跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/12 21:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:買隆恩
研究生(外文):Lung-En Mai
論文名稱:加速碳酸鹽化反應對焚化底渣重金屬移動特性影響之研究評估
論文名稱(外文):Accelerated carbonation reaction effects on mobility of heavy metals in municipal solid waste incinerator bottom ash
指導教授:江康鈺江康鈺引用關係
指導教授(外文):Kung-Yuh Chiang
學位類別:碩士
校院名稱:逢甲大學
系所名稱:環境工程與科學所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:153
中文關鍵詞:重金屬移動性遲滯因子二氧化碳捕捉加速碳酸鹽化反應焚化底渣
外文關鍵詞:accelerated carbonationincinerator bottom ashheavy metals mobilitycarbon dioxide captureretardation factor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:466
  • 評分評分:
  • 下載下載:66
  • 收藏至我的研究室書目清單書目收藏:0
逢甲大學 e-Theses & Dissertations( 100 學年度)

i
摘要
本研究利用模擬土壤管柱試驗,探討經加速碳酸鹽化反應後之垃圾焚化底
渣,其氯離子、硫酸根離子及重金屬之溶出及移動特性。加速碳酸鹽化反應之控
制條件,主要包括底渣含水率控制為 20%,及通入 10 % 二氧化碳濃度於孔隙率
為 56%之模擬熟化反應系統。研究同時評估加速碳酸鹽化反應對二氧化碳之捕捉
效果。為進一步評估加速碳酸鹽穩定化後底渣之溶出特性,實驗設計之模擬土壤
管柱,分別包括 20cm 之底渣層及 10cm、20cm 或 30cm 之土壤層。研究結果顯
示,在 10%CO 2 濃度條件下,底渣若能維持較高之含水量,底渣達到碳酸鹽穩定
化之反應時間,可明顯縮短至 80 小時。此外,加速碳酸鹽化反應過程之 CO 2 捕
捉效果,估計每 100 克之底渣約可捕捉 4.3g 之 CO 2 。
根據碳酸鹽穩定化底渣之累計 9 倍孔隙體積溶出液分析結果顯示,淋洗初期
陰離子溶出比率最高。Cl
- 收集至第 1 倍孔隙體積在不同土壤層之溶出量介於
686.57-1005.08 mg,溶出比例為 7.51-11%,收集至 9 倍孔隙體積 Cl
- 之溶出比例,
在不同之土壤層降至 0.054-0.070%,累積溶出量為 737.05-1110.95mg。SO 4
2- 亦有
相同之趨勢,收集至第 1 倍孔隙體積在不同土壤層溶出量為 551.53-803.77 mg,
溶出比例為 12.05-17.58%,收集至 9 倍孔隙體積 SO 4
2- 之溶出比例,在不同之土
壤層降至 0.22-0.78%,累積溶出量為 1000.88-1538.20mg。重金屬溶出部分,無
論土壤層深淺,金屬 Cu、Fe 及 Ca 在淋洗初期之溶出比例為最高,分別為
0.008-0.015%、0.0014-0.0017%、0.34-0.75%,在不同土壤層之溶出量亦分別為
0.0594-0.1026mg、0.5742-5.9238mg、305.24-640.71mg,溶出量較多為金屬 Ca。
直至收集至 9 倍孔隙體積,金屬 Cu、Fe 及 Ca 溶出漸趨於平緩
金屬 Pb 及 Ni 收集至第 3 倍孔隙體積時有最高溶出量,在不同土壤層之溶出
量分別為 0.0072-0.1109mg、0.0054-0.0348mg,直至收集至 9 倍孔隙體積溶出液,
金屬 Pb 及 Ni 溶出量皆為 0。金屬 Zn 則是於土壤層 30cm 之第 4 倍孔隙體積之溶
出比例最高度為 0.02%,累積溶出量收集至 9 倍孔隙體積亦為最高,為 0.823mg,加速碳酸鹽化反應對焚化底渣重金屬移動特性影響研究評估
並且還有繼續緩慢溶出之趨勢。金屬 Cr 不論各土壤層在溶出液中,均未檢測出
溶出濃度。
碳酸鹽反應後之底渣,整體重金屬溶出比例無論土壤層深度均小於 1.3%,在
遲滯因子方面,經碳酸鹽化反應後之底渣有較高之遲滯因子,亦可說明經淋洗收
集至 9 倍孔隙體積之碳酸鹽化底渣較於穩定,使得重金屬不易溶出。以土壤層
30cm 為例,各金屬之遲滯因子大小為 Pb>Cu>Fe>Zn>Ca,表示在酸雨淋洗條件
下,底渣中重金屬之移動速度為 Ca>Zn>Fe>Cu>Pb。
This study investigated the leaching characteristic of chlorine and sulfate ion, and
mobility of heavy metal by accelerated carbonation technology. The experiments were
conducted by controlling 20 weight percentage of moisture content of ash, carbon
dioxide concentration (10%) and column pore volume(56%), respectively.
