跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:8e11:74e4:2207:41a8) 您好!臺灣時間:2025/01/15 17:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳大猷
研究生(外文):Da-yu Wu
論文名稱:UF薄膜系統應用於高濁度原水處理之可行性研究
論文名稱(外文):Feasibility study using UF membrane system applied in the treatment of high turbidity raw water
指導教授:吳俊哲
指導教授(外文):Jerry J. Wu
學位類別:碩士
校院名稱:逢甲大學
系所名稱:環境工程與科學所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:68
中文關鍵詞:薄膜積垢及阻塞產水通量薄膜系統濁度
外文關鍵詞:High turbidityMembrane systemMembrane foulingProduct flux
相關次數:
  • 被引用被引用:5
  • 點閱點閱:519
  • 評分評分:
  • 下載下載:133
  • 收藏至我的研究室書目清單書目收藏:0
由於台灣地區地狹人稠,近年來更因山坡地過度開發,導致集水區水土保持不良,且每逢大雨或颱風期間經常導致淨水場進流原水濁度高達1,000~5,000 NTU,甚至超過10,000 NTU以上,且其濁度約為平日平均值20~100倍以上,因此造成淨水場淨水處理設施無法負荷,進而面臨停水之局面。為維護國民生活品質,自來水廠必須提供經常性穩定之出水量及水質,故本研究主要以沉浸式之UF薄膜程序來探討對於高濁度原水中溶解性有機物、消毒副產物的前驅物及硬度之影響。
本研究首先以實驗室小型的外壓式及沉浸式薄膜處理系統進行試驗,再以鳳山淨水廠之沉浸式薄膜模組系統進行模場測試,此兩種薄膜系統皆是利用孔徑0.02 μm之PVC薄膜材質,分別進行含濁度原水之測試,藉由參數之調整與最佳化研究,及各項程序因子之探討,以評估對高濁度原水水質處理效率的影響。由外壓式之批次實驗結果可得知,當原水濁度高達5,000 NTU及初始產水通量為100 LMH時,其產水通量降至40 LMH,其可能原因為高濁度原水易造成膜絲的阻塞,造成產水通量下降。而由沉浸式之各級距測試,可以看出濁度在1,000 NTU~4,000 NTU時對產水比通量、回收率與產水水質檢測之濁度、餘氯等並無明顯差異。但當濁度高達5,000 NTU以上時,其瞬間通量需下調,才能夠有較穩定與長時間之操作。而由實驗結果可知,無論是經過外壓式或沉浸式薄膜系統過濾,其產水濁度皆可符合法規標準範圍(濁度小於30 NTU);但在比通量方面,則是沉浸式優於外壓式,故沉浸式薄膜系統較適合處理大量的民生給水,其可直接浸置於傳統沉澱池內,並無須另外搭建一套薄膜設備來處理高濁度之原水。
關鍵字:濁度、薄膜系統、產水通量、薄膜積垢及阻塞
Since Taiwan is a small and highly populated island, where the hills are even over-developed, the soil and water conservation in the catchment area can not be maintained at a good level. As a result, whenever there is heavy rain or typhoon, the turbidity of raw water from the catchment area intaken by the water treatment plant can soar up to 1,000~5,000 NTU, which is usually 20 to 100 folds over the daily average value. Therefore, the water treatment plant has to cease offering drinking water supply because the water treatment facilities can not afford to purify the water, leading to great inconvenience to people during the occasional events. To maintain a good residency quality in Taiwan, the water treatment plant has to guarantee the supply of sufficient and clean water. This study focuses on the treatment of dissolved and suspended organic matters, the precursors of disinfection by-products and hardness, in high turbidity water using the process of submerged ultrafiltration (UF) system.
