跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/09 05:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳國維
研究生(外文):Guo-Wei Wu
論文名稱:高功率脈衝磁控濺鍍製備抗菌黃銅薄膜於纖維布料
論文名稱(外文):Antimicrobial Brass Films Prepared by High Power Impulse Magnetron Sputtering on Fabric
指導教授:何主亮何主亮引用關係
指導教授(外文):Ju-Liang He
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:89
中文關鍵詞:黃銅高功率脈衝磁控濺鍍抗菌薄膜
外文關鍵詞:antimicrobialhigh power impulse magnetron sputteringbrassfilm
相關次數:
  • 被引用被引用:1
  • 點閱點閱:618
  • 評分評分:
  • 下載下載:89
  • 收藏至我的研究室書目清單書目收藏:1
工業快速興起,生活品質不斷提升,機能性紡織品異軍突起,其中又以抗菌紡織品具有發展潛力,可直接隔絕外來病菌的感染。而無機抗菌材料以無污染、安全性佳及效果持久等優勢被廣泛應用;諸多抗菌材料中,擁有強抗菌能力的銀,由於成本高居不下而無法普及化,然而,低成本的銅亦有不耐蝕性的缺點,因此選用兼具抗菌、耐蝕及低成本的黃銅來取代。為了能在低軟化點(Glass transition temperature, Tg)的聚對苯二甲酸乙二酯(Poly(ethylene terephthalate), PET)纖維布料賦予抗菌能力,本研究利用高功率脈衝磁控濺鍍(High power impulse magnetron sputtering, HIPIMS)於PET 纖維布料製備抗菌黃銅薄膜,探討不同氧氣電漿前處理及沉積時間的微觀形貌、晶體結構、耐摩擦色牢度及抗菌性能等。
研究結果顯示:利用HIPIMS 製備抗菌黃銅薄膜成戊Q覆於PET纖維布料;從微觀形貌觀察得知,鍍膜厚度隨沉積時間增加而增厚,當沉積時間為10 min 的鍍膜厚度可達238 nm;在成份組成鑑定結果發現,鍍膜的Cu/Zn 重量百分比比值皆與靶材1.86 接近,故確認此鍍膜為黃銅;並進一步以XRD 確認目標相結構為ㄛ菄熄擊氶F而耐摩擦色牢度結果可知,經過電漿前處理確實提升纖維與鍍膜間的附著性,主因於氧氣轟擊纖維表面形成鍵結較強的官能基;被覆鍍膜的纖維經拉力試驗後,其拉力值高於纖維本身,歸因於較硬的金屬被覆於纖維上,必須施予更大的力使其斷裂;抗菌性能方面,沉積時間為1 min 就達到良好殺菌及抑菌效果,而水洗20 次後仍然保有抗菌性能。故本研究結果滿足業界開發新產品的需求,為醫療保健紡織產業帶出更大的經濟效益。
With the rapid development of industry and continuous promotion of living quality, functional textiles are suddenly thriving. Among them, antibacterial textiles can be directly quarantine infection of allochthonous bacillus possesses potentiality to grow. The predominance of inorganic antibacterial agents has non-pollution, good security, lasting effect and
others are widely used. In many antibacterial materials, it can''t be popularized by using expensive silver even though it has strong
antibacterial ability. However, low-cost copper have no corrosion resistance yet. Therefore, brass include antibacterial, corrosion resistance
and low-cost to replace them. In this study, antibacterial brass films are deposited onto poly(ethylene terephthalate) (PET) by utilizing High power impulse magnetron sputtering (HIPIMS) in order to have low glass transition temperature point (Tg) of PET fabric to appended antibacterial
ability, and explore microstructure, crystal structure, durability and antibacterial by different oxygen plasma pretreatment time and deposition time.

The results show that antibacterial brass films prepared by HIPIMS were successfully coated onto PET fabric. Morphology observed that the coating
thickened with increasing deposition time and obtained 238 nm when the deposition time reached for 10 min. The ingredient composition of
appraisal results indicated that of the Cu/Zn ratios were close to the 1.86 of target. Therefore, coatings confirmed were brass and further affirmed the phase structure for α phase using X-ray diffraction spectrum (XRD). From
the results of color fastness to rubbing, the adhesion between fiber and coating had been reliable raised through plasma pretreatment. The main reason was fibrous surface formed a strong bond of functional group after bombarding. The tensile value of coated fiber was higher than the fiber itself through tensile test. It was attributed to the hard metal coated onto the
fiber that must lend greater force to make it fracture. Aspect of antibacterial performance, the deposition time of 1 min achieved good bactericidal and bacteriostatic effect. And it still retained antibacterial ability after washing
20 times. Above results satisfy the needs of the industry to develop new products and bring greater economic benefits for the healthcare textile industry.
