跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/02/06 11:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇利亞帕瓦
研究生(外文):SURYAPPA-JAYAPPA PAWAR
論文名稱(外文):Investigations on Electroacoustic Transducers for Improvisation
指導教授:黃錦煌黃錦煌引用關係
指導教授(外文):Jin H. Huang
學位類別:博士
校院名稱:逢甲大學
系所名稱:機械與航空工程研究所博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:153
外文關鍵詞:insert earphoneheadphonesound pressure responsetotal harmonic distortionearbud earphoneminiature loudspeakerloudspeakerMicrophone
相關次數:
  • 被引用被引用:0
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:2
This research attempts to decorate the exploding field of “Electroacoustic Transducers”. Specially, this thesis focuses on conceptualization, design, development, modeling, simulation, manufacturing, etc. of common electroacoustic transducers such as electret condenser microphone, woofer, and miniature loudspeaker at one side. However, use of these devices in 4C products like earbud and insert earphone is also targeted. Besides, it is tried to figure out possibility of earphone induced hearing loss.
This thesis totally concentrates on the applied research rather than fundamental research. The modeling, simulation, fabrication, and testing (measurement) are four main pillars of this thesis. Dynamic Analogy using equivalent circuit method is widely employed in this work to develop analytical model. Methods like micro-tensile test and finite element software simulation are applied to assist our approach. A laser vibrometry and an anechoic chamber measurement are widely used in this work. Finally, parametric simulations are utilized to expedite design and development.
A handful discussion is aimed to speed up the understanding and development of a electret condenser microphone. A microphone is evaluated and parametric simulation is carried out. Additionally, microphone manufacturing process (diaphragm polarization) modification was tried to reduce rejection rate. The performance of 10” woofer is visualized by reverse engineering approach. The effect of certain parameters on the frequency response of woofer is also estimated. Four miniature loudspeakers have been simulated, designed, and reported in this thesis. The diaphragm and magnetic motor modifications are attempted to reduce the total harmonic distortion of circular and elliptical miniature loudspeakers. An earbud and insert earphones are also designed, simulated, and experimented. The effect of leakages through earphones on the response due to vent and sound hole (for earbud) and vent, back leakage hole, and front leakage hole (for insert) is estimated. Variability of frequency response and total harmonic distortion of earbud earphone due to placement of earphone in concha is also evaluated. Additionally, twelve earbud earphones for frequency response and total harmonic distortion are evaluated. For social concern, the possibility of hearing loss due to sound pressure level generated by earphones and headphones is also probed.
Acknowledgment.........................................................................................................................i
Abstract.....................................................................................................................................iii
Contents....................................................................................................................................iv
List of Figures...........................................................................................................................vii
List of Tables............................................................................................................................xii
Nomenclature...........................................................................................................................xiii

CHAPTER 1 INTRODUCTION...................................................................................................1
1.1 BACKGROUND............................................................................................................1
1.2 ELECTROACOUSTIC TRANSDUCER.........................................................................1
1.2.1 MICROPHONE..................................................................................................2
1.2.1.1 History.....................................................................................................2
1.2.1.2 Types......................................................................................................3
1.2.1.3 Specifications..........................................................................................3
1.2.1.4 Electret-Condenser Microphone..............................................................4
1.2.2 LOUDSPEAKER................................................................................................5
1.2.2.1 History.....................................................................................................6
1.2.2.2 Types......................................................................................................7
1.2.2.3 Specifications..........................................................................................7
1.2.2.4 Typical Loudspeaker...............................................................................8
1.2.2.5 Typical Miniature Loudspeaker................................................................8
1.2.3 EARPHONE.....................................................................................................10
1.2.3.1 Earbud Earphone..................................................................................11
1.2.3.2 Insert Earphone.....................................................................................11
1.2.3.3 Supra-Aural Headphone........................................................................12
1.3 HUMAN HEARING, EQUAL LOUDNESS CONTOURS, AND HEARING LOSS.........13
1.3.1 HUMAN HEARING...........................................................................................14
1.3.2 EQUAL LOUDNESS CONTOURS (ELC).........................................................14
1.3.3 HEARING LOSS..............................................................................................15
1.4 TOTAL HARMONIC DISTORTION AND INTERMODULATION DISTORTION..........16
1.5 EQUIVALENT CIRCUIT MODEL (DYNAMIC ANALOGY)………................................18
1.5.1 CIRCUIT ELEMENTS......................................................................................18
1.5.2 MATHEMATICAL MODELING.........................................................................18
1.5.2.1 Electrical Analogy..................................................................................19
1.5.2.2 Mechanical Analogy..............................................................................19
1.5.2.3 Acoustical Analogy................................................................................19
1.6 OBJECTIVE AND OUTLINE OF THESIS...................................................................22