This research was also established the characteristic of accelerated carbonation
reaction using Elemental Analyzer(EA) method, and evaluated the carbon reaction
and/or carbon dioxide capture efficiency by MSWI bottom ash during accelerated
carbonation reaction process. The experimental results showed that higher moisture
content of ash will help to accelerated the carbonate reaction, and to reduce the
required time for MSWI bottom ash stabilization. Based on the results of accumulated
amounts of CO 2 uptake by MSWI bottom ash with particle size1-4mm, in the case of
10% CO 2 concentration, every 100 grams of MSWI bottom ash could capture the
amounts of CO 2 were approximately 4.3grams during the accelerated carbonation. The
overall effectiveness of carbon dioxide capture and reduction was also estimated
approximately 4 thousands every year in Taiwan if all MSWI bottom ash treated by
accelerated carbonation process.
According to results of accelerated carbonation ash-soil column leaching test, the
chlorine and sulfate ion leaching rate was higher during the initial time about 7-11%.
Furthermore, according to the results of the heavy metal distribution in soil column
test, the proportion of metals in the10cm soil was 0.6-2.4%, more than 80% were
remained at the soil. That indicated the MSWI bottom ash was more stabilizing by
accelerated carbonation technology.
Investigating of accelerated carbonation ash-soil column leaching test with using
the Building Materials Decree(BMD) formula to calculated the environmental release amounts, the results indicated that chlorine and sulfate ion much higher than heavy
metals. According to results of leaching metals with pH, acid environment will
enhance the mobility of Zn.
The results of the retardation factors analysis showed that the retardation of Zn
was greater. The mobility of heavy metals were Ca>Fe>Zn>Cu in the case of 30cm
soil column.
逢甲大學 e-Theses & Dissertations( 100 學年度)

v
目 錄
中文摘要……………………………………………………………….…………… i
英文摘要………………………………………………………………….………… iii
目錄…………………………………………………………………......................... v
圖目錄……………………………………………………………...…….…….…… viii
表目錄………………………………………………………….…..…….……….… xi
