|
[1] Abgrall, R.: How to prevent pressure oscillations in multicomponent flow calculations: aqusi conservative approach. Journal of Computational Physics, 125, pp. 150- 160, (1996). [2] Buffard, T.; Gallouet, T. and H erard, J.M.: A sequel to a rough Godunov scheme: application to real gases. Computers and Fluids, 29, pp. 813-847, (2000). [3] Cada, M.: Compact third-order limiter functions for finite volume methods. Dipl. Geo Physiker, Ludwig-Maximilians University, (2009). [4] C engel, Y.A. and Michael, A.B.: Fundamentals of thermodynamics, 1st Edition. McGraw-Hill, New York, (2002). [5] Coelho, R.M.L.; Lage P.L.C. and Telles, A.S.: A comparison of hyperbolic solvers for ideal and real gas flows. Brazilian Journal of Chemical Engineering, Vol. 23, No. 3, pp. 301-318, (2006). [6] Godunov, S.K.: A difference method for numerical calculation of discontinuous equation of hydrodynamics. Math Sbornik (in Russian), 47, pp. 217-306, (1959). [7] Guardone, A. and Vigevano, L.: Roe linearization for the Van der Waals gas. Journal of Computational Physics, 175, pp. 50-78, (2002). [8] Jameson, A.; Schmidt, W. and Turkel, E.: Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes. AIAA paper, pp. 1981-1259, (1981). [9] Jenny, P.; Mueller, B. and Thomann, H.: Correction of conservative Euler solvers for gas mixtures. Journal of Computational Physics, 132, pp. 91-107, (1997). [10] Jiang, S. and Ni, G.: A second-order γ -model BGK scheme for multimaterial compressible flows. Applied Numerical Mathematics, 57, pp. 597–608, (2007). [11] Kamm, J.R. and Shashkov, M.: A pressure relaxation closure model for onedimensional, two-material Lagrangian hydrodynamics based one the Riemann problem. Technical Report, LA-UR-09-00659, Los Alamos National Laboratory, (2009). [12] Karni, S.: Multicomponent flow calculations by a consistent primitive algorithm. Journal of Computational Physics, 112, pp. 31–43, (1994). [13] Kemm, F.: A comparative study of TVD-limiters—well-known limiters and an introduction of new ones. International Journal for Numerical Methods in Fluids, 67, pp. 404–440, (2011). [14] Kim, K.H.; Kim, C. and Rho, O.H.: Methods for the accurate computations of hypersonic flows:: I. AUSMPW+ schemes. Journal of Computational Physics, 174, pp. 38–80, (2001). [15] Liou, M.S. and Steffen, C.J.: A flux splitting scheme. NASA TM104404, (1991); Journal of Computational Physics, 107, pp. 23-39 (1996). [16] Masella, J.M.; Faille I. and Gallouet T.: On an approximate Godunov scheme. Journal of Computational Fluid Dynamics, 12 (2), pp. 133-149, (1999). [17] Menikoff, R. and Plhor, B.J.: The Riemann problem for fluid flow of real materials. Reviews of Modern Physics, Vol. 61, No. 1, pp. 75-131, (1989). [18] Prendergast, K.H. and Xu, K.: Numerical hydrodynamics from gas-kinetic theoryy. Journal of Computational Physics, 109, pp. 53–66, (1993). [19] Richard, L.B. and Douglas, J.F.: Numerical analysis, 8th Edition. Thomson Brooks/Cole, Belmont, (2005). [20] Shieh, T.H.: Private communication. [21] Shieh, T.H.: Technical report and thesis. Section of Aerothermodynamics of Institute for Fluidmechanics of German Aerospace Center (DLR) and Institute for Turbomachinery and Fluiddynamics of University Hannover, (1999). [22] Shieh, T.H. and Li, M.R.: Numeric treatment of contact discontinuity with multi gases. Journal of Computational and Applied Mathematics, Vol. 230, Issue 2, pp. 656- 673, (2009). [23] Shieh, T.H. and Li, M.R.: Private communication. [24] Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. Journal on Numerical Analysis, Vol. 21, No. 5, pp. 995-1011, (1984). [25] Tannehill, J.C.; Anderson, D.A. and Pletcher, R.H.: Computational fluid mechanics and heat transfer. 2nd Edition. Taylor and Francis, Ltd., London, (1997). [26] Ton, V.T.: Improved shock-capturing methods for multicomponent and reacting flows. Journal of Computational Physics, 128, pp. 237-235, (1996). [27] Toro, E.: Solvers and numerical methods for fluid dynamics: A practical introduction. Springer, Heidelberg, (1999). [28] Toro, E.F. and Billett, S.J.: Centred TVD schemes for hyperbolic conservation laws. Journal of Numerical Analysis, 20, pp. 47–79, (2000). [29] van Leer, B.: On the relation between the upwind-differencing schemes of Godunov, Engquist–Osher and Roe. Journal on Scientific and Statistical Computing, 5, pp. 1-20, (1984). [30] van Leer, B.: Upwind and high-resolution methods for compressible flow: From donor cell to residual-distribution schemes. Communications in Computational Physics, Vol. 1, No. 2, pp. 192-206, (2006). [31] Wada, Y. and Liou, M. S.: A flux splitting scheme with high-resolution and robustness for discontinuities. AIAA-94-0083, (1994). [32] Xu, K. and Prendergast, K.H.: Numerical Navier–Stokes solutions from gas kinetic theory. Journal of Computational Physics, 114, pp. 9–17, (1994). [33] Xu, K.: BGK - based scheme for multicomponent flow calculations. Journal of Computational Physics, 134, pp. 122-133, (1997). [34] Xu, K.: A gas-kinetic BGK scheme for the Navier–Stokes equations and its connection with artificial dissipation and Godunov method. Journal of Computational Physics, 171, pp. 289–335, (2001). [35] Zijlema, M. and Wesseling, P.: Higher-order flux-limiting schemes for the finite volume computation of incompressible flow. International Journal of Computational Fluid Dynamics, Vol. 9, Issue 2, pp. 89-109, (1998).
|