CHAPTER 2 LITERATURE REVIEW.......................................................................................27
2.1 INTRODUCTION........................................................................................................27
2.2 LITERATURE REVIEW FOR MICROPHONE............................................................27
2.3 LITERATURE REVIEW FOR LOUDSPEAKERS........................................................29
2.4 LITERATURE REVIEW FOR EARPHONE AND HEARING LOSS.............................31
CHAPTER 3 MEASUREMENT TECHNIQUE...........................................................................34
3.1 MICRO-TENSILE TEST MACHINE MEASUREMENTS..............................................35
3.1.1 MICRO-TENSILE TEST MACHINE (MTS TYTRON 250)................................35
3.1.2 TESTING OF MICROPHONE DIAPHRAGM MATERIAL.................................35
3.1.3 MICRO-TENSILE TESTING FOR FORCE FACTOR.......................................38
3.2 LASER VIBROMETRY MEASUREMENTS.................................................................38
3.3 FREQUENCY RESPONSE MEASUREMENTS..........................................................43
3.4 MISCELLANEOUS MEASUREMENT.........................................................................50
CHAPTER 4 MICROPHONE MODELING, SIMULATION, RESULT, AND DISCUSSION........55
4.1 INTRODUCTION........................................................................................................55
4.2 ECM OF MICROPHONE............................................................................................55
4.3 MICROPHONE POLARIZATION................................................................................57
4.4 RESULTS AND DISCUSSION....................................................................................58
4.4.1 ECM MODELING OF MICROPHONE..............................................................58
4.4.2 MICROPHONE POLARIZATION.....................................................................63
CHAPTER 5 LOUDSPEAKER MODELING, SIMULATION, RESULT, AND DISCUSSION......69
5.1 INTRODUCTION........................................................................................................69
5.2 WOOFER MODELING...............................................................................................69
5.2.1 LOUDSOFT SIMULATION (FINEMOTOR AND FINECONE)..........................70
5.2.2 THEORETICAL MODELING OF WOOFER.....................................................71
5.3 MINIATURE LOUDSPEAKER MODELING.................................................................72
5.3.1 THEORETICAL MODELING OF MINIATURE LOUDSPEAKER......................72
5.3.2 MINIATURE LOUDSPEAKER IN DEVICE.......................................................74
5.3.3 THD OF CIRCULAR MINIATURE LOUDSPEAKER (ML2)..............................75
5.3.3.1 Stiffness Non-Linearity..........................................................................76
5.3.3.2 Force Factor Non-Linearity....................................................................77
5.3.3.3 Analytical Formulation for THD..............................................................78
5.3.3.4 Finite Element Formulation....................................................................79
5.3.4 THD OF ELLIPTICAL MINIATURE LOUDSPEAKER (ML3).............................80
5.3.4.1 Stiffness Non-Linearity..........................................................................80
5.3.4.2 Force Factor Non-Linearity....................................................................80
5.3.4.3 Analytical Formulation for THD..............................................................80
5.3.4.4 Finite Element Formulation....................................................................80
5.4 RESULTS AND DISCUSSION....................................................................................81
5.4.1 10” WOOFER..................................................................................................81
5.4.2 MINIATURE LOUDSPEAKER (ML1)................................................................85
5.4.3 MINIATURE LOUDSPEAKER (ML1) WITH FIXTURE TUBE...........................92
5.4.4 THD OF CIRCULAR MINIATURE LOUDSPEAKER (ML2)…...........................93
5.4.5 THD OF ELLIPTICAL MINIATURE LOUDSPEAKER (ML3)….......................100
CHAPTER 6 EARPHONE MODELING, SIMULATION, RESULT, AND DISCUSSION...........107
6.1 INTRODUCTION......................................................................................................107
6.2 EARBUD EARPHONE MODELING..........................................................................107
6.3 INSERT EARPHONE MODELING............................................................................110
6.4 EFFECT OF SPONGE, POSITION, AND INPUT VOLUME ON EARBUD EARPHONE RESPONSE..............................................................................................................112
6.5 HEARING LOSS.......................................................................................................113
6.6 RESULTS AND DISCUSSION..................................................................................114
6.6.1 EARBUD EARPHONE...................................................................................114
6.6.2 INSERT EARPHONE.....................................................................................126
6.6.3 HEARING LOSS............................................................................................131
CHAPTER 7 CONCLUSIONS AND SCOPE FOR FUTURE WORK......................................138
7.1 CONCLUSIONS.......................................................................................................138
7.1.1 MICROPHONE CONCLUSIONS...................................................................138
7.1.2 LOUDSPEAKER CONCLUSIONS.................................................................138
7.1.3 EARPHONE CONCLUSIONS........................................................................140
7.2 SCOPE FOR FUTURE WORK.................................................................................141
REFERENCES.......................................................................................................................142
LIST OF PUBLICATION.........................................................................................................150
A. INTERNATIONAL JOURNAL PAPERS......................................................................150
B. INTERNATIONAL CONFERENCE PAPERS..............................................................151
BIOGRAPHY..........................................................................................................................153
Aarts, R. M. (1992). A Comparison of Some Loudness Measures for Loudspeaker Listening Tests. Journal of the Audio Engineering Society, 40(3), 142-146
Aarts, R. M. (2005). High-Efficiency Low-Bl Loudspeakers. Journal of the Audio Engineering Society, 53(7), 579-592.
