跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/28 12:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳盈宏
研究生(外文):Chen, Ying-Hung
論文名稱:應用奈米壓痕技術於估算高分子材料之破壞韌性
論文名稱(外文):Evaluation the Fracture Toughness for the Polymeric Materials Arising the Nanoindentation Tests
指導教授:哈冀連
指導教授(外文):Ha, Jih-Lian
口試委員:哈冀連吳博雄許丕明陳玟瑞
口試委員(外文):Ha, Jih-LianWu, Bo-XiongHsu, Pe-MingChen, Wen-Ruey
口試日期:2012-07-20
學位類別:碩士
校院名稱:遠東科技大學
系所名稱:機械工程研究所在職專班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:50
中文關鍵詞:奈米壓痕實驗高分子材料破壞韌性
外文關鍵詞:nanoindentationpolymericfracture toughness
相關次數:
  • 被引用被引用:0
  • 點閱點閱:298
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
結合動力學、接觸力學、破壞力學與表面物理的理論,建立屬於奈米壓痕試驗的模型,不再因為傳統壓痕試驗施載與卸載的限制條件,而造成實驗數據的不正確,可真實的評估奈米壓痕時的各種作用行為。在本論文研究中,主要針對高分子材料應用奈米壓痕技術並建立其力學分析模型,藉由破壞力學的分析理論,進而計算其材料的破壞韌性。就奈米壓痕試驗而言,除了可以研究材料基本機械性質的量測之外,也可以利用破壞力學的分析,將其材料的破壞韌性值求出,且在不完全破壞材料本身性質的狀況下,完成整個實驗數據,避免傳統量測方式的前置時間,與須等到材料完全破壞發生為止。在計算其材料的破壞韌性方面上,本研究論文當中,參考四種不同計算破壞韌性的理論模型,討論其差異性並評估其相對的誤差值,設法推導能求得破壞韌性的公式與方法。
Integrating the kinetics, contact mechanics, fracture mechanics and surface physics theory to develop a nano-indentation test model and is no longer has the traditional indentation load and unloading restrictions due to the experimental data is not correct. It can be obtained the mechanical behaviors of the nano-indentation tests. In this thesis, the main application for the polymeric materials is developed the mechanical model, and then to calculate the fracture toughness of the material by fracture mechanics. During the nano-indentation test, the mechanical properties and fracture toughness by the fracture mechanics analysis can be obtained. This method can be obtained the fracture properties of the material and avoid the traditional methods to wait until the material completely destroyed occurred. Differences among the fracture toughness, obtained from four models including the present model, are evaluated in terms of relative error.

摘要 …………………………………………………………. I
Abstract ………………………………………………………. II
誌謝 ………………………………………………………… III
目錄 ………………………………………………………… IV
表目錄 ……………………………………………………… VI
圖目錄 …………………………………………………… VII
符號表 ……………………………………………………… IX
第一章 緒論 …………………………………………..…… 1
1.1 前言 …….………………………………………..…… 1
1.2文獻回顧…….……………………………………..…… 2
1.3研究目的與內容…….……………………………..…… 5
第二章 基本理論推導 ……………………………………… 7
2.1 奈米壓痕理論 ………………………………….…… 7
2.1.1前言…………..……………………………….…… 7
2.1.2硬度與彈性模數理論建立………………....…..…...... 7
2.2奈米壓痕破壞力學分析………………………………. 14
2.2.1破壞韌性理論…………………………………..… 14
2.2.2材料的疲勞破壞...………………………....……… 16
2.2.3破壞韌性模型…………………………………..… 18
第三章 實驗規劃 …………………………………..…..… 25
3.1 實驗目的 ……………………………………………. 25
第四章 結果與討論 ………………………………..…..….. 31
第五章 結論 ………………………………..…..………….. 46
參考文獻 ………………………………..…..…………........ 48
表目錄
表2-1-1 ㄧ般常見壓頭形狀之性質整理[28] ……....…….................… 20
表4-1-1 比較五種破壞韌性公式所估算的kic值....................................45
圖目錄
圖1-1-1 受試材料變形區周圍(a)隆起(Pile-up)(b)陷入(Sink-in)
現象示意圖[4](以Vickers壓頭為例)。................................... 6
圖 2-1-1 以卸載段數據前百分之二十斜率來判定接觸壓深[2]。........ 21
圖2-2-1 Vickers 壓頭之裂紋型式:(a) Radial crack (b) Lateral cracks
(c) Mediancracks (d) Half-penny cracks[21]。......................... 22