總 目 錄
誌 謝 I
中文摘要 II
Abstract IV
總 目 錄 VI
圖 目 錄 VIII
表 目 錄 XI
符號說明 XII
第一章 前言 1
第二章 文獻回顧 3
2.1 抗菌概述 4
2.1.1 抗菌名詞及定義 4
2.1.2 抗菌材料及機制 4
2.1.3 細菌 11
2.1.4 細菌細胞之解剖構造 12
2.1.5 影響細菌生殖的因素 14
2.1.6 革蘭氏陽性菌與陰性菌 15
2.1.7 金黃色葡萄球菌 18
2.1.8 大腸桿菌 19
2.2 纖維的抗菌加工 21
2.3 濺鍍法被覆抗菌薄膜技術 25
2.3.1 濺鍍製程 25
2.3.2 抗菌薄膜的現階段發展 31
2.3.3 高功率脈衝磁控濺鍍法原理與優勢 36
2.4 研究動機 43
第三章 研究方法 44
3.1 高功率脈衝磁控濺鍍黃銅鍍膜的製備 45
3.1.1 高功率脈衝磁控濺鍍系統參數調控 45
3.1.2 纖維布料製備及前處理 47
3.1.3 鍍膜製備 48
3.2 顯微形貌與晶體結構分析 48
3.2.1 微觀形貌觀察 48
3.2.2 成分組成鑑定 49
3.2.3 晶體結構分析 50
3.3 耐摩擦色牢度試驗 51
3.4 耐洗染色堅牢度試驗 52
3.5 抗菌性能評估 52
3.6 拉力試驗 55
第四章 結果與討論 56
4.1 高功率脈衝磁控濺鍍系統參數最適化 56
4.2 不同氧氣電漿前處理時間的級數及微觀形貌 60
4.3 不同沉積時間的SEM、EDS及XRD 64
4.4 不同沉積時間及水洗次數的外觀表現 70
4.5 不同沉積時間及水洗後的抗菌性能 72
4.6 施鍍前後所得抗拉強度 75
第五章 結論 76
參考文獻 78
參考文獻
[1]V. Akopian and A. Chirkov, “EMI shielding fabric and fabric articles made therefrom”, United States, No. 5968854 (1999).
[2]R. E. Wilson and D. C. Butzer, “Sandal socks”, United States, No. 20040261290 A1 (2004).
[3]K. Biedermann, “Anti-viral face mask and filter material”, United States, No. 20090320849 A1 (2009).
[4]C. E. Cronn, “Textile based heating apparatus and method”, United States, No. 20080223844 A1 (2008).
[5]C. J. Chung, H. I. Lin, H. K. Tsou, Z. Y. Shi and J. L. He, “An antimicrobial TiO2 coating for reducing hospital-acquired infection”, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 1 (2007) 220–224.
[6]R. Czajka, “Development of medical textile market”, Fibres and Textiles in Eastern Europe, 13 (2005) 13–15.
[7]T. Moretro and S. Langsrud, “Effects of materials containing antimicrobial compounds on food hygiene”, Journal of Food Protection, 74 (2011) 1200–1211.
[8]M. Raffi, S. Mehrwan, T. M. Bhatti, J. I. Akhter, A. Hameed, W. Yawar and M. M. ul Hasan, “Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli”, Annals of Microbiology, 60 (2010) 75–80.
[9]A. Anders, Handbook of Plasma Immersion Ion Implantation and Deposition, John Wiely and Sons, Inc, (2000).
[10]J. Bohlmark, J. Alami, C. Christou, A. P. Ehiasarian and U. Helmersson, “Ionization of sputtered metals in high power pulsed magnetron sputtering”, Journal of Vacuum Science and Technology A, 23 (2005) 18–22.
[11]S. Konstantinidis, J. P. Dauchot and M. Hecq, “Titanium oxide thin films deposited by high-power impulse magnetron sputtering”, Thin Solid Films, 515 (2006) 1182–1186.