第一章 前言………………………………………...…….…................................... 1
第二章 文獻回顧…………………………..………………..……….…………….. 5
2-1 焚化底渣現況…………………………………..…….….……..…………. 5
2-1-1 國內底渣再利用況………………………………………….………... 7
2-2 碳酸鹽化技術…………………….………………..……………..……...... 10
2-2-1 碳酸鹽化反應制….…………………………………………………... 12
2-2-2 碳捕捉介紹………….………………………………………………... 14
2-3 操作參數對於碳酸鹽化反應之影響及溶出試驗之較………………....... 17
2-3-1 CO 2 濃度對碳酸鹽化反應之影響….………………………..……….. 17
2-3-2 液固比對碳酸鹽化之影響….……………………………..…..……... 17
2-3-3 溫度對碳酸鹽化之影響………………………………………..…….. 18
2-3-4 CO 2 分壓對碳酸鹽化之影響…………………………………………. 19
2-4 底渣對於廢棄資材實廠應用評估……………………………………....... 19
2-4-1 道路鋪面簡介……………………………………………………........ 20
2-4-2 底渣再利用於道路建設研究……………………………………........ 22
2-4-3 底渣再利用於實廠之風險評估…………………………………........ 26
2-4-4 利用管柱溶出試驗評估粒狀骨材對環境安全之影響…………........ 29
2-4-5 荷蘭建材法令(BMD)概述與簡介…………………………………… 31
第三章 實驗材料與方法...……………………………………………….………... 35 加速碳酸鹽化反應對焚化底渣重金屬移動特性影響研究評估

逢甲大學 e-Theses & Dissertations( 100 學年度)

vi
3-1 實驗材料…………………………………………………....……………... 35
3-2 實驗操作條件與方法.…………………………………………………….. 36
3-2-1 底渣土壤基本性質析……………………………………………….... 36
3-2-2 底渣碳酸鹽化反應之管柱試驗……………………............................ 36
3-2-3 碳酸鹽化前後底渣土壤管柱淋洗試驗………………….................... 38
3-3 分析儀器與實驗方法…………………………………...………………… 42
3-3-1 分析儀器設備………………………………………………………… 42
3-3-2 分析方法……………………………………………………………… 44
第四章 結果與討論...……………………………………………........………........ 53
4-1 底渣及土壤之基本性質分析…………………........................................... 53
4-1-1 焚化底渣之特性分析……………………............................................ 53
4-1-2 土壤之基本特性分析............................................................................ 58
4-2 碳酸鹽化反應後之底渣性質分析結果……………................................... 61
4-2-1 碳酸鹽化期間 pH 變化率……………………….................................. 65
4-2-2 碳酸鹽化期間水分變化率………………………................................ 66
4-2-3 碳酸鹽化後底渣之物種鑑定結果及表面微結構之結果比較…........ 68
4-2-4 碳酸鹽化期間 CO 2 攝取率……………………………….................... 70
4-3 碳酸鹽穩定化技術對底渣重金屬溶出行為之探討…………………....... 72
4-3-1 焚化底渣之重金屬溶出行為探討……………………........................ 72
4-3-2 碳酸鹽化後底渣溶出液之特性分析…………………….................... 88
4-3-3 碳酸鹽化前後底渣經淋洗後之重金屬移動特性(1)土壤層 10cm 之
質量平衡……………………………………………………………….
105
4-3-4 碳酸鹽化前後底渣經淋洗後之重金屬移動特性(2)土壤層 20cm 之
質量平衡……………………………………………………………….
116
4-3-5 碳酸鹽化前後底渣經淋洗後之重金屬移動特性(3)土壤層 30cm 之
質量平衡……………………………………………………………….
