””, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 367 (2010) 31–40.
[60]I. Petrov, A. Myers, J. E. Greene, and J. R. Abelson, “Mass and energy resolved detection of ions and neutral sputtered species incident at the substrate during reactive magnetron sputtering of Ti in mixed Ar+N2 mixtures”, Journal of Vacuum Science and Technology A, 12 (1994) 2846–2854.
[61]B. Lehnert, “Rotating plasmas”, Nuclear Fusion, 11 (1971) 485–533.
[62]W. M. Posadowski, “Sustained self sputtering of different materials using dc magnetron”, Vacuum, 46 (1995) 1017–1020.
[63]藍銀峰,常溫鍍製銦錫氧化物於高分子軟性基板,逢甲大學材料科學與工程學系博士論文,(2010)。
[64]R. Gruen, “Process and apparatus for coating conducting pieces using a pulsed glow discharge”, United States, No. 5015493, (1991).
[65]吳錦裕、梁文龍、艾啟峰,“新鍍膜技術-高功率脈衝磁控濺鍍之介紹及研發”,真空科技,22 (2009) 24–33。[66]P. Kudlacek, J. Vlcek, K. Burcalova and J. Lukas, “Highly ionized fluxes of sputtered titanium atoms in high-power pulsed magnetron discharges”, Plasma Sources Science and Technology, 17 (2008) 025010.
[67]K. Sarakinos, J. Alami and S. Konstantinidis, “High power pulsed magnetron sputtering: A review on scientific and engineering state of the art”, “Surface and Coatings Technology, 204 (2010) 1661–1684.
[68]A. Anders, High power impulse magnetron sputtering, Society of Vacuum Coaters Course 323, (2011)。
[69]W. D. Sproul, D. J. Chcristie, D. C. Carter, F. Thomasel and T. Linz, “Surface Engineering”, 20 (2004) 3.
[70]V. Kouznetsov, “Method and apparatus for magnetically enhanced sputtering”, United Sates, No. 6296742 B1, (2001).
[71]V. Kouznetsov, K. Macak, J. M. Schneider, U. Helmersson and I. Petrov, “A novel pulsed magnetron sputter technique utilizing very high target power densities”, Surface and Coatings Technology, 122 (1999) 290–293.
[72]J. R. Roth, Industrial Plasma Engineering, Physics Publishing Bistol and Philadelphia, UK, (1995).
[73]J.T. Gudmundsson, “The high power impulse magnetron sputtering discharge as an ionized physical vapor deposition tool”, Vacuum, 84 (2010) 1360–1364.
[74]K. Okimura, “Low temperature growth of rutile TiO2 films in modified rf magnetron sputtering”, Surface and Coatings Technology, 135 (2001) 286–290.
[75]P. Zeman and S. Takabayashi, “Effect of total and oxygen partial pressures on structure of photocatalytic TiO2 films sputtered on unheated substrate”, Surface and Coatings Technology, 153 (2002) 93–99.
[76]P. Sawunyama, A. Yasumori and K. Okada, “The nature of multilayered TiO2-based photocatalytic films prepared by a sol-gel process”, Materials Research Bulletin, 33 (1998) 795–801.
[77]D. Byun, Y. Jin, B. Kim, J. K. Lee and D. Park, “Photocatalytic TiO2 deposition by chemical vapor deposition”, Journal of Hazardous Materials, B73 (2000) 199–206.
[78]D. R. Burgess, P. A. M. Hotsenpiller, T. J. Anderson and J.L. Hohman, “Solid precursor MOCVD of heteroepitaxial rutile phase TiO2”, Journal of Crystal Growth, 166 (1996) 763–768.
[79]H. Yumoto, S. Matsudo and K. Akashi, “Photocatalytic decomposition of NO2 on TiO2 films prepared by arc ion plating”, Vacuum, 65 (2002) 509–514.
[80]S.Y. Wu, WoC. Lo, K. C. Chen, J. L. He, “Study on the preparation of nano-flaky anatase titania layer and their photovoltaic application”, Current Applied Physics, 10 (2010) S180–S183.
[81]李幸芳,微弧生長銳鈦礦氧化鈦薄膜於鈦金屬板及其敏化太陽電池效能之研究,逢甲大學材料科學與工程學系碩士倫文,2010。[82]W. Song, W. iaohong, Q. Wei and J. Zhaohua, “TiO2 films prepared by micro-plasma oxidation method for dye-sensitized solar cell”, Electrochimica Acta, 53 (2007) 1883–1889.
[83]K Sarakinos, J Alami and M Wuttig, “Process characteristics and film properties upon growth of TiOx films by high power pulsed magnetron sputtering”, Journal of Physics D: Applied Physics, 40 (2007) 2108–2114.
[84]V. Stranak, M. Cada, M. Quaas, S. Block, R. Bogdanowicz, S. Kment, H. Wulff, Z. Hubicka, C. A. Helm, M. Tichy and R. Hippler, “Physical properties of homogeneous TiO2 films prepared by high power impulse magnetron sputtering as a function of crystallographic phase and nanostructure”, Journal of Physics D: Applied Physics, 42 (2009) 105204.
[85]V. Stranak, Z. Hubicka, P. Adamek, J. Blazek, M. Tichy, P. Spatenka, R. Hippler and S. Wrehde, “Time-resolved probe diagnostics of pulsed DC magnetron discharge during deposition of TiOx layers ”, Surface and Coatings Technology, 201 (2006) 2512–2519.
[86]A. Anders, “High power impulse magnetron sputtering and related discharges: Scalable plasma sources for plasma-based ion implantation and deposition”, Surface and Coatings Technology, 204 (2010) 2864–2868.
[87]J. Grace, Practical aspects of plasma web treatment and plasma modification of polymer materials, Society of Vacuum Coaters Webinar, (2010) W-314.
[88]L. J. Gerenser, “Photoemission investigation of silver/poly(ethylene terephthalate) interfacial chemistry: The effect of oxygen-plasma treatment”, Journal of Vacuum Science and technology A, 8 (1990) 3682–3691.
[89]ISO 105–X12, “Textiles – Tests for colour fastness – Part X12: Colour fastness to rubbing”, International Organization for Standardization, 2002.
[90]ISO 105 C02, “Textiles – Tests for colour fastness – Part C02: Colour fastness to washing: Test 2”, International Organization for Standardization, 1989.
[91]JIS L1902:2008, “Testing for antibacterial activity textile products and efficacy”, Japanese Industrial Standard,2008.
[92]J. Alami, K. Sarakinos, G. Mark, and M. Wuttig, “On the deposition rate in a high power pulsed magnetron sputtering discharge”, Applied physics letters, 89 (2006) 105104.
[93]A. Vesel, I. Junkar, U. Cvelbar, J. Kovac and M. Mozetic, “Surface modification of polyester by oxygen and nitrogen-plasma treatment”, Surface and Interface Analysis, 40 (2008) 1444–1453.
[94]K. N. Pandiyaraj, V. Selvarajan, R. R. Deshmukh and M. Bousmina, “The effect of glow discharge plasma on the surface properties of poly (ethylene terephthalate) (PET) film”, Surface and Coatings Technology, 202 (2008) 4218–4226.
[95]L. Carbone and P. D. Cozzoli, “Colloidal heterostructured nanocrystals: Synthesis and growth mechanisms”, Nano Today, 5 (2010) 449–493.
[96]C. G. Park, J. G. Kim, Y. M. Chung, J. G. Han, S. H. Ahn and C. H. Lee, “A study on corrosion characterization of plasma oxidized 65/35 brass with various frequencies”, Surface and Coatings Technology, 200 (2005) 77–82.