[12]A.P. Ehiasarian, R. New, W. D. Munz, L. Hultman, U. Helmersson and V. Kouznetsov, “Influence of high power densities on the composition of pulsed magnetron plasmas”, Vacuum, 65 (2002) 147–154.
[13]A. Wiatrowski, W. M. Posadowski and Z. J. Radzimski, “Pulsed-dc selfsputtering of copper”, Journal of Physics: Conference Series, 100 (2004) 062004.
[14]G. F. Reddish, Antiseptics, disinfectants, fungicides, and chemical and physical sterilization, Lea and Febiger, (1954).
[15]H. Kourai, “Surface science and microbiology: Antimicrobial finishings”, Journal of the Surface Science Society of Japan, 22 (2001) 663–670.
[16]H. J. Lee, S. Y. Yeo and S. H. Jeong, “Antibacterial effect of nanosized silver colloidal solution on textile fabrics”, Journal of Materials Science, 38 (2003) 2199–2204.
[17]K. Ghule, A. V. Ghule, B. J. Chen and Y. C. Ling, “Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study”, Green Chemistry, 8 (2006) 1034–1041.
[18]C.J. Chung, H.I. Lin and J.L. He, “Antimicrobial efficacy of photocatalytic TiO2 coatings prepared by arc ion plating”, Surface and Coatings Technology, 202 (2007) 1302–1307.
[19]T. N. Kim, Q. L. Feng, J. O. kim, J. Wu, H. Wang, G. C. Chen and F. Z. Cui, “Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite”, Journal of Materials Science: Materials in Medicine, 9 (1998) 129–134.
[20]V. C. Nageli, “Leben die oligodynamischen Erscheinungen an lebenden Zellen”, Denkschr. Schweiz. Naturforsch. Ges., 33 (1893) 174.
[21]Q. L. Feng, J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim and J. O.Kim, “A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus”, Journal of Biomedical Materials Research, 52 (2000) 662–668.
[22]羅文麟,“製作具有表面抗菌膜的衛浴產品之方法及其製品”,中華民國專利,1264471,(2005)。
[23]G. Grass, C. Rensing and M. Solioz, “Metallic copper as an antimicrobial surface”, Applied and Environmental Microbiology, 77 (2011) 1541–1547.
[24]X. Xia, C. Xie, S. Cai, Z. Yang and X. Yang, “Corrosion characteristics of copper microparticles and copper nanoparticles in distilled water”, Corrosion Science, 48 (2006) 3924–3932.
[25]Y. M. Chung, M. J. Jung, S. J. Lee, J. G. Han, C. G. Park, S. H. Ahn and J. G. Kim, “A study of pulsed plasma oxidation effects on the corrosion resistance of brass”, Surface and Coatings Technology, 1 88–189 (2004) 473–477.
[26]A. M. Alfantazi, T. M. Ahmed and D. Tromans, “Corrosion behavior of copper alloys in chloride media”, Materials and Design, 30 (2009) 2425–2430.
[27]劉新民,秦始皇兵馬俑秘聞:世界第八大奇蹟,新疆美術攝影,2012。
[28]L. M. Prescott, J. P. Harley and D. A. Klein, Microbiology, fifth edition, New York: McGrawHill Company, (2002).
[29]G. J. Tortora, B. R. Funke and C. L. Case, Microbiology: An Introduction, eighth edition, San Francisco: Benjamin Cummings Publishing Company, (2004).
[30]M. P. Amy, L. R. Michelle, R. B. Kevin, E. S. Daniel, O. Michael, N. K. Barry, P. S. Eric and R. D. Frank, “Neutrophil microbicides induce a pathogen survival response in community-associated methicillin-resistant Staphylococcus aureus”, Journal of Immunology, 180 (2008) 500–509.
[31]劉偉時,抗菌纖維的發展及抗菌紡織品的應用,化學與紡織技術,40,(2011),22–27。
[32]戴怡德,“奈米級加工材料於紡織及生醫材上之應用研究”,行政院原子能委員會委託研究計畫研究報告,932001 INER 022,(2004)。
[33]K. Nischala, T. N. Rao and N. Hebalkar, “Silica-silver core-shell particles for antibacterial textile application”, Colloids and Surfaces B: Biointerfaces, 82 (2011) 203–208.
[34]R. Lupoi and W. O''Neill, “Deposition of metallic coatings on polymer surfaces using cold spray”, Surface and Coatings Technology, 205 (2010) 2167–2173.
