跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/09 02:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林億茹
研究生(外文):Yi-Ru Lin
論文名稱:貝氏推論 Jump GARCH 模型及其分量預測模型
論文名稱(外文):Bayesian Inference and Quantile Forecasting for Jump GARCH Models
指導教授:陳婉淑
指導教授(外文):Cathy W. S. Chen
學位類別:碩士
校院名稱:逢甲大學
系所名稱:統計與精算所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:51
中文關鍵詞:預期損失風險值馬可夫鏈蒙地卡羅時間異質性Jump GARCH 模型貝氏方法
外文關鍵詞:BayesianJump GARCH modelMCMCExpected ShortfallValue-at- Riskmarginal likelihood
相關次數:
  • 被引用被引用:0
  • 點閱點閱:318
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
在本研究計畫中,研究 jump GARCH 模型的預測和模型的比較,跳躍過程中是具
有時間異質性的和非獨立的。主要使用貝氏方法以及馬可夫鏈蒙地卡羅演算法來對模型
參數有更好的估計,跳躍模型允釵陰囓騤嚽D的強度隨時間改變且近似自我迴歸移動平
均模型的形式。透過財務時間序列分析顯示跳躍模型比傳統的廣義自迴歸條件異方差模
型的結果指出跳躍模型能顯示更多跳躍的動態和波動結構等重要的特徵。此外,利用邊
際最大概估計能用來選擇最佳的模型,而我們也發現jump GARCH模型較一般常用的
GARCH 能夠良好描述資料。最後,應用模擬分析闡明所提方法之估計表現並使用各國
時間序列資料利用貝氏方法來預測風險值和預期損失。
In this thesis, inference, quantile forecasting, and model comparison for a jump GARCH model is investigated, where jump arrivals are time inhomogeneous and state-dependent. The Bayesian inference of jump GARCH via MCMC methods is employed to obtain better estimates. The model permits the conditional jump intensity to be time-varying and follows an approximate autoregressive moving average (ARMA) form. The jump GARCH model undergoes nancial time series analysis and is compared with GARCH models. In addition, two Bayesian model selection methods are used to choose the best model between GARCH and jump GARCH models. We illustrate the Bayesian method of parameter estimation by simulation experiments. A Bayesian model comparison, Value at-Risk forecasts, and on Expected Shortfall study are considered. The results indicate nd signi cant improvements of tness in the jump GARCH model.
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . .. . .. . . 1
2 Jump GARCH model . . . . . . . . . . . . . . . . . . . .. . .. 3
3 Bayesian inference . . . . . . . . . . . . . . . . .. . .. . .5
3.1 Prior and Posterior . . . . . . . . . . . . . . . . . . . . . 6
3.2 MCMC sampling scheme . . . . . . . . . . . . . . . . . . . . . 7
3.2.1 Random walk MH algorithm . . . . . . .. . . . . . . . . . .. 8
3.2.2 Independent kernel MH algorithm . . . . . . . . . . . . . . 8
4 Model Selection . . . . . . . . . . . . . . . .. . .. . . . ..9
5 Forecasting . . . . . . . . . . . . . . . .. . .. . . . .. ..10
5.1 Assessments of VaR and ES models . . . . . . . . . . . . . . 13
6 Simulation study . . . . . . . . . . . .. . .. . . . . . . . .16
7 Empirical study . . . . . . . . . . . .. . .. . . . . . . . ..19
7.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . .. . 19
7.2 Model comparisons . . . . . . . . . . . . . . . . . . . . . . 20
7.3 VaR forecast . . . . . . . . . . . . . . . . . . . . . .. . . 21
8 Conclusion and future research . . . . . . . . . . . . . . . . 23
A Computation detail of VaR and ES . . . . . . . . . . . . . .. .27
References
Acerbi, C. and Tasche, D. (2001). Expected shortfall: A natural coherent alternative to value at risk.
Economic Notes. 31, 379-388.

Acerbi, C. and Tasche, D. (2002). On the coherence of expected shortfall.
Journal of Banking & Finance. 26, 1487-1503.

Andersen, T.G., Benzoni, L., and Lund, J. (2002). An empirical investigation of continuous time equity return models. Journal of Finance. 62, 1239-1284.

Artzner, P., Delbaen, F., Eder, J.M., and Heath, D. (1999). Coherent measures of risk.
Mathematical Finance. 9, 203-228.