The research consists of two phases. The first phase was to conduct the basic experiment in the lab using external pressurized and submerged membrane. The second phase was to fabricate and operate the submerged pilot-scale membrane module in Fengshan Water Treatment Plant. In both membrane systems, the PVC membrane material with 0.2 μm in the pore size was utilized. The turbidity of raw water was tested and optimized throughout the change of operating parameters. The treatment efficiency for high turbidity raw water was evaluated by adjusting the process variations. It is noted from our batch experiment of using external pressurized membrane system that the product flux can decrease from 100 LMH initially down to 40 LMH while the turbidity of raw water is 500 NTU, indicating that the fouling of membrane prevails at high turbidity raw water. There is no significant difference for specific product flux, recovery rate, turbidity, and residual chlorine when the turbidity ranges from 1,000 to 4,000 NTU. However, when the turbidity is higher than 5,000 NTU, the instantaneous water flux is found to decrease and the system can not be operated smoothly. From the experiments, both the filtrate using external pressurized or submerged membrane systems can produce water within a reasonable turbidity range, less than 30 NTU. Nevertheless, the submerged membrane system is still superior to the other in specific product flux. In addition, submerged membrane system can be better qualified to treat city water at large quantities since the system can be submerged in the traditional sedimentation basin and there is no need to build an extra unit of membrane system for simplicity.

Keyword: High turbidity, Membrane system, Product flux, Membrane fouling
第一章 前言 1
1.1 研究動機 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 淨水場現況 3
2.1.1 原水特性 3
2.1.2 台灣區淨水場淨水處理流程 3
2.1.3 原水高濁度衝擊及應變措施 4
2.2 高濁度水來源及處理 5
2.2.1 濁度的組成 5
2.2.2 濁度之來源及性質 5
2.2.3 原水濁度遽增的起因 6
2.3 薄膜系統 7
2.3.1 薄膜種類 7
2.3.2 薄膜材質 10
2.3.3 薄膜模組 11
2.3.4 正交過濾與掃流過濾 12
2.4 薄膜操作特性 13
2.4.1 回收率及去除率 13
2.4.2 通透量與比通量 14
2.4.3 薄膜防垢去垢方法 15
第三章 研究方法與實驗步驟 23
3.1 研究架構 24
3.2 實驗材料 25
3.2.1 薄膜材質- UF膜之特性 25
3.2.2 中空纖維膜之類別 25
3.2.3 UF模組 26
3.3 實驗設備 28
3.3.1 外壓式-實驗室薄膜模組處理系統 28
3.3.2 沉浸式-鳳山淨水廠薄膜模組處理系統 29
3.4 實驗步驟 32
3.4.1 外壓式-實驗流程 32
3.4.2 沉浸式-實驗流程 33
3.5 分析項目與方法 34
第四章 結果與討論 36
4.1 實驗室之外壓式薄膜模組系統 36
4.1.1 含濁度原水特性分析 36
4.1.2 批次試驗 37
4.1.3 背景試驗 38
4.1.4 產水通量及濁度之影響 38
4.1.5 產水水質 43
4.1.6 連續試驗 45
4.2 鳳山淨水場之沉浸式薄膜模組系 47
4.2.1 500 NTU之測試結果與說明 48
4.2.2 1,000 NTU之測試結果與說明 50
4.2.3 3,000 NTU之測試結果與說明 52
4.2.4 4,000 NTU之測試結果與說明 54
4.2.5 5,000 NTU之測試結果與說明 56
4.2.6 沉浸膜之綜合討論 58
第五章 結論與建議 64
5.1結論 64
5.2建議 65
第六章 參考文獻 66
1.台灣水環境再生協會,「原水高濁度期間自來水廠放流水標準合理性修訂之研議」,台北自來水事業處,2003。
2.陳建嘉,「原水高濁度期間淨水場廢污處理能力改善之研討」,碩士論文,長榮大學職業安全與衛生學系,2005。
3.陳振正「不同淨水程序對顆粒粒徑分布之影響」,大仁學報,pp. 131-144,2000。
4.翁韻雅,「以高分子凝集劑處理高濁度原水之研究」,碩士論文,國立成奶j學環境工程學系研究所,2003。
5.T. Leiknes, H. Myklebust, H. Odegaard, “Metal membranes for drinking water treatment”. Membrane Technology, pp. 6-10, 2005.
6.盧文章、楊子岳,「薄膜程序回收石化產業放流水之應用」,環保月刊,Vol. 1,No. 1,pp. 194-205,2001。
7.P. Aptel, C.A. Buckley, “Categories of Membrane Operations”, Water Treatment Membrane Process, J. Mallevialle, P.E. Odendaal, and M.R. Wiesner, McGraw-Hill, Singapore, 1996.