[35]Y. X. Lu, S. H. Jiang and Y. M. Huang, “Ultrasonic-assisted electroless deposition of Ag on PET fabric with low silver content for EMI shielding”, Surface and Coatings Technology, 204 (2010) 2829–2833.
[36]C. W. M. Yuen, S. Q. Jiang, C. W. Kan and W. S. Tung, “Influence of surface treatment on the electroless nickel plating of textile fabric”, Applied Surface Science, 253 (2007) 5250–5257.
[37]Y. Dietzel, W. Przyborowski and G. Nocke, “Investigation of PVD arc coatings on polyamide fabrics”, Surface and Coatings Technology, 135 (2000) 75–81.
[38]Y. Li, D. X. Wu, J. Y. Hu and S. X. Wang, “Novel infrared radiation properties of cotton fabric coated with nano Zn/ZnO particles”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 300 (2007) 140–144.
[39]S. Shahidi and M. Ghoranneviss, “Investigation on dye ability and antibacterial activity of nanolayer platinum coated polyester fabric using dc magnetron sputtering”, Progress in Organic Coatings, 70 (2011) 300–303.
[40]J. Scholz, G. Nocke, F. Hollstein and A. Weissbach, “Investigations on fabrics coated with precious metals using the magnetron sputter technique with regard to their anti-microbial properties”, Surface and Coatings Technology, 192 (2005) 252–256.
[41]J. Yip, S. Jiang and C. Wong, “Characterization of metallic textiles deposited by magnetron sputtering and traditional metallic treatments”, Surface and Coatings Technology, 204 (2009) 380–385.
[42]S. Rickerby and A. Mattews, Advanced Surface Coatings, Chapman and Hall, New York, (1992), 94-95.
[43]S. M. Rossnagel, JJ. Cuomo, and W. D. Westwood, Handbook of plasma processing technology, Park Ridge, New Jersey: Noyes Publications (1982).
[44]D. S. Rickerby and A. Matthews, Advanced surface coatings: A handbook of surface engineering, Blackie and Son Ltd., (1991) 196.
[45]J. L. Vossen and W. Kern, Thin Film Processes II, Academic Press, Inc., Bonton (1991) 21.
[46]J. A. Thorton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings”, Journal of Vacuum Science and Technology, 11 (1974) 666–670.
[47]R. Messier, A. P. Giri and R. A. Roy, “Revised structure zone model for thin film physical structure”, Journal of Vacuum Science Technology A, 2 (1984) 500–503.
[48]R. D. Arnell and P. J. Kelly, “Recent advances in magnetron sputtering”, Surface and Coatings Technology, 112 (1999) 170-176.
[49]D. P. Dowling , K. Donnelly, M.L. McConnell , R. Eloy and Arnaud, “Deposition of anti-bacterial silver coatings on polymeric substrates”, Thin Solid Films.398 –399 (2001) 602–606.
[50]S. Y. Yeo, H. J. Lee and S. H. Jeong, “Preparation of nanocomposite fibers for permanent antibacterial effect”, Journal of Materials Science, 38 (2003) 2143–2147.
[51]W. A. Daoud and J. H. Xin, “Low temperature sol-gel processed photocatalytic titania coating”, Journal of Sol-Gel Science and Technology, 29 (2004) 25–29.
[52]F. N. R. Renaud, J. Dore, H. J. Freney, B. Coronel and J. Y. Dusseau, “Evaluation of antibacterial properties of a textile product with antimicrobial finish in hospital environment”, Journal of Industrial Textiles, 36 (2006) 89–94.
[53]K. H. Jung, M. W. Huh, W. Meng, J. Yuan, S. H. Hyun, J. S. Bae, S. M. Hudson and I. K. Kang, “Preparation and antibacterial activity of pet/chitosan nanofibrous mats using an electrospinning technique” Journal of Applied Polymer Science, 105 (2007) 2816–2823.
[54]J. Wang, J. Li, L. Ren, A. Zhao, P. Li, Y. Leng, H. Sun and N. Huang, “Antibacterial activity of silver surface modified polyethylene terephthalate by iltered cathodic vacuum arc method”, Surface and Coatings Technology, 201 (2007) 6893–6896.
[55]Y.Z. Wan, S. Raman, F. He and Y. Huang, “Surface modification of medical metals by ion implantation of silver and copper”, Vacuum, 81 (2007) 1114–1118.
