|
[1]http://www.powertransmission.com/issues/0706/harmonic.htm [2]齊富自動工業股份有限公司,http://www.gtadtc.com [3]S.T. Li, Contact problem and numeric method of aplanetary drive with small teeth number difference, Mechanism and Machine Theory, Vol.43, (2008) pp.1065-1086. [4]Y.W. Hwang, C.F. Hsieh, Determination of surface singularities of a cycloidal gear drive with inner meshing, Mathematical and Computer Modelling, Vol.45,(2007) pp.340-354. [5]B.K. Chen, H. Zhong, J.G. Liu, C.Y. Li, T.T. Fang, Generation and investigation of a new cycloid drive with double contact, Mechanism and Machine Theory,(2011). [6]T.S. Lai, Geometric design of roller drives with cylindrical meshing elements, Mechanism and Machine Theory,Vol.40, (2005) pp.55-67. [7]H.S. Yan, T.S. Lai, Geometry design of an elementary planetary gear train with cylindrical tooth-profiles, Mechanism and Machine Theory, Vol.37,(2002) pp.757-767. [8]Y.M. Changlin, W.L. Ling, Mathematical modeling of the transmission performance of 2K–H pin cycloid planetary mechanism, Mechanism and Machine Theory, Vol.42,(2007) pp. 776-790. [9]R. MAITI, A.K. ROY, Minmum tooth difference in internal-external involute gear pair, Mechanism and Machine Theory, Vol.31,(1996) pp. 475-485. [10]J.H. Shin, S.M. Kwon, On the lobe profile design in a cycloid reducer using instant velocity center, Mechanism and Machine Theory, Vol.41,(2006) pp. 596-616. [11]Z.H. Ye, W. Zhang, Q.H. Huang, C.M. Chen, Simple explicit formulae for calculating limit dimensions to avoid undercutting in the rotor of a Cycloid rotor pump, Mechanism and Machine Theory, Vol.41,(2006) pp. 405-414. [12]王榮慶、林慎旺、張百齊、陳維方,擺線行星齒輪與嚙合齒條設計, 遠東學報, 2005年9月,第 22卷,第3期,第405-412頁。 [13]康耀鴻,次擺線齒輪齒廓幾何設計及接觸分析之研究,行政院國家科會委員會專題研究計劃成果報告,NSC88-2212-E-151-016,1999年7月,第1-6頁。 [14]王鋼明、任睿、俞國强、黄海波,擺線行星齒輪參數對齒廓外形的影響分析, 組合機床與自動化加工技術, 2008年2月,第2期,第70-72頁。 [15]李力行、李欣、何衛東,機器人用高精度RV減速器中擺線輪的優化新齒形,機械工程學報, 2000年3月,第 36 卷,第3期,第51-55頁。 [16]NACHI-FUJIKOSHI CORP, http://www.nachi.com [17]THKTAIWANCO. , LTD, http://www.thk.com/tw/company
|