Aarts, R. M., Nieuwendijk, J. A. M., & Ouweltjes, O. (2006). Efficient Resonant Loudspeakers with Large Form-Factor Design Freedom. Journal of the Audio Engineering Society, 54(10), 940-953.
Abdulla, S. (1998). Noise-Induced Hearing Loss: The Future is Hear. Molecular Medicine Today, 4(7), 284-285.
Aerts, J. R. M., Dirckx, J. J. J., & Pintelon, R. (2009). Measurement of Non-Linear Distortions in the Vibration of Acoustic Transducers and Acoustically Driven Membranes. Optics and Lasers in Engineering, 47(3), 419-430.
Aldoshina, I., Voishvillo, A., & Mazin, V. (1994). Loudspeaker Motor Nonlinear Modeling based on Calculated Magnetic Field Inside the Gap. Paper presented at the 97th Audio Engineering Society Convention, San Francisco, USA.
Ashton, J. P. (1951). The Design of Commercial Hearing Aids. Journal of the British Institution of Radio Engineers, 11(2), 51-59.
ASTM. (2009). ASTM D882 - 09 Standard Test Method for Tensile Properties of Thin Plastic Sheeting.
AVguide''s. (2009). AVguide''s PLAYBACK Headphone Buyer''s Guide Retrieved December 1, 2011, from http://www.avguide.com/buyers-guide/avguides-playback-headphone-buyers-guide
B&K. (2008). B&K Product Data, B&K, Head and Torso Simulator - Type 4128. World Headquarters: DK-2850 Naerum, Denmark: B&K.
Bai, M. R., & Kuo, Y. C. (2010). Acoustical Design of a Bluetooth Earphone Using Simulated Annealing Optimization. Journal of the Audio Engineering Society, 58(7-8), 583-589.
Bai, M. R., & Liao, J. (2005). Acoustic Analysis and Design of Miniature Loudspeakers for Mobile Phones. Journal of the Audio Engineering Society, 53(11), 1061-1076.
Bai, M. R., Liu, C. Y., & Chen, R. L. (2008). Optimization of Microspeaker Diaphragm Pattern Using Combined Finite Element–Lumped Parameter Models. IEEE Transactions on Magnetics, 44(8), 2049-2057.
Bauer, B. B. (1962). A Century of Microphones. Proceedings of the Institute of Radio Engineers, 50(5), 719-729.
Bellini, A., Cibelli, G., Ugolotti, E., Farina, A., & Morandi, C. (1998). Non-Linear Digital Audio Processor for Dedicated Loudspeaker Systems. IEEE Transactions on Consumer Electronics, 44(3), 1024-1031.
Beranek, L. L. (1993). Acoustics: Acoustical Society of America.
Bohn, D. (2000). Audio Specifications-RaneNote Retrieved May 30, 2012, from http://www.rane.com/note145.html
Bolaños, F. (2004). Frequency Domain Experiences in Loudspeaker’s Suspensions. Paper presented at the 116th Audio Engineering Society Convention, Berlin, Germany.
Boston, J. R., & Ainslie, P. J. (1979). Effectiveness of Earphone Shielding for Artifact Control in Auditory Evoked Potentials. IEEE Transactions on Biomedical Engineering, 26(5), 289-292.
Buil, V., & Hollemans, G. (2005). Acceptable Operating Force for Buttons on In-Ear Type Headphones. Paper presented at the Ninth IEEE International Symposium on Wearable Computers, Osaka, Japan.
Chao, P. C. P., Chiu, C. W., & Hsu-Pang, Y. (2007). Magneto-Electrodynamical Modeling and Design of a Microspeaker Used for Mobile Phones with Considerations of Diaphragm Corrugation and Air Closures. IEEE Transactions on Magnetics, 43(6), 2585-2587.
Chernof, J. (1957). Principles of Loudspeaker Design and Operation. IRE Transactions on Audio, 5(5), 117-127.