[56]T. Liu, H.Q. Tang, X.M. Cai, J. Zhao, D.J. Li, R. Li and X. L. Sun, “A study on bactericidal properties of Ag coated carbon nanotubes”, Nuclear Instruments and Methods in Physics Research B, 264 (2007) 282–286.
[57]X. B. Tian, Z.M. Wang, S.Q. Yang, Z. J. Luo, R. K.Y. Fu and P. K. Chu, “Antibacterial copper-containing titanium nitride films produced by dual magnetron sputtering”, Surface and Coatings Technology, 201 (2007) 8606–8609.
[58]Y. Gao and R. Cranston, “Recent advances in antimicrobial treatments of textiles”, Textile Research Journal, 78 (2008) 60–72.
[59]S. Ravindra, Y. M. Mohan, N. N. Reddy and K. M. Raju, “Fabrication of antibacterial cotton fibres loaded with silver nanoparticles via “Green approach””, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 367 (2010) 31–40.
[60]I. Petrov, A. Myers, J. E. Greene, and J. R. Abelson, “Mass and energy resolved detection of ions and neutral sputtered species incident at the substrate during reactive magnetron sputtering of Ti in mixed Ar+N2 mixtures”, Journal of Vacuum Science and Technology A, 12 (1994) 2846–2854.
[61]B. Lehnert, “Rotating plasmas”, Nuclear Fusion, 11 (1971) 485–533.
[62]W. M. Posadowski, “Sustained self sputtering of different materials using dc magnetron”, Vacuum, 46 (1995) 1017–1020.
[63]藍銀峰,常溫鍍製銦錫氧化物於高分子軟性基板,逢甲大學材料科學與工程學系博士論文,(2010)。
[64]R. Gruen, “Process and apparatus for coating conducting pieces using a pulsed glow discharge”, United States, No. 5015493, (1991).
[65]吳錦裕、梁文龍、艾啟峰,“新鍍膜技術-高功率脈衝磁控濺鍍之介紹及研發”,真空科技,22 (2009) 24–33。
[66]P. Kudlacek, J. Vlcek, K. Burcalova and J. Lukas, “Highly ionized fluxes of sputtered titanium atoms in high-power pulsed magnetron discharges”, Plasma Sources Science and Technology, 17 (2008) 025010.
[67]K. Sarakinos, J. Alami and S. Konstantinidis, “High power pulsed magnetron sputtering: A review on scientific and engineering state of the art”, “Surface and Coatings Technology, 204 (2010) 1661–1684.
[68]A. Anders, High power impulse magnetron sputtering, Society of Vacuum Coaters Course 323, (2011)。
[69]W. D. Sproul, D. J. Chcristie, D. C. Carter, F. Thomasel and T. Linz, “Surface Engineering”, 20 (2004) 3.
[70]V. Kouznetsov, “Method and apparatus for magnetically enhanced sputtering”, United Sates, No. 6296742 B1, (2001).
[71]V. Kouznetsov, K. Macak, J. M. Schneider, U. Helmersson and I. Petrov, “A novel pulsed magnetron sputter technique utilizing very high target power densities”, Surface and Coatings Technology, 122 (1999) 290–293.
[72]J. R. Roth, Industrial Plasma Engineering, Physics Publishing Bistol and Philadelphia, UK, (1995).
[73]J.T. Gudmundsson, “The high power impulse magnetron sputtering discharge as an ionized physical vapor deposition tool”, Vacuum, 84 (2010) 1360–1364.
[74]K. Okimura, “Low temperature growth of rutile TiO2 films in modified rf magnetron sputtering”, Surface and Coatings Technology, 135 (2001) 286–290.
[75]P. Zeman and S. Takabayashi, “Effect of total and oxygen partial pressures on structure of photocatalytic TiO2 films sputtered on unheated substrate”, Surface and Coatings Technology, 153 (2002) 93–99.
[76]P. Sawunyama, A. Yasumori and K. Okada, “The nature of multilayered TiO2-based photocatalytic films prepared by a sol-gel process”, Materials Research Bulletin, 33 (1998) 795–801.
[77]D. Byun, Y. Jin, B. Kim, J. K. Lee and D. Park, “Photocatalytic TiO2 deposition by chemical vapor deposition”, Journal of Hazardous Materials, B73 (2000) 199–206.
