跳到主要內容

臺灣博碩士論文加值系統

(44.213.63.130) 您好!臺灣時間:2023/02/01 02:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾品蒨
研究生(外文):Pin-chian Tseng
論文名稱:極音速進氣道流場震波與邊界層交互作用研究
論文名稱(外文):Study of Shock Waves/Boundary Layer Interactions on Hypersonic Intake Flows
指導教授:謝宗翰謝宗翰引用關係
學位類別:碩士
校院名稱:逢甲大學
系所名稱:航太與系統工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:80
中文關鍵詞:非定常Navier-Stokes方程三維效應震波與邊界層交互作用進氣道排氣口側壁面超音速燃燒衝壓引擎
外文關鍵詞:unsteadyNavier-Stokes equationsscramjetsidewallshock wave/boundary layer interaction3-D effectintakeairvent
相關次數:
  • 被引用被引用:2
  • 點閱點閱:319
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用有限體積法,以Reynold平均求解Navier-Stokes方程,計算模擬壓縮段為兩坡道的極音速進氣道,考慮不同幾何變化下,進行二維與三維熱流場計算模擬,針對進氣道前兩坡道轉角處及隔離段兩區域的震波與邊界層交互作用產生的流場變化特性做模擬,並進一步探討三維效應對耦合流場的影響。
一系列研究過程中首先對網格進行測試,在進氣道前緣與兩坡道轉角處和近壁面處進行網格加密,並且嘗試使用邊界層網格,結果顯示邊界層網格可有效的減少網格數量,且不影響震波模擬的精準度,因此本研究選擇此種網格做為主要的網格計算基礎。在非定常計算方面,首先探討不同時間精度與時間步數兩參數對計算結果的影響,計算結果顯示計算精度對結果的影響占決定數,較高的時間精度可獲得比較正確的結果,但過高的精度會造成冗長的計算耗時。
本研究進一步探討排氣口幾何對極音速進氣道耦合流場的影響,計算結果顯示增加排氣口將延遲誘發兩坡道轉角處的分離震波分離點,並將隔離段入口處由邊界層所誘發的分離氣泡順利排出,因此減弱震波與邊界層交互作用,進一步改善隔離段內的流場變化。三維計算結果顯示,未考慮側壁面的進氣道高速氣流將由兩側流失,降低了進入引擎的質量流量,此種三維的流場問題在有考慮側壁面的結果顯示,將可改善此流失的現象,但側壁面所引起的角渦將與分離震波產生進一步的交互作用,使在分離氣泡的耦合流場中誘發額外的震波。
This paper describes using finite volume method to solve Reynold average Navier-Stokes Equations, simulated a hypersonic intake has a double-ramp compress section. Considering varied geometry to carry out 2-D and 3-D computing simulation of flow field. Computing simulations of the shock wave/boundary layer interaction at the double-ramp and isolator, we have further research about the flow field change result from the 3-D effect.
During the research, we test the mesh first, increase the mesh number at the leading edge of the intake, corner between two faces and near wall. We try to use boundary layer mesh, from the result we fine out the boundary layer mesh can effectively reduce mesh number of model without affecting the accuracy of the shock wave simulation. Therefore, we use boundary layer mesh in our computing simulation. About unsteady test, investigate the affect of calculation results with different time step size and time steps, the calculation results show that the time step size is accounted decided of the result, smaller time step size can obtain correct results, but we may cause lengthy computation time if time step size too small.
This study further explores the airvent geometry affect of hypersonic intake coupled flow field, the calculated results show the separation point of two ramps corner will delay induced if we increase airvent, and discharge separation bubble induced by the boundary layer smoothly at isolator inlet, improve the flow field in the isolator with shock wave/boundary layer interaction is weakened. The result of 3-D computing simulation show the high-speed airflow will be loss from sides with not consider the sidewall, it can reduce the mass flow entering the engine, 3-D flow field will be improve the phenomenon of loss if we increase sidewall. The corner vortex caused by the sidewall can generate further interaction with separation shock wave, additional shock wave will be induced in coupled flow field of separation bubble.
