跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/24 16:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳建安
研究生(外文):Chen, Jian-An
論文名稱:奈米壓痕實驗應用於氮化鋁薄膜材料之機械性質量測與理論建模
論文名稱(外文):Dynamic Modeling of the AlN Film Specimen toMeasure the Mechanical Properties during Nano-Indentation Tests
指導教授:哈冀連
指導教授(外文):Ha, Jih-Lian
口試委員:哈冀連吳博雄許丕明陳玟瑞
口試委員(外文):Ha, Jih-LianWu, Bo-XiongHsu, Pe-MingChen, Wen-Ruey
口試日期:2012-07-20
學位類別:碩士
校院名稱:遠東科技大學
系所名稱:機械工程研究所在職專班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:45
中文關鍵詞:奈米壓痕實驗機械性質氮化鋁機械性質
外文關鍵詞:nanoindentationAINmechanical properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
在本論文研究中,主要針對氮化鋁薄膜材料應用奈米壓痕技術並建立其力學分析模型,藉由數值分析的方法,進而計算其真實接觸面積隨不同的負卸載率的變化。在力學分析模型上,分別以壓頭深度與試件深度為主體建立兩個統馭的微分方程式,並聯立求其壓深函數的數值解。而模型當中的所有彈簧、塑性與阻尼係數可相對應於其力學行為上的彈塑性與黏性行為,並藉由實數型基因演算法來估測其數值。此外,在壓痕試驗的負載或卸載過程當中,利用漸進方程式的概念來擬合從小壓深到大壓深的實驗數據。在計算真實接觸面積方面上,對於陷入(Sink-in)的行為也有考慮其效應,並修正壓痕尺寸效應下的行為,利用估算出來的接觸面積大小,來計算AlN薄膜材料的楊氏模數與硬度等機械性質。
A mechanical model is developed in the present study for the AlN film specimen in order to evaluate their contact areas varying with the loading/ unloading rate given in nano-indentation tests. Two governing differential equations are derived for the depth solution of the indenter tip and the depth solution formed at the separation point; they are expressed in a power form of the depth parameters. All spring/block coefficients and damping coefficients shown in these two differential equations associated with the elastic/plastic and viscous effects respectively are determined by the real-coded genetic algorithm. In either the loading or unloading process, an asymptotic formula is applied to incorporate the experimental data shown at small and large indentation depths. Sink-in behavior and size effect is included in the evaluation of the contact projected area. The contact area solutions obtained from the present model can be evaluated the mechanical properties of the AlN film specimen.
目錄
摘要 ........................................................... I
Abstract ...................................................... II
誌謝 ...........................................................III
目錄 ............................................................IV
表目錄 ..........................................................VI
圖目錄 ..........................................................VII
符號表 ..........................................................IX
第一章 緒論 ......................................................1
1.1 前言 ......................................................1
1.2文獻回顧 ....................................................2
1.3研究目的與內容 ...............................................5
第二章 基本理論推導 ................................................8
2.1 奈米壓痕理論 ................................................8
2.1.1彈性接觸力學 .............................................8
2.1.2奈米壓痕實驗之彈性模數理論 .................................8
2.2奈米壓痕試驗於薄膜材料之理論分析建模 ............................11
第三章 實驗規劃 ...................................................20
3.1 實驗目的 ...................................................20