Ćirić, D. G., & Hammershøi, D. (2006). Coupling of Earphones to Human Ears and to Standard Coupler. Journal of the Acoustical Society of America, 120(4), 2096-2107.
Cohen, A. B. (1968). The Real World of Headphone Performance. Paper presented at the 35th Audio Engineering Society Convention, New York, USA.
Eargle, J. (2004). The Microphone Book: Focal Press.
Elko, G. W., & Harney, K. P. (2009). A History of Consumer Microphones: The Electret Condenser Microphone Meets Micro-Electro-Mechanical-Systems. Acoustics Today, 5(2), 4-13.
Giacometti, J. A., & Oliveira Jr, O. N. (1992). Corona Charging of Polymers. IEEE Transactions on Electrical Insulation, 27(5), 924-943.
Glasberg, B. R., & Moore, B. C. J. (2006). Prediction of Absolute Thresholds and Equal-Loudness Contours using a Modified Loudness Model. Journal of the Acoustical Society of America, 120(2), 585-588.
Goode, R. L., Killion, M., Nakamura, K., & Nishihara, S. (1994). New Knowledge About the Function of the Human Middle Ear: Development of an Improved Analog Model. American Journal of Otology, 15(2), 145-145.
Haque, M. A., & Saif, M. T. A. (2002). Mechanical Behavior of 30–50 Nm Thick Aluminum Films under Uniaxial Tension. Scripta Materialia, 47(12), 863-867.
Her, H. C., Wu, T. L., & Huang, J. H. (2008). Acoustic Analysis and Fabrication of Microelectromechanical System Capacitive Microphones. Journal of Applied Physics, 104(8), 084509.
Huang, J. H. (Fall, 2008). Electroacoustic Transducer - Class Notes. Graduate Program of Electroacoustics, FCU. Taichung, Taiwan.
Huang, J. H., Her, H. C., Shiah, Y. C., & Shin, S. J. (2008). Electroacoustic Simulation and Experiment on a Miniature Loudspeaker for Cellular Phones. Journal of Applied Physics, 103(3), 033502.
Hwang, G. Y., Kim, H. G., Hwang, S. M., & Kang, B. S. (2002). Analysis of Harmonic Distortion Due to Uneven Magnetic Field in a Microspeaker Used for Mobile Phones. IEEE Transactions on Magnetics, 38(5), 2376-2378.
Hwang, G. Y., Kim, K. T., Chung, S. U., Hwang, S. M., Kang, B. S., & Hwang, I. C. (2002). Analysis of a Dynamic Speaker in Mobile Phones by Considering Mechanical, Electrical, and Magnetic Coupling Effects. Journal of Applied Physics, 91(10), 6979-6981.
Hwang, S. M., Hong, K. S., Lee, H. J., Kim, J. H., & Jeung, S. K. (2004). Reduction of Harmonic Distortion in Dual Magnet Type Microspeaker. IEEE Transactions on Magnetics, 40(4), 3054-3056.
Hwang, S. M., Kwon, J. H., & Hong, K. S. (2005). Development of Woofer Microspeakers used for Cellular Phones. IEEE Transactions on Magnetics, 41(10), 3808-3810.
Hwang, S. M., Lee, H. J., Kim, J. H., Hwang, G. Y., Lee, W. Y., & Kang, B. S. (2003). New Development of Integrated Microspeaker and Dynamic Receiver used for Cellular Phones. IEEE Transactions on Magnetics, 39(5), 3259-3261.
ITU-T-Rec.P.51. (2005). Series P: Telephone Transmission Quality, Telephone Installations, Local Line Networks, Artificial Ears. Retrieved from http://eu.sabotage.org/www/ITU/P/P0057e.pdf.
Kaizer, A. J. M. (1986). Modeling of the Nonlinear Response of an Electrodynamic Loudspeaker by A Volterra Series Expansion. Paper presented at the 80th Audio Engineering Society Convention, Montreux, Switzerland.
Keele, D. B., & Mihelich, R. J. (2002). Suspension Bounce as a Distortion Mechanism in Loudspeakers with a Progressive Stiffness. Paper presented at the 112th Audio Engineering Society Convention, Munich, Germany.
Khoo, H. S., Liu, K. K., & Tseng, F. G. (2005). Characterization of the Mechanical Properties of Microscale Elastomeric Membranes. Measurement Science and Technology, 16(3), 653-658.
Kim, W., Jang, G. W., & Kim, Y. Y. (2010). Microspeaker Diaphragm Optimization for Widening the Operating Frequency Band and Increasing Sound Pressure Level. IEEE Transactions on Magnetics, 46(1), 59-66.