致謝 I
摘要 II
Abstract III
目錄 V
圖目錄 VII
表目錄 X
符號說明 XI
第一章 前言 1
1.1 研究動機 1
1.2 文獻回顧 3
1.3 研究工作與目的 5
1.4 研究流程 6
第二章 物理現象 8
2.1 震波與邊界層交互作用 8
2.2 三維流動現象 12
2.2.1 Goertler渦漩 12
2.2.2 側壁面效應 14
第三章 計算方法 16
3.1 問題假定 16
3.2 控制方程 16
3.3 離散方法 20
3.4 紊流計算模型-四方程Transition SST模型 22
第四章 物理模型、計算網格與計算條件 27
4.1 物理模型 27
4.1.1 二維模型 27
4.1.2 三維模型 28
4.2 計算網格 29
4.2.1 二維邊界層結構性網格 30
4.2.2 三維結構/非結構性混和網格 31
4.3 邊界條件 32
第五章 結果與討論 36
5.1 邊界層結構性網格測試 38
5.2 不同幾何結構對二維進氣道流場的影響 40
5.2.1 排氣口對二維進氣道流場的影響 41
5.2.2 壓縮坡道幾何外型對二維進氣道流場的影響 45
5.3 非定常不同時間精度計算測試 48
5.4 定常與非定常計算結果比較 50
5.5 二維與三維對進氣道流場影響的比較 (無側壁面) 52
5.6 三維進氣道模擬結果 55
5.6.1 不同幾何結構對三維進氣道流場的影響 55
5.6.2 邊界層內近壁面的流場變化 (有側壁面) 58
5.6.3 三維壁面效應的渦旋/震波交互作用 61
第六章 結論 63
參考文獻 65
[1]Itoh, K., Ueda, S., Tanno, H., Komuro, T., Sato, K.: Hypersonic aerothermodynamic and scramjet research using high enthalpy shock tunnel, Shock Waves, Vol. 12, No. 2, pp. 93-98, 2002
[2]Matsumura, S., Schneider, S. P., Berry, S. A.: Streamwise vortex instability and transition on the Hyper-2000 scramjet forebody, Journal of Spacecraft and Rockets, Vol. 42, No. 1, pp.78-89, 2005
[3]Paull, A., Stalker, R. J., Mee, D. J.: Experiments on supersonic combustion ramjet propulsion in a shock tunnel, Journal Fluid Mech., Vo. 296, pp. 159-183, 1995
[4]Schneider, P. S.: Hypersonic stability and transition experiments on blunt cones and a generic scramjet forebody, AIAA paper 2003-1130, 2003
[5]Neuenhahn, T.: Investigation of the shock wave/boundary layer interaction of scramjet intake flows, RWTH Aachen University, 2010
[6]Haeberle, J.: Untersuchungen zum externen und internen Stromungsfeld eines Scramjet Triebwerkseinlaufs bei unterschiedlichen Betriebspunkten, Stuttgart University, 2009
[7]Curran, E. T.: Scramjet engines: The first forty years, Journal of Propulsion and Power, Vol. 17, No. 6, pp. 1138-1148, 2001
[8]Andrews, E. H., Mackley, E. A.: NASA''s hypersonic research engine project a review. NASA TM 107759, 1994.
