跳到主要內容

臺灣博碩士論文加值系統

(3.238.135.174) 您好!臺灣時間:2021/08/05 07:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳哲鋒
研究生(外文):Chen, Jefeng
論文名稱:使用粒子式模擬研究微波電漿輔助化學氣相沉積
論文名稱(外文):Study on Microwave Plasma Enhanced Chemical Vapor Deposition Using Particle-In-Cell Simulations
指導教授:林銘杰
口試委員:藍永強林諭男
口試日期:2010-06-11
學位類別:碩士
校院名稱:輔仁大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:英文
論文頁數:74
中文關鍵詞:電漿輔助化學氣相沉積微波電漿時域有限差分法
外文關鍵詞:MPECVDplasma processingargonFDTD PICfluid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:83
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文使用粒子式法 (Particle-In-Cell Method) 模擬研究電漿輔助化學氣相沉積 (Microwave Plasma Enhanced Chemical Vapor Deposition, MPECVD)。在壓力大於1托耳(torr)、微波功率大於1千瓦(kW)的情況下,藉由粒子式模擬,我們可以了解電漿在此系統的動態行為與微波交互作用之影響。藉由微波能量的藕合,在圓柱共振腔內以TM011模態共振,使電漿得以持續的產生和維持。微波藕合波導裝置與圓柱反應腔的設計,可以藉由時域有限差分法(Finite Difference Time Domain, FDTD),求解馬克斯威爾方程式並對腔體進行優化。開槽的位置是選在微波藕合同軸波導裝置與圓柱反應腔之間電場最強的位置,以最佳化頻率為2.45 GHz的微波耦合效率。在這樣的系統下,我們的模擬研究發現:氬氣和氫氣會被微波共振的電場解離並加速,壓力的增加會加快電漿的產生速度而電漿產生的範圍會越來越小;增加注入的微波功率會加快電漿的產生且電漿產生的範圍會因此擴大。
In this thesis, we have studied a Microwave Plasma Enhanced Chemical Vapor Deposition (MPECVD) system for material processing using a particle-in-cell simulation. For an MPECVD system at a pressure up to 1 torr and with an input microwave power up to 1 kW, by employing PIC simulations, we can realize the dynamic behaviors of plasmas and the influence of the interaction with microwaves. Microwave plasmas are reliably generated and sustained by using a cylindrical resonator with a TM011 cavity mode. The coaxial waveguide coupler and the cylindrical microwave cavity are carefully designed and optimized with the finite-difference time-domain solver based on Maxwell’s equations. The coupling slots between the coupler and the cavity along the azimuthal direction are determined to be located at maximum electric fields to maximize the coupling efficiency of microwaves into the plasma at a resonant frequency of 2.45 GHz. In the system, with the aid of the simulations, we found that argon and hydrogen gases are dissociated and accelerated by the electric fields of microwaves. An increase in pressure will speed up the generation of plasma however the spatial distribution range of the plasma will be reduced. On the other hand, an increase in microwave power will enhance the generation of plasma and the spatial distribution range will be enlarged.
中文摘要 I
ABSTRACT II
誌謝 III
CONTENTS IV
LIST OF FIGURES VII
LIST OF TABLES XI
CHAPTER 1 1
CHAPTER 2 6
2.1 Basic Electromagnetic Theory 6
2.2 Finite-Difference Time-Domain Method 9
2.3 Cold Tests 12
2.3.1 Cylindrical cavity [11] 12
2.3.1.1 TE mode in a cylindrical cavity: 15
2.3.1.2 TM mode in a cylindrical cavity: 19
2.3.1.3 Finite-difference time-domain simulations 21
2.3.2 Coaxial cavity 23
2.3.2.1 TE mode in a coaxial cavity: 24
2.3.2.2 TM mode in a coaxial cavity: 27
2.3.2.3 Coaxial cavity v.s. rectangular cavity approximation 29
2.3.3 Cold Test of an MPECVD System 30
CHAPTER 3 33
3.1 Basic Plasma Theory [14] 33
3.1.1 Plasma characteristic parameters 34
3.1.1.1 Debye length [15]. 34
3.1.1.2 Plasma oscillation [15] 36
3.1.2 Ionization Models [14] 38
3.1.2.1 Collision parameters [15] 39
3.1.2.2 Electron ionization cross section [15] 41
3.1.2.3 Fluid model [14] 44
3.2 FDTD Particle-in-Cell Method 46
3.2.1 Debye Length Simulated by Finite Difference Time Domain Particle-In-Cell Method 49
3.2.2 Plasma Frequency Calculated by Finite Different Time Domain Particle-In-Cell Method 51
CHAPTER 4 53
4.1 MPECVD Model 53
4.2 MPECVD Simulation Results 54
4.2.1 Interaction between plasma and microwave in an MPECVD [19-21] 54
4.2.2 Gas pressure 57
4.2.3 Microwave power 65
CHAPTER 5 72
REFERENCES: 74