King-Smith, R. D., & Vanderbilt, D. (1993). Theory of Polarization of Crystalline Solids. Physical Review B, 47(3), 1651-1655.
Klippel, W. (1990). Dynamic Measurement and Interpretation of the Nonlinear Parameters of Electrodynamic Loudspeakers. Journal of the Audio Engineering Society, 38(12), 944-955.
Klippel, W. (2000). Diagnosis and Remedy of Nonlinearities in Electrodynamical Transducers. Paper presented at the 109th Audio Engineering Society Convention, Los Angeles, California, USA.
Klippel, W. (2003). Assessing Large Signal Performance of Transducers. Paper presented at the 11th Regional Convention of the Audio Engineering Society, Tokyo, Japan.
Klippel, W. (2005). Large Signal Performance of Tweeters, Micro Speakers and Horn Drivers. Paper presented at the 118th Audio Engineering Society Convention, Barcelona, Spain.
Klippel, W. (2006). Loudspeaker Nonlinearities-Causes, Parameters, Symptoms. Journal of the Audio Engineering Society, 54(10), 907-939.
Klippel, W. (2010). Measuring Telecommunication Drivers: Application Note to the Klippel R&D System.
Klippel, W., & Schlechter, J. (2006). Measurement and Visualization of Loudspeaker Cone Vibration. Paper presented at the 121 Audio Engineering Society Convention, San Francisco, CA, USA.
Klippel, W., & Seidel, U. (2003). Measurement of Impulsive Distortion, Rub and Buzz and other Disturbances. Paper presented at the 114th Audio Engineering Society Convention, Amsterdam, Netherlands.
König, F. M. (2004, May 2004). The Causals of Headphones Tone Coloration Variations related on the Human Pinna Influence. Paper presented at the 116th Audio Engineering Society Convention, Penzberg, Germany.
Kulkarni, A., & Colburn, H. S. (2000). Variability in the Characterization of the Headphone Transfer-Function. Journal of the Acoustical Society of America, 107(2), 1071-1074.
Kuttruff, H. (2007). Acoustics: An Introduction (First ed.): Routledge.
Kwon, J. H., Hwang, S. M., & Kim, K. S. (2007). Development of Slim Rectangular Microspeaker used for Minimultimedia Phones. IEEE Transactions on Magnetics, 43(6), 2704-2706.
Kwon, J. H., Hwang, S. M., Lee, C. M., Kim, K. S., & Hwang, G. Y. (2009). Application of Response Surface Methodology (RSM) in Microspeaker Design used in Mobile Phones. IEEE Transactions on Magnetics, 45(10), 4550-4553.
Larsen, P. (2008). LOUDSOFT Design Tutorial- Part 1 Retrieved November 23, 2008, 2008, from www.loudsoft.com
Larson, P. (2008). Woofer Design using Non-Linear BL(X) Curves, from http://www.loudsoft.com/loudsoft/my%20files/Articles/Woofer%20Design%20using%20BLx%20curves.pdf
Leach, W. M. (2003). Introduction to Electroacoustics and Audio Amplifier Design (Third ed.). Dubuque, Iowa: Kendall/Hunt.
Lee, C. M., & Hwang, S. M. (2011). Optimization of SPL and THD Performance of Microspeakers Considering Coupling Effects. IEEE Transactions on Magnetics, 47(5), 934-937.
Lee, C. M., Kwon, J. H., Kim, K. S., Park, J. H., & Hwang, S. M. (2010). Design and Analysis of Microspeakers to Improve Sound Characteristics in a Low Frequency Range. IEEE Transactions on Magnetics, 46(6), 2048-2051.
Lemarquand, G. (2006). New Structure of Loudspeaker. Paper presented at the 20th Audio Engineering Society Convention, Paris, France.
Lemarquand, G. (2007). Ironless Loudspeakers. IEEE Transactions on Magnetics, 43(8), 3371-3374.
Lemarquand, G., & Lemarquand, V. (2007). How to Ameliorate the Linearity of Loudspeakers. Paper presented at the 19th International Congress on Acoustics, Madrid, Spain.
Li, X., & Bhushan, B. (2000). Continuous Stiffness Measurement and Creep Behavior of Composite Magnetic Tapes. Thin solid films, 377-378, 401-406.
Liu, Z., Seltzer, M. L., Acero, A., Tashev, I., Zhang, Z., & Sinclair, M. (2005). A compact Multi-Sensor Headset for Hands-Free Communication. Paper presented at the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, USA.
Maa, D. Y. (1998). Potential of Microperforated Panel Absorber. The Journal of the Acoustical Society of America, 104(5), 2861-2866.
