跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/14 16:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴騰憲
研究生(外文):Teng-Hsien Lai
論文名稱:新式電磁致動微掃描面鏡之設計、製作與效能評估
論文名稱(外文):Design, Fabrication and Performance Evaluation of A Novel Electromagnetic Actuated Scanning Micromirror
指導教授:鄒慶福
指導教授(外文):Ching-Fu Tsou
學位類別:博士
校院名稱:逢甲大學
系所名稱:電機與通訊工程博士學位學程
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:79
中文關鍵詞:電磁致動器光學掃描鏡真空
外文關鍵詞:Optical scannerElectromagnetic microactuatorVacuum
相關次數:
  • 被引用被引用:0
  • 點閱點閱:315
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
雷射掃描顯示系統為目前微型投影技術的發展重點之ㄧ,其中微掃瞄面鏡為該光機系統中之關鍵元件,由於只需透過一個雙軸或是整合兩個正交之單軸微掃描面鏡,並搭配雷射光源的投射即可顯示二維的掃描影像,因此具備體積小、製程簡單與低成本的優點,相較其他微型投影技術具有較高的競爭優勢,且雷射光源具有高飽和度的色彩,可提供高品質的影像顯示。有鑑於此,本論文提出一個創新的側向致動電磁式微掃描鏡架構,並對該元件的優化設計與真空封裝效能進行深入的分析與探討,最後再透過微機電技術完成實體的製作與量測。元件設計將以單軸掃瞄為主,透過不同的扭轉軸設計,分別製作出具有低頻(慢軸)與高頻(快軸)掃描之面鏡結構,其中典型的實驗結果顯示,高頻與低頻的共振頻率量測結果分別為4434Hz與179Hz,因此,可根據高、低頻掃描面鏡的搭配掃描出二維的影像。另外,在真空特性的實驗中,發現掃描角度與共振頻率會隨著真空度的提升而增加,當真空度由760Torr提升至76mTorr時,掃描角度約可提升31%。此外,本論文亦同時針對元件的熱效應問題進行探討,由溫度分布的結果可發現,本研究提出的側向致動電磁式致動器,可成左犒j絕線圈溫度對掃描鏡結構的影響,因此可改善一般電磁致動器易受熱而影響其動態特性與壽命的缺點。另一方面,針對元件驅動訊號的波形也進行深入的探討,發現於相同輸入能量下,當輸入波形為弦波訊號時會有最大的掃描角度。因此透過本研究所提出的元件設計與製程規劃,即可利用最簡易的製程,製作出具有高、低頻驅動特性的掃描面鏡結構,於真空環境下所萃取出的動態特性,將做為未來電磁式致動器於真空封裝時的評估依據。
With the rapid development of microprojection systems, the laser scanning technique has become the optimal solution for the requirements of portable products, and is easily integrated with electronic devices. In such applications, the micromirror device plays a vital role in laser scanning display and may dominate the projected image quality. In general, a 2D-image can be created by using a laser beam projected on a dual-axis, gimbaled rotation structure or two single-axis scanning units with orthogonal alignment. Therefore, the laser scanning display has a small size, a simple fabrication process, low cost, and high quality in image display. This thesis proposes a novel electromagnetic scanning micromirror device with lateral driving force. A specific design and vacuum packaging performance were also investigated to enhance the efficiency of the devices. The typical design of two single-axis micromirrors for the actuation in low and high frequencies were realized by using the MEMS technique. The vibration scanning frequencies of 4434 Hz and 179 Hz accomplished one and 2D scanning images for optical applications. A vibration angle of 11.2 degrees at a high frequency was achieved in an ambient environment, and the maximal vibration angle was increased by 31% at a vacuum degree of 76 mTorr. In addition, the thermal distribution in the proposed structure was determined by the customized vacuum system. The mirror plate can successfully isolate the thermal source, which is produced by the solenoid coil, even in the high vacuum environment. Moreover, the driven voltage in various waveforms is discussed in this thesis. Experimental results indicate that the sine wave has the largest scanning angle under the same input energy. These results reveal the small size, low weight, and potentially low cost that makes electromagnetic microactuators desirable for several applications of optical systems.