[ 1]H. Song, J. M. Hong, K. H. Lee, and J. J. Chol, “Stable microwave coaxial cavity plasma system at atmospheric pressure”, Rev. Sci. Instrum. 79, 054702 (2008).
[ 2]W. Petasch, G. Peer, T. Semperowitsch, H. Schmid, and D. Chrysostomou, Global Semiconductor Manufacturing Technology (Touch Briefings, 2003).
[ 3]J. R. Roth, Industrial Plasma Engineering (IOP. Publishing Ltd., Bristol, 1995).
[ 4]D. Vollath and D. Vinga Szabo, The Eighth International Conference on Microwave and High Frequency (Heating, Bayreuth, Germany, unpublished, 2001)
[ 5]K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media”,IEEE Trans. Antennas and Propagat. AP-14, No.8,302-307 (1966).
[ 6] J. C. Maxwell, A treatise on Electricity and Magnetism (Reprinted by Dover Publications, New York,1954).
[ 7]D. K. Cheng, Field and Wave Electromagnetics, 2nd ed. (Wiley, New York, 1989).
[ 8]J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1979).
[ 9]J. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (Wiley, New York, 2002).
[ 10] A. Taflove, Computation Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995).
[ 11]W. L. Barrow and W. W. Mieher, “Natural oscillations of electrical cavity resonators”, Proc. I.R.E. 28, 184-191 (1940).
[12]A. Kirkman and M. Kline, “The Transverse Electric Model in Coaxial Cavity”, Proc. I.R.E. 20, 14-17 (1946).
[13] M. A. Liberman and A. J. Lichtenberg, Principles of plasma Discharges and Materials Processing, 2nd ed. (Wiley, New York, 2005).
[14]A. Bogaents, K. De Bleecker, I. Kolev, and M. Madani, “Modeling of gas discharge plasmas : What can we learn from it?”, Surface Coatings Technol. 200, 62-67 (2005).
[15]I. B. N. Chapman, Glow Discharge Processes (John Wiley & Sons, 1980).
[16]F. F. Chen, Introduction to Plasma Physics and Controlled Fusion: Plasma Physics, 2nd ed., Vol. 1 (Plenum Press, New York ,1984).
[17]J. P. Verboncoeur, “Particle simulation of plasmas: review and advances”, Plasma Phys. Control. Fusion 47, A231-A260 (2005).
[18]R. W. Hochney and J. W. Eastwood, Computer Simulation Using Particles (IOP. Publishing Ltd., Bristol, 1988).
[19]F. F. Chen, RF Plasma Sources for Semiconductor Processing (University of California, Los Angeles, CA 90095-1594).
[20]M. Moisan, Microwave Excited Plasmas (Elsevier, New York, 1992).
[21]D. L. Smith, Thin-Film Deposition: principles and practice (McGraw-Hill, New York, 1995).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top