[78]D. R. Burgess, P. A. M. Hotsenpiller, T. J. Anderson and J.L. Hohman, “Solid precursor MOCVD of heteroepitaxial rutile phase TiO2”, Journal of Crystal Growth, 166 (1996) 763–768.
[79]H. Yumoto, S. Matsudo and K. Akashi, “Photocatalytic decomposition of NO2 on TiO2 films prepared by arc ion plating”, Vacuum, 65 (2002) 509–514.
[80]S.Y. Wu, WoC. Lo, K. C. Chen, J. L. He, “Study on the preparation of nano-flaky anatase titania layer and their photovoltaic application”, Current Applied Physics, 10 (2010) S180–S183.
[81]李幸芳,微弧生長銳鈦礦氧化鈦薄膜於鈦金屬板及其敏化太陽電池效能之研究,逢甲大學材料科學與工程學系碩士倫文,2010。
[82]W. Song, W. iaohong, Q. Wei and J. Zhaohua, “TiO2 films prepared by micro-plasma oxidation method for dye-sensitized solar cell”, Electrochimica Acta, 53 (2007) 1883–1889.
[83]K Sarakinos, J Alami and M Wuttig, “Process characteristics and film properties upon growth of TiOx films by high power pulsed magnetron sputtering”, Journal of Physics D: Applied Physics, 40 (2007) 2108–2114.
[84]V. Stranak, M. Cada, M. Quaas, S. Block, R. Bogdanowicz, S. Kment, H. Wulff, Z. Hubicka, C. A. Helm, M. Tichy and R. Hippler, “Physical properties of homogeneous TiO2 films prepared by high power impulse magnetron sputtering as a function of crystallographic phase and nanostructure”, Journal of Physics D: Applied Physics, 42 (2009) 105204.
[85]V. Stranak, Z. Hubicka, P. Adamek, J. Blazek, M. Tichy, P. Spatenka, R. Hippler and S. Wrehde, “Time-resolved probe diagnostics of pulsed DC magnetron discharge during deposition of TiOx layers ”, Surface and Coatings Technology, 201 (2006) 2512–2519.
[86]A. Anders, “High power impulse magnetron sputtering and related discharges: Scalable plasma sources for plasma-based ion implantation and deposition”, Surface and Coatings Technology, 204 (2010) 2864–2868.
[87]J. Grace, Practical aspects of plasma web treatment and plasma modification of polymer materials, Society of Vacuum Coaters Webinar, (2010) W-314.
[88]L. J. Gerenser, “Photoemission investigation of silver/poly(ethylene terephthalate) interfacial chemistry: The effect of oxygen-plasma treatment”, Journal of Vacuum Science and technology A, 8 (1990) 3682–3691.
[89]ISO 105–X12, “Textiles – Tests for colour fastness – Part X12: Colour fastness to rubbing”, International Organization for Standardization, 2002.
[90]ISO 105 C02, “Textiles – Tests for colour fastness – Part C02: Colour fastness to washing: Test 2”, International Organization for Standardization, 1989.
[91]JIS L1902:2008, “Testing for antibacterial activity textile products and efficacy”, Japanese Industrial Standard,2008.
[92]J. Alami, K. Sarakinos, G. Mark, and M. Wuttig, “On the deposition rate in a high power pulsed magnetron sputtering discharge”, Applied physics letters, 89 (2006) 105104.
[93]A. Vesel, I. Junkar, U. Cvelbar, J. Kovac and M. Mozetic, “Surface modification of polyester by oxygen and nitrogen-plasma treatment”, Surface and Interface Analysis, 40 (2008) 1444–1453.
[94]K. N. Pandiyaraj, V. Selvarajan, R. R. Deshmukh and M. Bousmina, “The effect of glow discharge plasma on the surface properties of poly (ethylene terephthalate) (PET) film”, Surface and Coatings Technology, 202 (2008) 4218–4226.
[95]L. Carbone and P. D. Cozzoli, “Colloidal heterostructured nanocrystals: Synthesis and growth mechanisms”, Nano Today, 5 (2010) 449–493.
[96]C. G. Park, J. G. Kim, Y. M. Chung, J. G. Han, S. H. Ahn and C. H. Lee, “A study on corrosion characterization of plasma oxidized 65/35 brass with various frequencies”, Surface and Coatings Technology, 200 (2005) 77–82.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top