圖2-2-2 (a)Vickers 和(b)Berkovich 壓頭的裂紋參數[22]。............... 22
圖2-2-3 壓痕硬化表面所形成的裂紋型式:(a)半圓形裂紋 (b) Palmq-
vist裂紋[24] 。………………………………………………. 23
圖2-2-4 PMMA硬化產生裂紋之光學成像,(a)上視圖,(b)側視圖。
[24] ........................................................................................... 24
圖3-1-1 美國MTS公司出產Nano Indenter G200奈米壓痕試驗機 [29]。....................................................................................... 28
圖3-1-2 SEM以(a)低倍率(b)高倍率拍攝的Berkovich壓頭[29]。....... 28
圖3-1-3 MTS 奈米壓痕試驗機儀器架構示意圖[29]。....................... 29
圖3-1-4 CSM負載循環示意圖[29]。..................................................... 29
圖3-1-5 奈米壓痕試驗機內部基本結構示意圖[30]。.......................... 30
圖3-1-6 CSM動態理論模型[30]。......................................................... 30
圖4-1-1 PMMA材料在不同的負載大小下,負載與壓痕壓深的關係
圖。............................................................................................. 37
圖4-1-2 PS材料在不同的負載大小下,負載與壓痕壓深的關係圖。 38
圖4-1-3 投影接觸面積計算理論分析圖。............................................ 39
圖4-1-4 PMMA及PS材料在不同的壓痕深度下,楊氏模數E與壓深
的關係圖。................................................................................. 40
圖4-1-5 PMMA及PS材料在不同的壓痕深度下,硬度H與壓深的關 係圖。......................................................................................... 41
圖4-1-6 應用壓痕試驗於PMMA與PS,其起始裂紋半長度a負載的
關係。......................................................................................... 42
圖4-1-7 應用壓痕試驗於PMMA與PS,其裂紋半長度c與負載的關 係。............................................................................................ 43
圖4-1-8 壓痕破壞韌性值與彎曲破壞韌性量測試驗值的關係。.......... 44

[1] W. C. Oliver and G. M. Pharr, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments”, J. Mater. Res., Vol. 7, PP. 1564-1583, 1992.
[2] W. C. Oliver and G. M. Pharr, “Measurement of Hardness and Elasticz Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology”, J. Mater. Res., Vol. 19, PP. 3-20, 2004.
[3] R. Sakai and W. D. Nix, “Soft Films on Hard Substrates- Nanoindentation of Tungsten Filmson Sapphire Substrates”, Mater. Sci. Eng. A, Vol. 319-321, PP. 898-901, 2001.
[4] S. Suresh, A. E. Giannakopoulos, “Determination of Elastoplastic Properties by Sharp Indentation” , Scripta Materialia, Vol. 40, No.10, PP. 1191-1198, 1999.
[5] A. Nayebi, R. E. Abdi, O. Bartier and G. Mauvoisin, “New procedure to determine steel mechanical parameters from the spherical indentation technique”; Mechanics of Materials; Vol. 34,PP. 243-254, 2002.
[6] Z. Liu, J. Sun and W. Shen,“Study of Plowing and Friction at the Surfaces of Plastic Deformed Metals.”, Tribo. Inter., Vol.35, PP.511-522,2002.
[7] E. S. Puchi-Cabrera, “A New Model for the Computation of the Composite Hardness of Coated System.” , Surf. and Coat. Tech., Vol.160,PP.177-186.,2002.
[8] T. H. Fang and W. J. Chang, “Nanomechanical Properties of CopperThin Films on Different Substrates Using the Nanoindentation Technique” Microele. Eng., Vol.65, pp.231-238, 2003.
[9] F. Bahr, D. E. Kramer, W. W. Gerberich, “Non-Linear Deformation Mechanisms During Nanoindentation”, Acta mater., Vol. 46, No. 10 1998, PP. 3608-3617,1998.
