跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/01 04:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林子傑
研究生(外文):Lin, TzuChieh
論文名稱:金三角奈米粒子之構型及光學性質探討
論文名稱(外文):Synthesis and Characterizations of Triangular Au Nanocrystals:Morphological Effect on the Plasmonic Field
指導教授:康佳正
指導教授(外文):Kang, ChiaCheng
口試委員:薛景中何美霖
口試委員(外文):Hsueh, ChingChungHo, MeiLin
口試日期:2012-07-09
學位類別:碩士
校院名稱:輔仁大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:115
中文關鍵詞:奈米粒子拉曼三角板
外文關鍵詞:goldnanoparticleRamanSilverprism
相關次數:
  • 被引用被引用:0
  • 點閱點閱:258
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
在催化、生物標記和光學性質上,金、銀這些貴重金屬的奈米粒子具有相當大的應用潛力,而金屬奈米粒子的特殊性質和其大小與構型有密不可分的關係,如何去合成、鑑定及應用這些金屬奈米粒子在這幾年成為相當熱門的研究項目。此外,表面增強拉曼散射(Surface enhanced Raman Scattering, SERS)由於其極高的靈敏度成為這幾年來微量偵測上重要的方法及技術,多種金屬及構型的奈米材料紛紛被合成及發表並利用拉曼檢測顯示金屬增強的效果,但如何在如此微小的奈米尺度下控制所形成的奈米粒子並具有較強的拉曼訊號增強成為了相當有挑戰性的研究主題。
在此論文中,使用水相合成方法製備銀的三角板奈米粒子並使之成長到一定的大小,並利用還原方法將銀三角板置換形成金的三角形奈米粒子。在還原方法中,控制其實驗參數分別可以形成三角環、中間半填滿的三角環及表面粗糙類似三角飯糰的奈米粒子。最後利用拉曼散射探討金屬奈米粒子構形上的變化對增強性質上的影響,期望對於往後相關之金屬奈米粒子的設計及增強效果上有更進一步的認識及瞭解。

Over the past two decades, investigations on noble metal nanomaterials have become one of the major research fields in modern science. Being aware of the fact that the optical and electronic properties could be greatly altered by morphology and particle size, many research groups have spent enormous efforts on studying growth mechanism as well as shape evolution of noble metal nanocrystals. In addition, aggregation of metal nanoparticles would induce enhancement of interparticle field, hence possessing the potential in the field of surface-enhanced Raman Spectroscopy and drug delivery vehicles. Herein, we report a Au triangular nanocrystals with desired particle size as well as surface roughness. Starting from Ag triangular nanoplates, addition of Au3+ ions would induce well-known reaction, namely galvanic exchange. By controlling experimental conditions, Au triangular nanocrystals with desired surface roughness could be produced. The size of the as-prepared nanocrystals could be easily controlled by adapting different-sized Ag templates. After obtaining these nanocyrstals, structural evolution and the corresponding field enhancement are investigated thoroughly, and the SERS results of Thiophenol (TP) are also reported.