[9]Mercier, R. A., Ronald, T. M. F.: Hypersonic technology(HyTech) program overview, AIAA paper 98-1566, 1998
[10]Rogers, R. C., Capritotti D. P., Guy, R. W.: Experimental supersonic combustion research at NASA Langley, AIAA paper 98-2506, 1998
[11]Roudakov, A. S., Schickman, Y., Semenov V., Novelli, P., Fourt, O.,: Flight testing an axisymmetric scramjet: Russian recent advances, In Proceedings of 44th Congress of the International Astronautical Federation, Graz, Austria. October 1993, pp. 16-22
[12]Alexander, S. R., Vyacheslav, L. S., John W. H.,: Recent flight test results of the joint CIAM-NASA Mach 6.5 scramjet flight program, NASA/TP-1998-206548
[13]Duveau, P., Novelli P., Eggers T., Hallard R.: Aerodynamic performance analysis of the hypersonic airbreathing vehicle JAPHAR, ISABE 99-7286
[14]Delery, J.,Marvin, J. G.: Shock-wave boundary layer interactions, AGARDograph No. 280, 1986
[15]Holden, M. S.: A study of flow separation in regions of shock wave/boundary layer interaction in hypersonic flow, AIAA paper 78-1169, 1978
[16]Chapman, D. R., Kuehn, D. M., Larson, H. K.: Investigation of separated flow in supersonic and subsonic streams with emphasis on the effect of transition, NACA TN-3869, 1957
[17]Benay, R., Chanetz, B., Mangin, B., Vandomme, L.: Shock wave/transitional boundary-layer interactions in hypersonic flow, AIAA Journal, Vol. 4 No. 6, pp. 1243-1254, 2006
[18]Holden, M. S.: Boundary-layer displacement and leading-edge bluntness effects on attached and separated laminar boundary layers in a compression corner. Part II: Experimental study, AIAA Journal, Vol. 9, No. 1, pp. 84-93, 1971
[19]Bleilebens, M., Olivier, H.: On the influence of elevated surface temperatures on hypersonic shock wave/boundary layer interaction at a heated ramp model, Shock Waves, Vol. 15, No. 5, pp. 301-312, 2006
[20]Delery, J. M., Panaras, A. G.: Shock-wave/boundary-layer interactions in high Mach number flows, Hypersonic Experimental and Computational Capability, Improvement and Validation, Vol. 1, ed. by Saric, W. S., Muylaert, J. and Dujarric, C., AGARD AR-319, 1996
[21]De Luca, L., Cardone, G., Chevalerie, D., Fonteneau, A.: Viscous interaction phenomena in hypersonic wedge flow, AIAA Journal, Vol. 33, No. 12, pp. 2293-2299, 1995
[22]Schlichting, H.: Grenzschicht-Theorie, German, 2006
[23]Kreins, A. F.: Heat flux distribution and flow field investigation in distributed hypersonic boundary layers on flat plates, DLR-Forschungsbericht 94-03, German, ISSN 0939-2963, 1994
[24]Coet, M.C., Chanetz, B.: Thermal effects in shock wave/boundary layer interactions in hypersonic processes, La Recherche Aerospatiale, No. 4, ISSN 0034-1223 , pp. 251-268, 1994
[25]Schrijer, F.F.J., Caljouw, R., Scarano, F., van Oudheusden, B.W.: Three dimensional xperimental investigation of a hypersonic double-ramp flow, 26th International Symposium on Shock Waves, Goettingen, Germany, 2007
[26]Stollery, J.L.: Some viscous interactions affecting the design of hypersonic intakes nd nozzles, Advances in Hypersonics, Vol.1, ed. J.J. Bertin, J. Periaux, J. allmann, Birkhauser, 1992
[27]Launder, B.E, Spalding D.B.: Lectures in mathematical models of turbulence academic press, London, England. 1972
[28]Menter, F.R., Langtry, R.B., Likki, S.R., Suzen, Y.B., Huang, P.G., Volker, S.: A correlation based transition model using local variables part 1 - model formulation. (ASME-GT2004-53452)2004
[29]Krause, M., Ballmann, J.: Enhanced design of a scramjet intake using two different RANS solvers, Aachen University
[30]盧賢鋒:超聲速進氣道內外流場計算與數學模型研究,中國西北工業大學碩士學位論文,2003
[31]羅偉仁:極音速震波-邊界層交互作用模擬,逢甲大學碩士學位論文,2011
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top