McLean, A. (1957). Loudspeaker Design and Application. IRE Transactions on Audio, 5(2), 30-40.
Merit, B., & Lemarquand, G. (2008). Ironless Low Frequency Loudspeaker Working under its Resonance Frequency. Archives of Acoustics 33(4(s)), 59-64.
Mihelich, R. J. (2001). Loudspeaker Nonlinear Parameter Estimation: An Optimization Method. Paper presented at the 110th Audio Engineering Society Convention, Amsterdam, Netherlands.
Mitchell, P. W. (2010). Loudspeaker Failure Its Causes and Prevention Retrieved May 02, 2010, from http://www.davidreaton.com/PDFs/Loudspeaker_Failure.pdf
Mostafapour, S. P., Lahargoue, K., & Gates, G. A. (1998). Noise-Induced Hearing Loss in Young Adults: The Role of Personal Listening Devices and Other Sources of Leisure Noise. The Laryngoscope, 108(12), 1832-1839.
Motavalli, S. (1998). Review of Reverse Engineering Approaches. Computers & Industrial Engineering, 35(1-2), 25-28.
MTS-Manual. (2001). Tytron™ 250 Microforce Testing System, from http://www.mts.com/ucm/groups/public/documents/library/dev_003371.pdf
Nelson, D. I., Nelson, R. Y., Concha-Barrientos, M., & Fingerhut, M. (2005). The Global Burden of Occupational Noise-Induced Hearing Loss. American Journal of Industrial Medicine, 48(6), 446-458.
Nielsen, L., Schuhmacher, A., Liu, B., & Jonsson, S. (2004). Simulation of the IEC 60711 Occluded Ear Simulator. Paper presented at the 116th Audio Engineering Society Convention, Berlin, Germany.
Olson, H. F. (1943). Dynamic Analogies (eBook ed.). New York: D. Van Nostrand.
Parsons, M. (2001). Watch Your Ears-Safeguarding Your Most Valuable Assets Retrieved 14 Februry 2012, from http://www.etymotic.com/publications/erl-0102-2001.pdf.
Pascal, J., Bourgeade, A., Lagier, M., & Legros, C. (1998). Linear and Nonlinear Model of the Human Middle Ear. Journal of the Acoustical Society of America, 104(3), 1509-1516.
Poh, M. Z., Kim, K., Goessling, A. D., Swenson, N. C., & Picard, R. W. (2009). Heartphones: Sensor Earphones and Mobile Application for Non-Obtrusive Health Monitoring. Paper presented at the International Symposium on Wearable Computers, Linz, Austria.
Ravaud, R., Lemarquand, G., Lemarquand, V., & Roussel, T. (2010). Ranking of the Nonlinearities of Electrodynamic Loudspeakers. Archives of Acoustics, 35(1), 49-66.
Ravaud, R., Lemarquand, G., & Roussel, T. (2009). Time-Varying Non Linear Modeling of Electrodynamic Loudspeakers. Applied Acoustics, 70(3), 450-458.
Rayburn, R. A. (2004). Why Do Frequency Response Curves Matter? Retrieved March 23, 2012, from http://www.superlux.us/frequency_response.html
Rice, C. G., Rossi, G., & Olina, M. (1987). Damage Risk from Personal Cassette Players. British Journal of Audiology, 21(4), 279-288.
Robinson, D. W., & Dadson, R. S. (1957). Threshold of Hearing and Equal-Loudness Relations for Pure Tones, and the Loudness Function. The Journal of the Acoustical Society of America, 29(12), 1284-1288.
Robjohns, H. (2001). A Brief History of Microphones. First published Microphone Data Book.
Ruiz, M., Feuereisen, B., Machon, D., & Recuero, M. (2005). Factors Contributing to the Uncertainty in Circumaural Earphone Calibration for Audiometric Testing. Applied Acoustics, 66(9), 1033-1048.
Sagberg, H., Sudbo, A., Solgaard, O., Bakke, K. A. H., & Johansen, I. R. (2003). Optical Microphone Based on a Modulated Diffractive Lens. IEEE Photonics Technology Letters, 15(10), 1431-1433.
Satoh, K., Takewa, H., Iwasa, M., & Kikkawa, T. (1997). A High Fidelity Small-Sized Loudspeaker. IEEE Transactions on Consumer Electronics, 43(3), 972-979.
SCENIHR. (2008).
Potential Health Risks of Exposure to Noise from Personal Music Players and Mobile Phones Including a Music Playing Function. In S. C. o. E. N. I. H. Risks (Ed.), (pp. 80): European Commission, Brussels, Belgium.
Scheeper, P. R., Van der Donk, A. G. H., Olthuis, W., & Bergveld, P. (1994). A Review of Silicon Microphones. Sensors and Actuators A: Physical, 44(1), 1-11.