目錄.................................................................................................... I
摘要.................................................................................................... 1
第一章 緒論.............................................................................................. 3
1.1 金屬奈米粒子之特殊性質................................................................................ 3
1.1.1 表面電漿共振(Surface Plasmon Resonance, SPR)............................................... 3
1.2 三角板奈米粒子合成方式................................................................................ 8
1.2.1 光化學誘導合成方法(Photochemical method)........................................................... 9
1.2.2 水相合成方法...................................................................................... 10
1.2.3 銀三角板之側面成長反應....................................................................... 11
1.3 金置換銀合成方法..................................................................................... 13
1.3.1 Galvanic replacement............................................................................ 13
1.3.2 金框架還原合成方法(Ultrathin gold nanoframe)....................................................... 15
1.4 金屬增強放光效應(Metal enhanced fluorescence, MEF)................................................... 16
1.5 金屬表面增強拉曼散射(Surface-enhanced Raman Scattering, SERS)......................................... 17
1.6 研究動機........................................................................................... 24
1.7 第一章附圖......................................................................................... 25
第二章 實驗............................................................................................. 56
2.1 藥品.............................................................................................. 56
2.2 樣品之合成......................................................................................... 57
2.2.1 銀三角板.................................................................................. 57
2.2.2 銀三角板之側面成長.......................................................................... 58
2.2.3 金的三角框架(Au nanoframe) ................................................................ 59
2.2.4 金的三角環(Au nanoring) ................................................................... 59
2.2.5 拉曼散射基板(SERS substrate)製備............................................................ 60
2.3 檢測儀器........................................................................................... 62
2.4 第二章附圖.......................................................................................... 63
第三章 實驗結果與討論..................................................................................... 68
3.1 銀三角板之合成及其特性探討............................................................................. 68
3.2 銀三角板之側面成長................................................................................... 69
3.3 金的三角框架(Au nanoframe) ......................................................................... 70
3.4 金的三角環(Au nanoring) ............................................................................ 75
3.5 金屬表面增強拉曼散測檢測(SERS)........................................................................ 77
3.6 第三章附圖.......................................................................................... 84
第四章 結論............................................................................................. 107
參考文獻................................................................................................ 108