123
4-4 探討金屬溶出特性適用於環境之安全性………..…….....……................ 131 加速碳酸鹽化反應對焚化底渣重金屬移動特性影響研究評估

逢甲大學 e-Theses & Dissertations( 100 學年度)

vii
4-5 土壤重金屬之遲滯因子………………………………………………....... 136
第五章 結論與建議....................…….................….................……....................... 142
5-1 結論...................…….................…….................…….................................... 142
5-2 建議...............…….................…….................……........................................ 145
參考文獻…………………………….............…………………………………........ 146





























加速碳酸鹽化反應對焚化底渣重金屬移動特性影響研究評估

逢甲大學 e-Theses & Dissertations( 100 學年度)

viii
圖 目 錄
圖 1-1 研究架構圖………………..……………………………………………..... 3
圖 2-1 台灣地區底渣產出及再利用量………………………............................... 8
圖 2-2 焚化爐內實際加速碳酸鹽化示意圖……….............................………….. 10
圖 2-3 碳酸鹽化反應機制及其控制參數示意圖.….……………………...…….. 13
圖 2-4 鈣迴路捕獲 CO 2 碳酸化-煅燒循環基本觀念圖………………………….. 16
圖 2-5 一般道路鋪面結構剖面….……………….................................................. 20
圖 2-6 模擬污染物質傳輸過程之示意圖………………………………...……… 27
圖 2-7 溶出量與釋入量之概念………………….……………………………….. 32
圖 2-8 荷蘭 BMD 之路基施作草圖範例.……………………................................ 33
圖 3-1 碳酸鹽化反應設備示意圖…………………………………....................... 37
圖 3-2 底渣土壤管柱淋洗試驗示意圖……………………………...…………… 41
圖 4-1 原始底渣粒徑分佈與重量比…………………..………………...……….. 55
圖 4-2 底渣之物種鑑定結果……………………………………………….…….. 57
圖 4-3 焚化底渣之表面微觀結構分析結果………………………………........... 57
圖 4-4 土壤之物種鑑定結果….………………………………………...…........... 60
圖 4-5 土壤之表面微觀結構分析結果………………………………...………… 60
圖 4-6 碳酸鹽化反應後焚化底渣之物種鑑定結果………………………........... 64
圖 4-7 碳酸鹽化反應後焚化底渣之表面微觀結構分析結果…………............... 64
圖 4-8 底渣碳酸鹽化反應期間之 pH 變化結果…………………………...……... 66
圖 4-9 底渣碳酸鹽化反應期間之水分變化率……………………………........... 67
圖 4-10 原始底渣碳酸鹽化反應後之物種鑑定結果…………………...………… 68
圖 4-11 碳酸鹽化反應後底渣微觀結構分析結果………………………………... 69
圖 4-12 原始底渣淋洗後溶出液 pH 變化趨勢……………………….……….…… 74
圖 4-13 原始底渣淋洗後溶出液 EC 變化趨勢…………………….……………… 75 加速碳酸鹽化反應對焚化底渣重金屬移動特性影響研究評估

逢甲大學 e-Theses & Dissertations( 100 學年度)

ix
圖 4-14 原始底渣各管柱溶出液 Cl
- 變化趨勢……………………………….......... 76
圖 4-15 原始底渣各管柱溶出液 SO 4
2- 變化趨勢……………………...…………... 76
圖 4-16 經淋洗後之不同深度土壤層 pH 變化………………………….……......... 77
圖 4-17 溶出液 Cr 累積溶出濃度及溶出率………………….................................. 78
圖 4-18 溶出液 Pb 累積溶出濃度及溶出率……………………………………….. 79
圖 4-19 溶出液 Cu、Ni、Zn、Fe 累積溶出濃度及溶出率………............................... 81
圖 4-20 溶出液 Ca 累積溶出濃度及溶出率…………….…………………………. 82
圖 4-21 原始底渣土壤管柱溶出液顏色變化情形…………………………........... 83
圖 4-22 原始土壤淋洗前及焚化底渣淋洗土壤烘乾後之外觀…………….…….. 84
圖 4-23 原始底渣淋洗後物種鑑定結果…………………………………….…….. 85
圖 4-24 原始底渣淋洗後 3 管柱之 10cm土壤物種鑑定…………………...……… 86