Schmidt, G., & Haulick, T. (2006). Signal Processing For In-Car Communication Systems. Signal Processing, 86(6), 1307-1326.
Schneider, B., Wright, A. A., Edelheit, W., Hock, P., & Humphrey, C. (1972). Equal Loudness Contours Derived from Sensory Magnitude Judgments. Journal of the Acoustical Society of America, 51(6-2), 1951-1959.
Seguineau, C., Ignat, M., Malhaire, C., Brida, S., Lafontan, X., Desmarres, J. M., . . . Debove, L. (2008). Micro-Tensile Tests on Micromachined Metal on Polymer Specimens: Elasticity, Plasticity and Rupture. Paper presented at the Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, 2008. MEMS/MOEMS 2008, Nice, France.
Seidel, U., & Klippel, W. (2001). Fast and Accurate Measurement of the Linear Transducer Parameters. Paper presented at the 110th Audio Engineering Society Convention, Amsterdam, Netherlands.
Sessler, G. M. (2001). Electrets: Recent Developments. Journal of Electrostatics, 51, 137-145.
Sessler, G. M., & West, J. E. (1966). Foil-Electret Microphones. Journal of the Acoustical Society of America, 40(6), 1433-1440.
Sharpe Jr, W. N., Yuan, B., & Edwards, R. L. (1997). A New Technique for Measuring the Mechanical Properties of Thin Films. IEEE/ASME Journal of Microelectromechanical Systems, 6(3), 193-199.
Shiah, Y. C., Her, H. C., Huang, J. H., & Huang, B. (2008). Parametric Analysis for a Miniature Loudspeaker used in Cellular Phones. Journal of Applied Physics, 104(10), 104905.
Small, R. H. (1972). Closed-Box Loudspeaker Systems, Part I: Analysis. Journal of the Audio Engineering Society, 20(10), 798-808.
Small, R. H. (1973a). Closed-Box Loudspeaker Systems-Part 2: Synthesis. Journal of the Audio Engineering Society, 21(1), 11-18.
Small, R. H. (1973b). Vented-Box Loudspeaker Systems Part I: Small-Signal Analysis. Journal of the Audio Engineering Society, 21(5), 363-372.
Small, R. H. (1973c). Vented-Box Loudspeaker Systems, Part 3: Synthesis. Journal of the Audio Engineering Society, 21(7), 549-554.
Small, R. H. (1973d). Vented-Box Loudspeaker Systems, Part 4: Appendices. Journal of the Audio Engineering Society, 21(8), 635-639.
Small, R. H. (1973e). Vented Box Loudspeaker Systems—Part II. Journal of the Audio Engineering Society, 21(6), 326-332.
Smith, M. T. (2001). Audio Engineer''s Reference Book: Focal Press.
SoundCheck-Manual. (2007). SoundCheck®, Instruction Manual Version 7.0 from http://www.listeninc.com/PDFs/manual_SoundCheck_7-0_V031108_LR.pdf
Spector, A. A., Brownell, W. E., & Popel, A. S. (1999). Mechanical and Electromotile Characteristics of Auditory Outer Hair Cells. Medical and Biological Engineering and Computing, 37(2), 247-251.
Tackett, J. (2005). ISO 226 Equal-Loudness-Level Contour Signal Retrieved May 23, 2011, 2011, from http://www.mathworks.com/matlabcentral/fileexchange/7028-iso-226-equal-loudness-level-contour-signal
Takewa, H., Saiki, S., Kano, S., & Inaba, A. (2006). Slim-Type Speaker for Flat-Panel Televisions. IEEE Transactions on Consumer Electronics, 52(1), 189-195.
Tashiro, M., Bank, G., & Roberts, M. (1997). A New Flat Panel Loudspeaker for Portable Multimedia. Paper presented at the 103th Audio Engineering Society Convention, New York.
Temme, S. (1992). Audio Distortion Measurements-B&K Application Note.
Thorborg, K., Unruh, A. D., & Struck, C. J. (2007). An Improved Electrical Equivalent Circuit Model for Dynamic Moving Coil Transducers. Paper presented at the 122th Audio Engineering Society Convension, Vienna, Austria.
Tikander, M. (2007). Modeling the Attenuation of a Loosely-Fit Insert Headphone for Augmented Reality Audio. Paper presented at the 30th Audio Engineering Society International Conference, Saariselkä, Finland.
Timoney, J., MacManus, L., Lysaght, T., & Schoenwiesner, M. (2004). Implementing Loudness Models in LATLAB. Paper presented at the 7th International Conference on Digital Audio Effects, Naples, Italy.