1. Sau, T. K.; Rogach, A. L. Adv. Mater. 2010, 22, 781-1804.
2. Sau, T. K.; Murphy, C. J. J. Am. Chem. Soc. 2004, 126, 8648-8649.
3. Habas, S. E.; Lee, H.; Radmilovic, V.; Somorijai, G. A.; Yang, P. Nat. Mater. 2007, 6, 692-697.
4. Jana, N. R.; Gearheath, L.; Murphy, C.J. Nano. Lette. 2003, 3, 667-669.
5. Huang, C. J.; Chiu, P. H.; Wang, Y. H.; Yang, C.F.; J. Colloid Interface Sci. 2008, 303, 430-436.
6. Petriski, J. M.; Wang, Z. L.; Green, T. C.; El-Sayed, M. A. J. Phys. Chem. B 1998, 102, 3316-3320.
7. Kim, F.; Connor, S.; Song, F.; Kuykendall, T.; Yang, P. Angew. Chem. Int. Ed. 2004, 43, 3673-3677.
8. Hutter, E.; Fendler, J. H. Adv. Mater. 2004, 16, 1685-1706.
9. Eustis, S.; El-Sayed, M. A. Chem. Soc. Rev. 2006, 35, 209-217.
10. Mie, G. Ann. Phys. 1908, 25, 377-445.
11. Lessard-Viger, M.; Rioux, M.; Rainville, L.; Boudreau, D. Nano Lett., 2009, 9, 3066–3071.
12. Wang, Y.; Zou, X; Ren, W.; Wang, W.; Wang, E. J. Phys. Chem. C 2007, 111, 3259-3265.
13. Yang, M.; A, Ramón.; Kim, H. S.; Paula, A.; Luis, M. L.;Kotov, N. A. Nano Lett. 2010, 10, 4013-4019.
14. Liang, H. Y.; Li, Z. P.; Wang, W. Z.; Wu, Y. S.;Xu, H. X. Adv. Mater. 2009, 21, 4614-4618.
15. Fang, J.; Du, S.; Lebedkin, S.; Li, Z.; Kruk, R.; Kappes, M.; Hahn, H. Nano. Lett. 2010, 10, 5006-5013.
16. Sun, L.; Zhao, D.; Ding, M.; Xu, Z.; Zhang, Z.; Li, B.; Shen, D. J. Phys. Chem. C 2011, 115, 16295-16304.
17. Xue, C.; Métraux, G. S.; Millstione J. E.; Mirkin C. A. J. Am. Chem. Soc. 2008, 130, 8337.-8344.
18. Métraux, G.S.; Mirkin, C.C. Adv. Mater. 2005, 17, 412-415.
19. Jana, N. R.; Gearheart, L.; Murphy, C. J. Chem. Commun. 2001, 617-618.
20. Millstone, J. E.; Metraux, G. S.; Mirkin, C. A. Adv. Funct. Mater. 2006, 16, 1209-1214.
21. Kuo, C. H.; Huang, M. H. Langmuir 2005, 21, 2012-2016.
22. Zeng J.; Xia X.; Rycenga M.; Henneghan P.; Li Q.; Xia Y. Angw.Chem. 2011, 50, 244-249.
23. Goebl, J.; Zhang, Q.; Yin Y. D.Angew. Chem. 2011, 50, 1-5.
24. Jin, R. C.; Cao, Y. C.;Hao, E. C.; Métraux, G. S.; Schatz, G. C.; Mirkin, C. A. Nature 2003, 425, 487-490.
25. Sun, Y; Xia Y. J. Am. Chem. Soc. 2004, 126, 3892-3901.
26. McEachran, M.; Keogh, D.; Pietrobon, B.; Cathcart, N.; Gourevich, I.; Coombs, N.; Kitaev, V. J. Am. Chem. Soc. 2011, 133, 8066-8069.
27. Xue, C.; Métraux, G. S.; Cao, Y. C.;Jin, R. C.; Mirkin C. A. Nano Lett. 2003, 3, 519-522.
28. Sun, Y; Xia Y. Angw. Mater. 2003, 15, 695-699.
29. Mahmoud, M.A.; El-Sayed, M.A. Nano. Lett. 2009, 9, 3025-3031.
30. Wang, Y.; Zou, X.; Ren, W.; Wang, W.; Wang, E. J. Phy. Chem. C 2007, 111, 3259-3265.
31. Zhang, J.; Li, X.; Sun, X; Li, Y. J. Phys. Chem. B 2005, 109, 12544-12548.
32. Shen, C.; Hui, C.; Yang, T.; Xiao, C.; Tian, J.; Bao, L.; Chen, S.; Ding, H.; Gao, H. Chem. Mater. 2008, 20, 6939-6944.
33. Smitha, S. L.; Gopchandran, K. G.; Ravindran, T. R.; Prasad, V. S. Nanotechnology 2011, 22, 265705.
35. Torimoto, T.; Horibe, H.; Kameyama, T.; Okazaki, K.; Ikeda, S.; Matsumura, M.; Ishikawa, A.; Ishihara, H. J. Phys. Chem. Lett. 2011, 2, 2057-2062.
36. Tian, Z. Q.; Ren, B.; Wu, D.Y.; J. Phys. Chem. B 2002, 106, 9463-9483.
37. Ren, B.; Lin, X. F.; Yang, Z. L.; Liu, G. K.; Acroca, R. F.; Mao, B. W.; Tian, Z. Q. J. Am. Chem. Soc. 2003, 125, 9598-9599.
38. Zheng, Q. H.; Zhang, Y. L.; Liu, X. M.; Tu, L. P.; Wang, Y.; Kong, X. G.; Zhang, H. Chem. Commun. 2010, 46, 6479-6481.
39. Mathieu, L. V.; Rioux, M.; Rainville, L.; Boudreau, D. Nano. Lett. 2009, 9, 3066-3071.
40. Nie, S. M.; Emory, S. R. Science 1997, 25, 17-21.
41. Schwartzberg, A. M.; Grant, C. D.; Wolcott, A.; Talley, C. E.; Huser, T. R.; Bogomolni, R.; Zhang, J. Z. J. Phys. Chem. B 2004, 18, 19191-19197.
42. Jin, R.; Cao, Y.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Science 2001, 294, 1901-1903.
43. Kim, K.; Lee, H. S. J. Phys. Chem. B 2005, 109, 18929-13934.
44. Adams, S. M.; Campione, S.; Caldwell, J. S.; Bezares, J. C. C.; Capolino, F.; Ragan, R. Small DOI: 10.1002/smll.201102708.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