[10] G. Zhou, “The Use of Experimentally-Determoned Impact Force As A Damage Measure In Impact Damage Resistance and Tolerance of Composite Structure”, Composite Structures, Vol. 42, PP. 375-382, 1998.
[11] W. D. Nix and H. Gao, “Indentation Size Effects in Crystalline Materials, a Law for Strain Gradient Plasticity”, J. Mech. Phys. Solids; Vol. 46, No. 3, PP. 411-425, 1998.
[12] H. Hertz, Miscellaneous Papers, London, Macmillan, 1896.
[13] D. Tabor, Hardness of Metals, 3rd ed. Oxford University Press, Amen House, London, 1951.
[14] A. C. Fischer-Cripps, “A Review of Analysis Methods for Submicron Indentation Test”, Vaccum, Vol. 58, PP. 569-585, 2000.
[15] A. C. Fischer-Cripps, Nanoindentation, Springer, 2002.
[16] G. M. Pharr, W. C. Oliver and F. R. Brotzen “On the Generality of the Relationship Among Contact Stiffness, Contact Area, and Elastic Modulus During Indentation”, J. Mater. Res. Vol. 7, No. 3,PP. 613-617, 1992.
[17] J. S. Field and M. V. Swain, “A Simple Predictive Model for Spherical Indentation” , J. Mater. Res., Vol. 8, No. 2, PP. 297-306, 1993.
[18] I. N. Sneddon, “The Relation Between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile”, Int. J. Engng Sci., Vol. 3, pp. 47-57, 1965.
[19] R. B. King, “Elastic Analysis of Some Punch Problems for A layered Medium” , Int. J. Solids Structure, Vol. 23, No. 12, PP. 1657-1664, 1987.
[20] J. L. Loubet, J. M. Georges, O. Marchesini and G. Meille, “Vickers Indentation Curves of Magnesium Oxide”, J. Tribology, Vol. 106, pp. 43-48, 1984.
[21] B. R. Lawn, A. G. Evans and D. B. Marshall, Journal of the American Ceramic Society-Lawn et al., Vol.63, No9-10, PP.575-581,1980.
[22] G. R. Anstis, P. Chantikul, B. R. Lawn and D. B. Marshall, Journal of the American Ceramic Society-Anstis et al., Vol.64, No9, PP.533-538,1981.
[23] M. T. Laugier, Journal of Materials Science Letters, Vol.6, PP.897-900, 1987.
[24] Ralf Lach, Lada Antonova Gyurova1, and Wolfgang Grellmann, “Application of Indentation Fracture Mechanics Approach for Determination of Fracture Toughness of Brittle Polymer Systems”, Polymer Testing, 26, PP. 51–59,2007.
[25] Min Li, Manuel L. Palacio, C. Barry Carter, and William W. Gerberich, “Indentation Deformation and Fracture of Thin Polystyrene Films”,Thin Solid Films, 416,PP. 174–183, 2002.
[26] Andersson a, R., Totha, G., Ganb, L. and Swainb, M.V. “Indentation Response and Cracking of Sub-micron silica Flms on a Polymeric substrate”, Engineering Fracture Mechanics, 61, PP. 93-105, 1998.
[27] C. F. Han and J. F. Lin, “A New Model Developed to Evaluate the Contact Area Arising during Nano-Indentation Tests with Pile-up Behavior of Metal Materials", IEEE Transactions on Nanotechnology, 7(3),PP. 256-265, 2008.
[28] P. K. Aw, A. W. Batchelor and N. L. Loh, “Structure and Tribological Properties of Plasma Nitrided Surface Films on Inconel 718” ,Surface and Coatings Technology, Vol. 89, PP.70-76, 1997.
[29] 許汶仰, “奈米壓痕用於覆膜材料硬度過渡行為的評估與理論建立” , 國立成功大學, 碩士論文, 2008.
[30] 魏伯任,”奈米壓痕實驗運用於塊材、覆膜材料機械性質以及硬脆 材料黏彈性質量測—理論分析與實驗印證”,國立成功大學, 博士 論文, 2005.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