Ball, C. A. and W. N. Torous (1983). A simpli ed jump process for common stock returns.
Journal of Financial and Quantitative Analysis. 18, 53-65.

Bates, D.S. (2000). Post-87 crash fears in the S&P 500 futures option market.
Journal of Econometrics. 94, 181-238.

Bauwens, L. and Lubrano, M. (1998). Bayesian inference on GARCH models using Gibbs sampler.
Econometrics Journal. 1, 23-46.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroscedasticity.
Journal of Econometrics. 31, 307-327.
Bollerslev, T., Chou, R. Y., Kroner, K. P. (1992). ARCH modeling in nance: A review of the theory and empirical evidence. Journal of Econometrics. 52, 5-59.

Chan, W. H. and J. M. Maheu. (2002). Conditional Jump Dynamics in Stock Market Return.
Journal of Business & Economic Statistics. 20, 377-389.

Chen, C. W. S., Gerlach, R., and So, M. K. P. (2006). Comparison of non-nested asymmetric heteroscedastic models. Computational Statistics & Data Analysis.
Special issue on Nonlinear Modelling & Financial econometrics 51, 2164-2178.

Chen, C. and Sato, S. (2008). Inhomogeneous Jump-GARCH Models with Applications in Financial Time Series Analysis.
COMPSTAT 2008 : Proceedings in Computational Statistic. 218-228.

Chen CWS, So MKP, Lin EMH. (2009). Volatility forecasting with double Markov
switching GARCH models. Journal of Forecasting. 28, 681-697.
Chib, S. (1995). Marginal likelihood from the Gibbs output. Journal of the American
Statistical Association. 90, 1313V1321.
Chib, S. and Jeliazkov, I. (2001). Marginal likelihood from the Metropolis-Hastings
output. J. Amer. Statist. Assoc.. 96, 270-281.
Christo ersen, P. (1998). Evaluating interval forecasts. International Economic Review.
39, 841-862.
Engle, R.F. (1982). Autoregressive conditional heteroscedasticity with estimates of the
variance of United Kingdom in
ations. Econometrica. 5, 1-50.
Engle, R.F. and Manganelli, S. (2004). CAViaR: Conditional autoregressive value at risk by regression quantiles.
Journal of Business and Economic Statistics. 22, 367-381.

Gelfand, A.E. and Dey, D. (1994). Bayesian model choice: Asymptotics and exact calculations.
Journal of the Royal Statistical Society, Ser. B. 56, 501-514.

Gelman, A., Roberts, G. O., and Gilks, W. R. (1996). E cient Metropolis jumping rules.
In J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith (Eds.),
Bayesian Statistics. 5, 599-607. Oxford: Oxford University Press.

Geweke, J. (1995). Bayesian comparison of econometric models.
Working Paper 532. Research Department, Federal Reserve Bank of Minneapolis.

Glosten LR, Jagannathan R, and Runkle DE. (1993). On the relation between the expected value and the volatility of the nominal excess return on stock.
Journal of Finance. 48, 1779-1801.

Jorion, P. (1997). Value at risk: The new benchmark for managing nancial risk, 1rd Edition. (New York: McGraw Hill).

Kupiec, P.H. (1995). Techniques for verifying the accuracy of risk measurement Models.
(Journal of Derivatives). 3, 73-84.

Maheu, J. M. and Mccurdy, T.H. (2004). News arrival, jump dynamics, and volatility components for individual stock returns. Journal of Finance. 64, 755-793.

McAleer M. (2008). Forecasting Value-At-Risk with a Parsimonious Portfolio Spillover GARCH (PS-GARCH) Model.
Journal of Forecasting. 27, 1-19.

Newton, M. A., and Raftery, A. E. (1994). Approximate Bayesian inference with the weighted likelihood Bootstrap (with discussion).
Journal of the Royal Statistical Society, Ser. B. 56, 3-48.

Pan, J. (2002). The jump-risk premia implicit in options: Evidence from an integrated time-series study.
Journal of Financial Economics. 63, 3-50.

Vrontos, I. D., Dellaportas, P., and Politis, D. N. (2000). Full Bayesian inference for GARCH and EGARCH models.
Journal of Business & Economic Statistics. Journal of Business & Economic Statistics. 18, 187-198.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