ABSTRACT i
中文摘要 ii
TABLE OF CONTENTS iii
LIST OF FIGURES v
LIST OF TABLES x
CHAPTER 1 Introduction 1
1.1 Background 1
1.2 Motivations 2
1.3 Literatures review 3
1.3.1 Driving methods 4
1.3.2 Vacuum package 12
CHAPTER 2 Design and Analysis 16
2.1 Design Concept 16
2.1.1 Fast Axis 19
2.1.2 Slow Axis 20
2.2 Performance Analysis 22
2.2.1 Electromagnetic Analysis 22
2.2.2 Mechanical Analysis 31
CHAPTER 3 Fabrications and Measurement 40
3.1 Fabrication Process 40
3.1.1 Metal Based Micromirror 41
3.1.2 Silicon-Based Micromirror 46
3.1.3 Device Assembly 50
3.2 Static Characteristic 52
3.3 Dynamic Response 53
CHAPTER 4 Vacuum Test Evaluations 57
4.1 Experiment Equipment 57
4.2 Dynamic Property 59
4.3 Driving Waveform Effect 62
4.4 Discussion and Summary 66
CHAPTER 5 Conclusions and Future Work 71
5.1 Conclusion 71
5.2 Future work 72
REFERENCE 73
[1]H. Schenk, P. Durr, T. Haase, D. Kunze, U. Sobe, H. Lakner, and H. Kuck, “Large deflection micromechanical scanning mirrors for linear scans and pattern generation”, IEEE Journal of Selected Topics in Quantum Electron., Vol. 6, pp. 715 – 722, 2000.
[2]R. B. Sprague, T. Montague, and D. Brown, “Bi-axial magnetic drive for scanned beam display mirrors”, Proc. SPIE, MOEMS Display and Imaging Systems III, Vol. 5721, pp. 1 – 13, 2005.
[3]C. H. Ji, S. H. Ahn, K. C. Song, H. K. Yoon, M. Choi, S. C. Kim and J. U. Bu, “Dual-axis electromagnetic scanning micromirror using radial magnetic field”, 19th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 32 – 35, Istanbul, Turkey, January 2006.
[4]J. Getpreecharsawas, I. Puchades, B. Hournbuckle, L. Fuller, R. Pearson and S. Lyshevski, “An Electromagnetic MEMS Actuator for Micropumps”, Proceedings of the 2nd International Conference on Perspective Technologies and Methods in MEMS Design 2006, Lviv-Polyana, Ukraine, pp.11 – 14, May 2006.
[5]C. Y. Lee, K. B. Sanat, H. Yu, J. W. Kwon and E. S. Kim, “On-Demand DNA Synthesis on Solid Surface by Four Directional Ejectors on a Chip”, Journal of Microelectromechanical Systems, Vol. 16 , Issue: 5, pp.1130 – 1139, 2007.
[6]B. Yanhui, J. T. W. Yeow, P. Constantinou, S. Damaskinos, and B. C. Wilson, “A 2-D Micromachined SOI MEMS Mirror With Sidewall Electrodes for Biomedical Imaging”, IEEE/ASME Transactions on Mechatronics, Vol. 15 , Issue 4, pp. 501 – 510, 2010.
[7]J. Lee, C. H. Je, S. Kang and C. A. Choi, “A low-loss single-pole six-throw switch based on compact RF MEMS switches ”, IEEE Transactions on Microwave Theory and Techniques, Vol. 53 , Issue 11, pp. 3335 – 3344, 2005.
[8]K. Isamoto, K. Kato, A. Morosawa, C. Changho, H. Fujita and H. Toshiyoshi, “A 5-V operated MEMS variable optical attenuator by SOI bulk micromachining ”, IEEE Journal of Selected Topics in Quantum Electronics, Vol. 10 , Issue 3 , pp. 570 – 578, 2004.
[9]M. Mizuno and D.G. Chetwynd, “Investigation of a resonance microgenerator,” Journal of Micromechanics and Microengineering, Vol. 13, pp. 209 – 216, 2003.
[10]H. Kulah and K. Najafi, “An electromagnetic micro power generator for low frequency environmental vibrations,” 17th IEEE International Conference on Micro Eletro Mechanical System (MEMS), pp. 237 – 240, Maastricht, Netherlands, January 2004.
[11]S. J. Sherman,W. K. Tsang, T. A. Core, R. S. Payne, D. E. Quinn, K. H. Chau, J. A. Farash, and S. K. Baum, “A low-cost monolithic accelerometer: Product/technology update,” in Proc. IEEE Electron. Dev. Mtg., pp. 160 – 161, San Francisco, USA, Dec. 1992.
[12]W. Yun, R. T. Howe, and P. R. Gray, “Surface micromachined digitally force-balanced accelerometer with integrated CMOS detection circuitry,” in Proc. IEEE Solid-State Sensor and Actuator Workshop, pp. 126 – 131, Hilton Head Island, USA, June 1992.
[13]J. B. Sampesell, “The digital micromirror device and its application to projection displays,” Transducer ‘93, Yokohama, Japan, pp. 24 – 27, June 1993.
[14]M. A. Mignardi, “Digital micromirror array for projection TV,” Solid State Technology, Vol. 37 pp. 63 – 68, 1994.