8.M. Wilf, L. Awerbuch, C. Bartels, M. Mickley, G. Pearce & N. Voutchkov, The guidebook to membrane desalination technology. Balaban Publishers. Italy. 2007.
9.林哲昌,「薄膜防垢除垢技術與應用性回顧」,中興工程,Vol. 91,pp. 33-42,2006。
10.王大銘,「廢水處理之發展趨勢-薄膜分離技術」,環保資訊月刊,85期,2005。
11.D. Rana, T. Matsuura, “Surface Modifications for Antifouling Membranes”, Chemical Reviews, 2008.
12.華致凱,「超音波去除超濾薄膜積垢之研究」,碩士論文,國立聯合大學,2006。
13.A.A. Ahmed, R.W. Lovitt, "Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency", Journal of Membrane Science, Vol. 303, pp. 4-28, 2007.
14.P. Nicandro, J. Simon, "Chemical cleaning of potable water membranes: A review", Separation and Purification Technology, Vol. 71, pp. 137-143, 2010.
15.『水中總溶解固體及懸浮固體檢測方法-103℃~105℃ 乾燥』,NIEA W210.57A,環署檢字第0950043953號,行政院環境保護署環境檢驗所,2006。
16.『水中導電度測定方法-導電度計法』,NIEA W203.51B,環署檢字第70017號,行政院環境保護署環境檢驗所,2000。
17.『水之氫離子濃度指數(pH值)測定方法-電極法』,NIEA W424.52A,環署檢字第0970071940號,行政院環境保護署環境檢驗所,2009。
18.『水中濁度檢測方法-濁度計法』,NIEA W219.52C,環署檢字第 0940034336 號,行政院環境保護署環境檢驗所,2005。
19.『UV-254檢測方法』,美國水及廢水標準檢驗方法第20版,Standard Method 5910A UV-Absorbing Organic Constituents (Ultraviolet Absorption Method)
20.『水中餘氯檢測方法-分光光度計法』,NIEA W408.51A,環署檢字第0950063028號,行政院環境保護署環境檢驗所,2006。
21.淤泥指數(silt density index, SDI),美國材料協會ASTM 標準D-4189-82 (Purification products Co., Auto SDI PPC-1000K)
22.陳育恆,「薄膜用於自來水處理阻塞現象之研究」碩士論文,國立成奶j學,2010。
23.B.V. der Bruggen, C. Vandecasteele, "Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry", Environmental Pollution 122, pp. 435-445, 2003.
24.L. Fiksdal, T.O. Leiknes, "The effect of coagulation with MF/UF membrane filtration for the removal of virus in drinking water", Journal of Membrane Science 279, pp.364–371, 2006.
25.B.Z. Dong, Y. Chen, N.Y. Gao, J.C. Fan, "Effect of coagulation pretreatment on the fouling of ultrafiltration membrane", Journal of Environmental Sciences 19, pp.278–283, 2007.
26.S.R. Chae, H. Yamamurab, B. Choib, Y. Watanabeb, "Fouling characteristics of pressurized and submerged PVDF (polyvinylidene fluoride) microfiltration membranes in a pilot-scale drinking water treatment system under low and high turbidity conditions" , Desalination 244, pp.215–226, 2009.
27.J.Y. Tian, Z.L. Chen, J. Nan, H. Liang, G.B. Li, "Integrative membrane coagulation adsorption bioreactor (MCABR) for enhanced organic matter removal in drinking water treatment", Journal of Membrane Science 352, pp.205–212, 2010.
28.O. Kwona, H. Yangb, Y. Choia, S. Noha, "Fouling control of a submerged membrane module (YEF) by filtration modes", Desalination 234, pp.81–88, 2008.
29.J.H. Kweona, H.W. Hurb, G.T. Seoc, T.R. Janga, J.H. Parkc, K. Y. Choid,
H.S. Kime, "Evaluation of coagulation and PAC adsorption pretreatments on membrane filtration for a surface water in Korea: A pilot study", Desalination 249, pp.212–216, 2009.
30.X. Zhang, Y. Chen, A.H. Konsowa, X. Zhu, J.C. Crittenden, "Evaluation of an innovative polyvinyl chloride (PVC) ultrafiltration membrane for wastewater treatment", Separation and Purification Technology 70, pp.71–78, 2009.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top