圖 4-25 原始底渣淋洗後 3 管柱之 20cm土壤物種鑑定…………………………... 86
圖 4-26 原始底渣淋洗後 3 管柱之 30cm土壤物種鑑定………………...………… 87
圖 4-27 經淋洗後之碳酸鹽化前管柱 1-10cm 土壤微觀結構分析結果………….. 87
圖 4-28 碳酸鹽化反應後底渣經淋洗後溶出液 pH 變化趨勢…………………….. 90
圖 4-29 碳酸鹽化反應後底渣經淋洗後 EC 變化趨勢……………………………. 91
圖 4-30 碳酸鹽化反應後底渣經淋洗後 Cl
- 累積溶出濃度及溶出率趨勢……….. 92
圖 4-31 碳酸鹽化反應後底渣經淋洗後 SO 4
2- 累積溶出量及溶出率趨勢……….. 94
圖 4-32 碳酸鹽化反應後底渣經淋洗後 Cu 累積溶出濃度及溶出率……….......... 96
圖 4-33 碳酸鹽化反應後底渣經淋洗後 Pb 累積溶出濃度及溶出率.………......... 98
圖 4-34 碳酸鹽化反應後底渣經淋洗後 Ni 累積溶出濃度………………………. 99
圖 4-35 碳酸鹽化反應後底渣經淋洗後 Zn 累積溶出濃度……………………… 100
圖 4-36 碳酸鹽化反應後底渣經淋洗後 Fe 累積溶出濃度……………………… 102
圖 4-37 碳酸鹽化反應後底渣經淋洗後 Ca 累積溶出濃度……………………… 103
圖 4-38 碳酸鹽化底渣經淋洗後不同深度土壤層 pH 變化……………………….. 104 加速碳酸鹽化反應對焚化底渣重金屬移動特性影響研究評估

圖 4-39 原始底渣重金屬移動特性分析(土壤層 10cm)…………………………... 112
圖 4-39 原始底渣重金屬移動特性分析(土壤層 10cm)(續)………………………. 113
圖 4-40 碳酸鹽化底渣重金屬移動特性分析(土壤層 10cm)………....................... 114
圖 4-40 碳酸鹽化底渣重金屬移動特性分析(土壤層 10cm)(續)…………………. 115
圖 4-41 原始底渣重金屬移動特性分析(土壤層 20cm)…………………………... 119
圖 4-41 原始底渣重金屬移動特性分析(土壤層 20cm)(續)…...………………….. 120
圖 4-42 碳酸鹽化底渣重金屬移動特性分析(土壤層 20cm)……………............... 121
圖 4-42 碳酸鹽化底渣重金屬移動特性分析(土壤層 20cm)(續)…..……………... 122
圖 4-43 原始底渣重金屬移動特性分析(土壤層 30cm)…………………………... 127
圖 4-43 原始底渣重金屬移動特性分析(土壤層 30cm)(續)………………………. 128
圖 4-44 碳酸鹽化底渣重金屬移動特性分析(土壤層 30cm)………………........... 129
圖 4-44 碳酸鹽化底渣重金屬移動特性分析(土壤層 30cm)(續)…………………. 130
Aberg, A.K., J. Ecke, H., 2006. Evaluation and prediction of emissions from a road built with bottom ash from municipal solid waste incineration (MSWI). Science of The Total Environment, 355(1-3): 1-12.
Andreola, F. et al., 2008. Reuse of incinerator bottom and fly ashes to obtain glassy materials. Journal of Hazardous Materials, 153(3): 1270-1274.
Arickx, S., V.D.B., Van Gerven, T., Vandecasteele, C., 2010. Effect of carbonation on the leaching of organic carbon and of copper from MSWI bottom ash. Waste Management, 30: 7.
Arickx, S., V.D.B., Van Gerven, T., Vandecasteele, C., 2009. Effect of carbonation on the leaching of organic carbon and of copper from MSWI bottom ash Waste Management.
Baciocchi, R., Costa, G., Lategano, E., Marini, C., Polettini, A., Pomi, R., Postorino, P., 2010. Accelerated carbonation of different size fractions of bottom ash from RDF incineration. Waste Management, 30: 1310-1317.
Balen, K.V., 2005. Carbonation reaction of lime, kinetics at ambient temperature. 35, 647-657
Bruder-Hubscher, C., Lagarde, F., Leroy, M.J.F., Couganowr, C., Enguehard, F., 2001. Utilisation of bottom ash in road construction: Evaluation of the environmental impact. Waste Manag. Res. 19, 545-556.