[15]J. Stephen Aden, Jaime H. Bohórquez, Douglas M. Collins, M. Douglas Crook, André García, and Ulrich E. Hess, “The Third-Generation HP Thermal InkJet Printhead”, Hewlett-Packard Journal, Vol. 45, No. 1, pp.41 – 45, 1994.
[16]http://www.displaysearch.com/cps/rde/xchg/displaysearch/hs.xsl/100419_pocket_projector_shipment_forecast_to_reach_142m_units_by_2018_displaysearch_reports.asp
[17]H. Schenk, P. Durr, T. Haase, D. Kunze, U. Sobe, H. Lakner, and H. Kuck, “Large deflection micromechanical scanning mirrors for linear scans and pattern generation”, IEEE J. Sel. Topics Quantum Electron., Vol. 6, pp. 715 – 722, 2000.
[18]R. B. Sprague, T. Montague, and D. Brown, “Bi-axial magnetic drive for scanned beam display mirrors”, Proc. SPIE, MOEMS Display and Imaging Systems III, Vol. 5721, pp. 1 – 13, 2005.
[19]C. H. Ji, S. H. Ahn, K. C. Song, H. K. Yoon, M. Choi, S. C. Kim ,and J. U. Bu, “Dual-axis electromagnetic scanning micromirror using radial magnetic field”, 19th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 32 – 35, Istanbul, Turkey, January 2006.
[20]M. H. Kiang, D. A. Francis, C. J. Chang-Hasnain, O. Solgaard, K. Y. Lau, and R. S. Muller, “Actuated polysilicon micromirrors for rasterscanning displays,” International Conference on Solid-State Sensors and Actuators (Transducers’97), pp. 323 – 326, Chicago, USA, June 1997.
[21]U. Hofmann, S. Muehlmann, M.Witt, K. Doerschel, R. Schuetz, and B. Wagner, “Electrostatically driven micromirrors for a miniaturized confocal laser scanning microscope,” in Proc. SPIE Conf. Miniaturized Systems With Micro-Optics and MEMS, pp.29 – 38, Santa Clara, USA, Vol. 3878, September 1999
[22]M. Fujino, P. R. Patterson, H. Nguyen, W. Piyawattanametha, and M. C. Wu, “Monolithically cascaded micromirror pair driven by angular vertical combs for two-axis scanning”, IEEE J. Sel. Topics Quantum Electron., Vol. 10, No. 3, pp.492 – 497, 2004.
[23]K. E. Petersen, “silicon torsional scanning mirror”, IBM J. Res. Develop, Vol.24, pp.631 – 637, 1980.
[24]Z. Hao, B. Wingfield, M. Whitley and J. A. Hammer, “A design methodology for a bulk-micromachined two-dimensional electrostatic torsion micromirror”, Journal of MEMS, Vol. 12, Issue 5, pp.692 – 701, 2003
[25]K. H. Jeong and L. P. Lee, “A novel microfabrication of a self-aligned vertical comb drive on a single SOI wafer for optical MEMS applications”, Journal of Micromechanics and Microengineering, Vol. 15, No. 2, pp.277 – 281. 2005
[26]M. Huja and M. Husak, “Thermal microactuators for optical purposed”, International Conference on Information Technology: Coding and Computing, Las Vegas, USA, pp.137 – 142, April 2001
[27]M. Sinclair, “A high frequency resonant scanner using thermal actuation,” 15th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 698 – 701, Las Vegas, USA, January 2002
[28]M. Tani, M. Akamatsu, Y. Yasuda, H. Fujita, and H. Toshiyoshi, “A 2D-optical scanner actuated by PZT film deposited by arc discharged reactive ion-plating (ADRIP) method,” Proc. IEEE/LEOS Int. Conf. on Optical MEMS, pp.188 – 189, Takamatsu, Japan, August 2004.
[29]M. Tani, M. Akamatsu, Y. Yasuda and H. Toshiyoshi, “A two-axis piezoelectric tilting micromirror with a newly developed PZT-meandering actuator”, 20th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 699 – 702, Kobe, Japan, Jan. 2007.
[30]H. Miyajima, N. Asaoka, T. Isokawa, M. Ogata, Y. Aoki, M. Imai, O. Fujimori, M. Katashiro and K. Matsumoto, “A MEMS electromagnetic optical scanner for a commercial confocal laser scanning microscope,” Journal of MEMS, Vol. 12, pp. 243 – 251, 2003.
[31]C. H. Ji, S. H. Ahn, K. C. Song, H. K. Yoon, M. Choi, S. C. Kim and J. U. Bu, “Dual-axis electromagnetic scanning micromirror using radial magnetic field,” 19th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp.32 – 35, Istanbul, Turkey, January 2006.