第四章 結果與討論 .................................................26
4.1實數型基因遺傳演算法的最佳化設計 .................................26
4.1.1 實數型基因遺傳演算法的流程 ................................26
4.1.2 實數型基因遺傳演算法數值結果 ..............................29
4-2 估測薄膜機械性質理論 ...........................................31
第五章 結論 .......................................................42
參考文獻 .........................................................43
表目錄
表2-1-1 常見壓頭的幾何性質與幾何形狀因子[19] ........................14
圖目錄
圖1-2-1 受試材料變形區周圍(a)隆起(Pile-up)(b)陷入(Sink-in)
現象示意圖[4](以Vickers壓頭為例)。 ........................7
圖2-1-1 半軸角為α的圓錐壓頭時接觸表面變形示意圖[4]。 ................ 15
圖2-1-2 以卸載段數據前百分之二十斜率來判定接觸壓深[4]。.............. 15
圖2-1-3 壓頭與試件接觸深度hc示意圖[3]。 ............................16
圖2-2-1 壓痕試驗的力學行為(a)負載與停滯過程(b)卸載過程[16]。..........17
圖2-2-2 奈米壓痕試驗理論分析模型[16]。 .............................18
圖2-2-3 負載函數的關係(a)壓痕負載與時間(b)塑性負載與時間[16]。........19
圖3-1-1 美國MTS公司出產Nano Indenter G200奈米壓痕試驗機 [22]。......23
圖3-1-2 SEM以(a)低倍率(b)高倍率拍攝的Berkovich壓頭[22]。 .......... 23
圖3-1-3 MTS 奈米壓痕試驗機儀器架構示意圖[23]。...................... 24
圖3-1-4 CSM負載循環示意圖[22]。....................................24
圖3-1-5 奈米壓痕試驗機內部基本結構示意圖[11]。 ......................25
圖3-1-6 CSM動態理論模型[11]。 .....................................25
圖4-1-1 遺傳演算法的流程圖。 .......................................34
圖4-1-2 最佳化參數與適應函數的演化過程。(a)參數ki、ke與世代的
關係。(b)參數kc、kp 與世代的關係。 ..........................35
圖4-1-3 最佳化參數與適應函數的演化過程。(a)參數ci、ce與世代的關係。
(b)參數cc 、cp與世代的關係。 ...............................36
圖4-1-4 (a)壓痕深度與時間的關係圖(b)負載與壓深的關係圖。 ............. 37
圖4-1-5 (a)卸載過程中負載與壓深的關係圖(b)預測分離點位置與負載率變動的關係圖。38
圖4-2-1 數值結果與實驗數據的關係圖(a)接觸力Fc與時間的關係圖
(b)接觸投影面積Ac與時間的關係圖。 .............................. 39
圖4-2-2 估測投影接觸面積Ac與負載率的關係圖。 ......................... 40
圖4-2-3 (a)削減模數Er與壓痕深度的關係曲線(b)硬度H與壓痕深度的關係曲線。 ... 41
[1] K. L. Johnson, Contact mechanics, Cambridge University Press, 1985.
[2] H. Hertz, Miscellaneous Papers, London, Macmillan, 1896.
[3] W. C. Oliver and G. M. Pharr, “An Improved Technique for Determining Hardness and Elastic Modulus using Load and Displacement Sensing Indentation Experiments” , Journal of Material Research, 7(4), 1564-1583, 1992.
[4] W. C. Oliver and G. M. Pharr, “Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology” ,Journal of Material Research, 19, 3-20, 2004.
[5] J. C. M. Li, S. N. G. Chu, “Impression Fatigue” ,Scr. Metall . 13(11), 1021-1026, 1979.
[6] D. B. Marchall and J. F. Evans, “Measurement of Adherence of Residually Stressed thin Films by Indentation. I. Mechanics of Interface Delamination” , J. Appl . Phys, 56, 2632, 1984.
[7] S. Suresh, A. E. Giannakopoulos, “Determination of Elastoplastic Properties by Sharp Indentation” , Scripta Materialia, 40(10), 1191-1198, 1999.
[8] A. Nayebi, R. El Abdi, O. Bartier, G. Mauvoisin, “New Procedure to Determine Steel Mechanical Parameters from the Spherical Indentation Technique” , Mechanics of Materials, 34, 243-254, 2002.
[9] S. Jayaraman, G. T. Hahn, W. C. Oliver, C. A. Rubin, P. C. Bastias, “Determination of Monotonic Stress-Strain Curve of Hard Materials from Ultra-Low-Load Indentation Tests” , Int. J. Solids Structures, 35(5), 365-381, 1998.