Bruder-Hubscher, V., Lagarde, F., Leroy, M.J.F., Coughanowr, C., Enguehard, F. 2002. Application of a sequential extraction procedure to study the release of elements from municipal solid waste incineration bottom ash. Anal Chim Acta;451:285–95.
Chandler, A.J., Eighmy, T.T., Hartlén, J., Hjelmar, O., Kosson, D.S., Sawell, S.E., 1997. Municipal solid waste incinerator residues. Studies in Environmental Science, 67. Elsevier
Chen, J.J., Zhang, M., Xu Y., Luo, X.M., 2008. Sequestration of CO2 using municipal solid waste incinerator fly ash. J. Tsinghua Uni. 48, 2074-2078.
Diener, S., Andreas, L., Herrmann, I., Ecke, H., and Lagerkvist, A. 2010. Accelerated carbonation of steel slags in a landfill cover construction. Waste Management, 30: 132-139.
Dijkstra, J.J., van der Sloot, H.A., Meeussen, J.C.L., Comans, R.N.J., 2006. Local chemical equilibrium makes column test protocol TS14405 suitable for model predictions. In: WASCON 2006: Sixth International Conference on the Environmental and Technical Implications of Construction with Alternative Materials Science and Engineering of Recycling for Environmental Protection.
Ecke, H., 2003 Sequestration of metals in carbonated municipal solid waste incineration (MSWI) fly ash. Waste Manag. 23, 631-640.
Fernandez bertos, M., Simons, S., Hills, C. and Carey, P., 2004. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. Journal of Hazardous Materials, 112(3): 193-205.
Fernndez Bertos, M.; Li, X.; Simons, S.J.R.; Hills, C.D.; Carey, P.J., 2004. Investigation of accelerated carbonation for the stabilisation of MSW incinerator ashes and the sequestration of CO 2 . Green Chem. 6, 428-436.
Forteza, R., Far, M., Segui, C. and Cerda, V., 2004. Characterization of bottom ash in municipal solid waste incinerators for its use in road base. Waste. Manag. 24, 899-909
François, D., and Pierson, K. 2009. Environmental assessment of a road site built with MSWI residue. Science of The Total Environment, 407: 5949-5960.
Galvin, A.P., et al. 2012. Analysis of leaching procedures for environmental risk assessment of recycled aggregate use in unpaved roads. Constr Build Mater, doi:10.1016/j.conbuildmat.2011.12.091(in press)
Ginés, O., Chimenos, J.M., Vizcarro, A., Formosa, J. and Rosell, J.R., 2009. Combined use of MSWI bottom ash and fly ash as aggregate in concrete formulation: Environmental and mechanical considerations. Journal of Hazardous Materials, 169(1-3): 643-650.
Gori, M., Bergfeldt, B., Pfrang-Stotz, G., Reichelt, J. and Sirini, P., 2011. Effect of short-term natural weathering on MSWI and wood waste bottom ash leaching behaviour. Journal of Hazardous Materials, 189(1-2): 435-443.
Haykiri-Acma, H., Yaman, S., Ozbek, N. and Kucukbayrak, S., 2011. Mobilization of some trace elements from ashes of Turkish lignites in rain water. Fuel, 90(11): 3447-3455.
Hjelmar, O., Holm, J., and Crillesen, K. 2007. Utilisation of MSWI bottom ash as sub-base in road construction: First results from a large-scale test site. Journal of Hazardous Materials, 139: 471-480.
IAWG,. 1997 Municipal solid waste incinerator residues, Studies in Environmental Science, vol. 67, Elsevier, Amsterdam, The Netherlands.
Izquierdo, M., Querol, X., Josa, A., Vazquez, E., and López-Soler, A., 2008. Comparison between laboratory and field leachability of MSWI bottom ash as a road material. Science of The Total Environment, 389: 10-19.
Kalbe, U., Berger, W., Eckardt, J., Christoph, G., Simon, F.G., 2007. Results of interlaboratory comparisons on the evaluation of the reproducibility of column percolation tests, J. Hazard. Mater. 148 714–720.