Tobushi, H., Hara, H., Yamada, E., & Hayashi, S. (1996). Thermomechanical Properties in a Thin Film of Shape Memory Polymer of Polyurethane Series. Smart Materials and Structures, 5(4), 483-491.
Van Rhijn, A. (2003). Integrated Circuits for High Performance Electret Microphones. Paper presented at the 114th Audio Engineering Society Convention, Amsterdam, Netherlands.
Van Soestbergen, M., Ernst, L. J., Jansen, K. M. B., van Driel, W. D., Bartek, M., & Polyakov, A. (2006, 24-26 April 2006 ). Measuring In-Thickness Mechanical Properties of Sub Micron Polymer Dielectric Films. Paper presented at the 7th International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, 2006 (EuroSime 2006 ), Como, Italy.
Vanderbilt, D., & King-Smith, R. D. (1993). Electric Polarization as a Bulk Quantity and its Relation to Surface Charge. Physical Review B, 48(7), 4442-4455.
Vogel, I., Brug, J., van der Ploeg, C. P. B., & Raat, H. (2007). Young People’s Exposure to Loud Music: A Summary of the Literature. American Journal of Preventive Medicine, 33(2), 124-133.
Vogel, I., Brug, J., van der Ploeg, C. P. B., & Raat, H. (2009). Strategies for the Prevention of MP3-Induced Hearing Loss among Adolescents: Expert Opinions from a Delphi Study. Pediatrics, 123(5), 1257-1262.
Voss, S. E., Rosowski, J. J., Shera, C. A., & Peake, W. T. (2000). Acoustic Mechanisms that Determine the Ear-Canal Sound Pressures Generated by Earphones. Journal of the Acoustical Society of America, 107(3), 1548-1565.
Web1. History of Electrostatic Speakers Retrieved May 02, 2010, from http://www.martinlogan.com/learn/electrostatic-loudspeaker-history.php
Web2. History of the Loudspeaker and Speaker Technology Retrieved May 02, 2010, from http://www.voices.com/articles/audio-recording-technology/history-of-...
Web3. Loudspeaker History Retrieved May 02, 2010, from http://history.sandiego.edu/gen/recording/loudspeaker.html
Web4. Interpreting Loudspeaker Specifications Retrieved May 28, 2012, from http://www.mcsquared.com/nsca98.htm
Web5. Loudspeaker Retrieved May 23, 2011, from http://en.wikipedia.org/wiki/Loudspeaker.
Web6. Dynamic Loudspeaker Principle Retrieved Jan 23, 2010, from http://hyperphysics.phy-astr.gsu.edu/hbase/audio/spk.html
Web7. Electromagnetic Devices and Inventions Retrieved May 02, 2010, from http://www.electronicsteacher.com/succeed-in-physical-science/magnetism/electromagnetic-devices-and-inventions.php
White, J. (1963). Considerations in High-Fidelity Moving-Coil Earphone Design. IEEE Transactions on Audio 11(6), 188-194.
WHO-PDH-98.5. (1997). Prevention of Noise Induced Hearing Loss. Report of a WHO-PDH Informal Consultation Geneva, 28–30 October 1997. No. 3 in the Series. Strategies for Prevention of Deafness and Hearing Impairment 1997: WHO-PDH-98.5.
Williams, W. (2005). Noise Exposure Levels from Personal Stereo Use. International Journal of Audiology, 44(4), 231-236.
Wojcik, J. J., & Cardinal, P. G. (1999, 2-6 August 1999 ). New Advanced Methodology for Near Field Measurements for SAR and Antenna Development. Paper presented at the IEEE International Symposium on Electromagnetic Compatibility 1999, Seattle, Washington, USA.
Xu, X., & Guo, Y. J. (2009). A Loudspeaker with Dual Coils and Dual Magnets. Journal of the Audio Engineering Society, 57(11), 951-956.
Zhang, B., Zhou, Y., Wang, N., Liang, X., Guan, Z., & Takada, T. (2005). Polarity Reversal Charging of Polypropylene Films Under DC Corona Discharge. Journal of Electrostatics, 63(6), 657-663.
Zhang, Y. (2003). Research into the Engineering Application of Reverse Engineering Technology. Journal of Materials Processing Technology, 139(1), 472-475.
Zhiwen, X., Juncong, S., Yu, L., & Dan, R. (2009). Calibration of Headphones and Earphone with KEMAR. Paper presented at the 2nd International Congress on Image and Signal Processing, 2009, CISP ''09, Tianjin, China.
Zuckerwar, A. J. (1978). Theoretical Response of Condenser Microphones. Journal of the Acoustical Society of America, 64(5), 1278-1285.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top