[10] B. Taljat, T. Zacharia, F. Kosel, “New Analytical Procedure to Determine StressStrain Curve from Spherical Indentation Data” , International Journal of Solids Structures, 35(33), 4411-4426, 1998.
[11] 魏伯任,“奈米壓痕實驗運用於塊材、覆膜材料機械性質以及硬脆 材料黏彈性質量測—理論分析與實驗印證”,國立成功大學, 博士 論文, 2005.
[12] M. Williams, B. Griffin, B. Homeijer, B. Sankar and M. Sheplak, IEEE SENSORS Conference, 349, 2007.
[13] J. Yan, X. Chen and A. M. Karlsson, “Determining Equi-Biaxial Residual Stress and Mechanical Properties from the Force-Displacement Curves of Conical Micro-Indentation” , Journal of Engineering Materials and Technology, 129, 200, 2007.
[14] P. J. Wei, W. L. Liang, C. F. Ai and J. F. Lin, “A New Method for Determining the Strain Energy Release Rate of an Interface Via Force–Depth Data of Nanoindentation Tests” , Nanotechnology, 20, 7, 2008.
[15] C. F. Han, B. H. Wu, C. Y. Huang, and J. F. Lin, “Determination of the Strain Energy Release Rate for C/a-Si Composite Film Produced in Nanoindentation Tests” , Journal of Applied Physics in Press, 105, 2008.
[16] C. F. Han, C. Y. Huang, B. H. Wu, and J. F. Lin, “The Nanoindentation Model Developed and Applied to Evaluate the Reduced Modulus and Hardness for Polymeric Materials” , Sensors and Actuators A-Physical in Revision,106, 2008.
[17] I. N. Sneddon, “The Relation Between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile”,Int. J. Engng Sci. 3, 47-57, 1965.
[18] R. B. King, “Elastic Analysis of Some Punch Problems for A Layered Medium” , Int. J. Solids Structure, 23(12), 1657-1664, 1987.
[19] P. K. Aw, A. W. Batchelor and N. L. Loh, “Structure and Tribological Properties of Plasma Nitrided Surface Films on Inconel 718” , Surface and Coatings Technology, Vol. 89, PP. 70-76, 1997.
[20] S. V. Hainsworth, H. W. Chandler, T. F. Page, “Analysis of Nano -Indentation Load-Displacement Loading Curves” , J. Mat. Res. 11(8), 1987-1995, 1996.
[21] T. F. Page, G. M. Pharr, J. C. Hay, W. C. Oliver, B. N. Lucas, E. Herbert, L. Riester, “Nanoindentation Characterization of Coated Systems: P/S2 - A New Approach Using the Continuous Stiffness Technique” , MRS Symp. Proc. 522, 53-64, 1998.
[22] 許汶仰,「奈米壓痕用於覆膜材料硬度過渡行為的評估與理論建 立」,國立成功大學,機械工程學系,碩士論文,2008。
[23] J. H. Holland, Adaptation in Natural and Artificial Systems, Ann Arbor, MI: The University of Michigan Press, 1975.
[24] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Reading, MA: Addison-Wesley, 1989.
[25] K. F. Man, K. S. Tang and S. Kwong,“Genetic Algorithms: Concepts and Applications”, IEEE Transactions on Industrial Electronics, Vol. 43, No. 5. PP. 519-534, 1996.
[26] R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms, Wiley Interscience publication, 1998.
[27] A. A. Adewuya, New Methods in Genetic Search with Real-Valued Chromosomes, Master’s thesis, Cambridge: Massachusetts Institute of Technology, 1996.
[28] C. F. Han, B. H. Wu, J. F. Lin and C. K. Chung, “Theoretical Modeling Developed to Evaluate the Hardness and Reduced Modulus for the C/a-Si Composite Film Using Nanoindentation Tests”, Nanotechnology, 19, 325710, 2008.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