Kelemen, P.B. and Matter, J., 2008. From the Cover: In situ carbonation of peridotite for CO2 storage. Proceedings of the National Academy of Sciences, 105(45): 17295-17300.
Kosson, D.S., van der Sloot, H.A., Sanchez, F., Garrabrants, A.C., 2002. An integrated framework for evaluating leaching in waste management and utilization of secondary materials. Environmental Engineering Science 19 (3), 159–204.
Krüger, O., et al., Leaching experiments on the release of heavy metals and PAH from soil and waste materials, J. Hazard. Mater. (2011), doi:10.1016/j.jhazmat.2011.02.016(in press)
Lam H.H.K., Ip A.W.M., Barford J.P. and McKay G., 2010. Use of Incineration MSW Ash: A Review. Sustainability, 2, 1943-1968
Li, Z., Shuman, L.M., 1997 Estimation of retardation factor of dissolved organic carbon in sandy soils using bath experiments”, Geoderma, Vol. 78, pp. 197-206.
Luke Beesley, E.M.-J.n., Rafael Clemente, Nicholas Lepp, Nicholas Dickinson, 2010. Mobility of arsenic, cadmium and zinc in a multi-element contaminated soil profile assessed by in-situ soil pore water sampling, column leaching and sequential extraction. Environmental Pollution, 158: 155-160.
Ma, G.F.; Onitsuka, K.; Negami, T. Utilizations of incineration ash from municipal solid waste as admixtures for road embankment materials. Geotech. Eng. 38, (2007),87-94.
Maria Izquierdo , Xavier Querol , Alejandro Josa , Enric Vazquez , Angel López-Soler” Comparison between laboratory and field leachability of MSWI bottom ash as a road material” Science of the total environment 389(2008)10-19
Meima, J.A. and Comans, R.N.J. 1997. Overview of geochemical processes controlling leaching characteristics of MSWI bottom ash. Waste Materials in Construction: Putting Theory into Practice. Elsevier Science
Meima, J.A., Comans, R.N.J., Van, Z.A., 1999. Complexation of Cu with dissolved organic carbon in municipal solid waste incinerator bottom ash leachates. Environ Sci Technol (33):1424–9
Mingkui Zhang, J.P., 2011. Mineral materials as feasible amendments to stabilize heavy metals. Journal of Environmental Sciences, 23(4): 607-615.
Mulder, E., 1996. Pre-treatment of mswi fly ash for useful application. Waste Manag. 16, 181-184.
Nishida, K.;Nagayoshi, Y.;Ota, H.;Nagasawa, H., 2001. Melting and stone production using MSW incinerated ash. Waste Manag. 21, 443-449.
Ore, S.; Todorovic, J.; Ecke, H.; Grennberg, K.; Lidelow, S.; Lagerkvist, A.,2007 Toxicity of leachate from bottom ash in a road construction. Waste Manag. 27, 1626 -1637 .
Pérez-López, R., G.M.-H., Nieto, J.M., Renard, F. , Charlet, L., 2008. Carbonation of alkaline paper mill waste to reduce CO2 greenhouse gas emissions into the atmosphere. Applied Geochemistry, 23 2292-2300.
Rafael Clemente, N.M.D., Nicholas W. Lepp, 2008. Mobility of metals and metalloids in a multi-element contaminated soil 20 years after cessation of the pollution source activity. Environmental Pollution, 155: 254-261.
Robinson, R.; Thagesen, B., 2004. Road Engineering for Development; Spon: London, UK, ; p. 252
Shih, H.-c., and Ma, H.-w. 2011. Assessing the health risk of reuse of bottom ash in road paving. Chemosphere, 82: 1556-1562.
Shih, S.M., Ho, C.S., Song, Y.S., Lin, J.P., 1999. Kinetics of the reaction of Ca(OH)2 with CO2 at low temperature, Ind. Eng. Chem. Res. 38,1316–1322.