[32]H. Zhili, B. Wingfield, M. Whitley, J. Brooks and J.A. Hammer, “A design methodology for a bulk-micromachined two-dimensional electrostatic torsion micromirror”, Journal of MEMS, Vol. 12, Issue 5, pp.692 – 701, Oct. 2003.
[33]J. H. Lee, Y. C. Ko, B. S. Choi, J. M. Kim and D. Y. Jeon;, “SOI-based fabrication processes of the scanning mirror having vertical comb fingers”, Sensors and Actuators A: Physical, Vol. 102, Issues 1-2, pp.11 – 18, 2002.
[34]H. Toshiyoshi, H. Fujita, T. Kawai and T. Ueda, “Piezoelectrically operated actuators by quartz micromachining for optical application”, IEEE MEMS Workshop, Fort Lauderdale, USA, pp.133 – 138, February 1993.
[35]W. Riethmuller and W. Benecke, “Thermally excited silicon microactuators,” IEEE Trans. Electron Devices, Vol. 35, pp.758 – 763. 1988.
[36]S. O. Isikman, O. Ergeneman, A.D. Yalcinkaya and H. Urey, “Modeling and Characterization of Soft Magnetic Film Actuated 2-D Scanners”, IEEE Journal of Selected Topics in Quantum Electronics, Vol. 13, Issue 2, pp.283 – 289, 2007.
[37]N. Asada, H. Matsuki, K. Minami and M. Esashi, , “Silicon Micromachined Two-Dimensional Galvano Optical Scanner”, IEEE lerated Vertical Transactions on Magnetics, Vol. 30, pp. 4647 – 4649, 1994.
[38]L. Ferreira and S. Moehlecke, “A silicon micromechanical galvanometric scanner”, Sensors and Actuators A, Vol. 73, pp.252 – 260, 1999.
[39]A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague and R. Sprague, “Two-Axis Electromagnetic Microscanner for High Resolution Displays,” Journal of MEMS, Vol. 15, pp.786 – 794, 2006.
[40] H. Urey, “MEMS scanners for display and imaging applications”, Optomechatronic Micro/Nano Components, Devices, and Systems, Vol. 5604, pp.218 – 229, 2004
[41]H. Urey, S. Holmstrom and A. D. Yalcinkaya, “Electromagnetically Actuated FR4 Scanners”, IEEE Photonics Technology Letters, Vol. 20, Issue 1, pp.30 – 32, 2008
[42]I. J. Cho, K. S. Yun; H. k. Lee; J. B. Yoon and E. Yoon;, “A low-voltage two-axis electromagnetically actuated micromirror with bulk silicon mirror plates and torsion bars”, 15th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp.540 – 543, Las Vegas, USA, 20 – 24 Jan. 2002
[43]X. Mi, O. Tsuboi, H. Okuda, H. Soneda, N. Koma, S. Ueda and I. Sawaki, “A scanning mirror with extremely high resonance frequency up to 0.51 MHz using both torsion and buckling springs”, 17th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp.73 – 76, Maastricht, Netherlands, January 2004.
[44]S. Kurth, C. Kaufmann, R. Hahn, J. Mehner, W. Dötzel and T. Gessner, “A novel 24 kHz resonant scanner for high resolution laser display”, MOEMS Display and Imaging Systems III, Vol. 5721, pp.23 – 33, 2005.
[45]D. Sparks, J. Trevino, S. Massoud-Ansari and N. Najafi, “An all-glass chip-scale MEMS package with variable cavity pressure”, Journal of Micromechanics and Microengineering, Vol.16, No.11, pp. 2488 – 2491, 2006
[46]C. Yang, A. Xu and Y. Wang, “Wafer Level Hermetic Packaging of MOEMS Devices”, 32nd International Electronic Manufacturing Technology Symposium, pp. 294 – 297, San Jose, USA, October 2007.
[47]T. F. Marinis, J. W. Soucy, J. G. Lawrence, R. T. Marinis and R. J. Pryputniewicz, “Vacuum Sealed MEMS Package with an Optical Window”, 58th Electronic Components and Technology Conference, pp.804 – 810, Florida, USA, May 2008
[48]M. Oldsen, U. Hofmann, H. J. Quenzer and B. Wagner, “A Novel Fabrication Technology for Waferlevel Vacuum Packaged Microscanning Mirrors”, 9th EPTC, pp. 303 – 307, Singapore, Dec. 2007.
[49]H. Tachibana, K. Kawano, H. Ueda and H. Noge, “Vacuum Wafer Level Packaged Two-Dimensional Optical Scanner by Anodic Bonding”, 22th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp.959 – 962, Sorrento, Italy, January 2009.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top