Sun, J., Bertos, M.F. and Simons, S.J.R., 2008. Kinetic study of accelerated carbonation of municipal solid waste incinerator air pollution control residues for sequestration of flue gas CO2. Energy & Environmental Science, 1(3): 370.
Suer, P., Lindqvist, J.E., Arm, M., Frogner-Kockum, P., 2010. Reproducing ten years of road ageing¬-Accelerated carbonation and leaching of EAF steel slag, Science of the Total Environment 407, 5110-5118.
Suer, P., Lindqvist, J.-E., Arm, M., and Frogner-Kockum, P. 2009. Reproducing ten years of road ageing — Accelerated carbonation and leaching of EAF steel slag. Science of The Total Environment, 407: 5110-5118.
T. Van Gerven , E. Van Keer, S. Arickx, M. Jaspers, G. Wauters, C. Vandecasteele, 2005. Carbonation of MSWI-bottom ash to decrease heavy metal leaching, in view of recycling” Waste Management 25 , 291–300
Valocchi, A.J., (1984)“Describing the Transport of Ion-Exchanging Contaminants using an Effective K d Approach”, Water Resources Research, Vol. 20, pp. 499-503.
Van der Sloot, H.A. and Aalbers, T., 1994. The influence of reducing properties on leaching of elements from waste materials and construction materials. Environmental Aspects of Construction with Waste Materials. Elsevier
Verschoor, A.J., Lijzen J.J.P., Van den Broek H.H., Cleven R.F.M.J., Comans R.N.J. and Dijkstra J.J., 2008. Revision of the dutch building materials decree alternative emission limit values for inorganic components in granular building materials. 9th International Symposium on Environmental Geotechnology and Global Sustainable Development-Hong Kong: 13.
Wan, X., Wang, W., Ye, T., Guo, Y., Gao, X., 2006. A study on the chemical and mineralogical characterization of MSWI fly ash using a sequential extraction procedure. J Hazard Mater;134:197–201.
Yang, R., W.-P.L., Wu P.H., 2012. Basic characteristics of leachate produced by various washing processes for MSWI ashes in Taiwan. Journal of Environmental Management, 104: 67-76.
Yao, J., Li, W.B., Kong, Q.N., Xia, F.F. and Shen, D.S. 2012 Effect of weathering on the mobility of zinc in municipal solid waste incinerator bottom ash” Fuel 93, 99–104
李公哲、吳淵洵、邱垂德、黃錦明、陳明義、黃政昭、蘇育立,2004。廢棄物焚化灰渣材料化技術研究(第二年)期末報告。
吳英俊,2011。加強焚化底渣再利用推廣道路工程試驗及環境監測計畫,康城工程顧問股份有限公司。
中興工程顧問股份有限公司、工業技術研究院綠能與環境研究所,2011。加強焚化底渣、飛灰再利用-查核評鑑及擬定再利用規範計劃期末報告,行政院環保署委託
行政院環境保護署,2008。http://www.epa.gov.tw
行政院環境保護署,2012。http://www.epa.gov.tw
楊叢印,2011。資源化產品環境相容性評估及配套驗證。
施承享,2008。利用水洗處理程序提昇焚化底渣熟化反應效果之評估研究,逢甲大學碩士論文。
李志偉、李明國、孫常榮、高思懷,2008。水萃處理產生之細粒徑焚化底渣以磷酸穩定配合燒結資源化之研究,第二十屆中華民國環境工程學會廢棄物處理技術研討會,310,台北。
陳昭羽,2011。加速碳酸鹽化反應對垃圾焚化灰渣重金屬溶出特性影響之研究,逢甲大學碩士論文。
吳仁浩,2006。分析垃圾焚化爐底碴應用於瀝青混凝土之可行性,國立成功大學碩士論文。
黃靖云,2008。不同養護條件對都市垃圾焚化底渣中重金屬溶出特性之影響,嘉南藥理科技大學環境工程與科學系。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top