跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 04:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:杜浩群
研究生(外文):Tu,Hao-Chun
論文名稱:光致電效應在複鐵陶瓷BiFeO3
論文名稱(外文):Photo-Induced Electric Effects on Multiferroic BiFeO3 Ceramics
指導教授:杜繼舜
口試委員:陳炳宜陳正劭
口試日期:2012-07-09
學位類別:碩士
校院名稱:輔仁大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:57
中文關鍵詞:固態反應法BiFeO3介電常數介電損耗色散電導尼爾溫度反鐵磁相順磁相光伏效應電荷載子極化
外文關鍵詞:solid state reactionBiFeO3dielectric permittivitydielectric lossdispersion, conductivityconductivityNèel temperatureantiferromagnetismparamagnetismphotovoltaic effectcharge carrierspoling
相關次數:
  • 被引用被引用:8
  • 點閱點閱:329
  • 評分評分:
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究主要利用固態反應法 (solid state reaction)製作BiFeO3 (BFO)複鐵陶瓷,製作流程可分為調配粉末比例、臥式球磨、鍛燒、高能球磨、造粒,壓制成型與燒結。燒結後,品質好的BiFeO3陶瓷在XRD圖中呈現高純度且無明顯次級相的單一晶相。室溫下介電常數約為48 (f =1 MHz),當溫度升高時,其極大值發生範圍約在650-800 K之間,隨溫度升高時並隨著明顯的色散現象。因為熱效應,溫度超過630 K時介電損耗會大幅的上升。One-dimension barrier model分析下,電導實數的轉折點約在610 K,與尼爾溫度 (TN)相近;模擬出來的介電實數極大值與實驗值範圍相近,此變化可能為反鐵磁相 (antiferromagnetic phase)轉順磁相 (paramagnetic phase)影響。波長373 nm雷射的光伏效應結果相較於波長532 nm的雷射明顯,因為電荷載子 (charge carriers)能獲得足夠的能量來進行躍遷。厚度越薄的陶瓷樣品相對地其光伏效應越大。藉由波長405 nm雷射,樣品經過不同強度的外加電場極化下,其光伏效應也隨極化強度變大而增加。
This study used the solid state reaction to produce BiFeO3 multiferroic ceramics. The processes include mixing powders, ball milling, calcining, high -energy ball milling, granulation, pressing, and sintering. XRD of BiFeO3 ceramics show high purity without obvious second phases. Room -temperature dielectric permittivity is about 48 (for f=1 MHz). The maximum dielectric-permittivities occur between 650-800 K and show obvious frequency-dependent dispersion. Dielectric loss increases rapidly when temperature is above 630 K because of the thermal-active conductivity. In one-dimension barrier model, a turning point of conductivity appears around 610 K, which is close to the Nèel temperature. The maximum of dielectric permittivity from the barrier model is consistent with the experiment data. Probably, the main reason is due to transition from antiferromagnetism to paramagnetism. Comparing with two different diode lasers, the photovoltaic responses of 373 nm laser is better than the green diode laser (=532 nm). The smaller photovoltaic phenomena are mainly due to inefficiently photonic energy for electronic excitation. The thickness of ceramic sample will also affect photovoltaic effect, in which the thinner sample exhibit better photovoltaic effect. With poling by external electric field, the photovoltaic effects under illumination of =405 nm increase with rising of poling intensity.
中文摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 緒論 1
1.1 研究動機 1
1.2 複鐵性材料 2
1.3 鐵酸鉍BiFeO3 4
1.4 光伏效應 (photovoltaic effect) 5
1.5 文獻回顧 6
第二章 實驗理論 13
2.1 布拉格定律 13
2.2 介電性質 14
2.3 磁性原理 16
2.4 電滯曲線 19
2.5 One-dimensional barrier model 21
2.6 光伏原理 23
第三章 實驗儀器與製程 24
3.1 鐵酸鉍樣品製備 24
3.1.1 調配粉末比例 25
3.1.2 臥式球磨 26
3.1.3 烘乾與篩選 27
3.1.4 鍛燒 (calcine) 28
3.1.5 高能球磨 (high-energy ball milling) 29
3.1.6 造粒與成型 30
3.1.7 燒結 (sinter) 30
3.2 變溫介電常數分析 34
3.3 電滯曲線量測 35
3.4 磁性量測 36
3.5 光伏效應量測 37
第四章 實驗結果與討論 38
4.1 樣品表面分析 38
4.2 磁性測量分析 39
4.3 鐵電性質量測與分析 39
4.4 介電常數分析 40
4.5 One-dimensional barrier model 分析 42
4.6 光伏效應實驗結果與分析 45
第五章 結論 51
參考文獻 53

[1]Nicola A. Spaldin and Manfred Fiebig,“The renaissance of magnetoelectric multiferroics”, Science 309, 391 (2005).
[2]N. A. Spaldin, S.-W. Cheong, and R. Ramesh,“Multiferroics: Past, present, and future”, Physics Today 63, 38-43 (2010).
[3]A. Filippetti, and N. A. Hill,“First principles study of structural, electronic and magnetic interplay in ferroelectromagnetic yttrium manganite”, J. Magn. Magn. Mater. 236,176-189 (2001).
[4]J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D.Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K.M. Rabe, M. Wuttig, and R. Ramesh,“Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures”, Science 299, 1719-1722(2003).
[5]M. Fiebig, Th. Lottermoser, D. Frohlich, A. V. Goltsev, and R. V. Pisarev,“Observation of coupled magnetic and electric domains”, Nature 419, 818-820 (2002).
[6]G. A. Smolenski., and I. E. Chupis,”Ferroelectromagnets”, Sov. Phys.Usp. 25, 475-493 (1982).
[7]R. Mazumder, S. Ghosh, P. Mondal, Dipten Bhattacharya, S. Dasgupta,N. Das, A. Sen, A. K. Tyagi, M. Sivakumar, T. Takami, and H. Ikuta,“Particle size dependence of magnetization and phase transition near TN in multiferroic BiFeO3”, J. Appl. Phys. 100, 033908 (2006).
[8]M. Mahesh Kumar, V. R. Palkar, K. Srinivas, and S.V.Suryanarayana,“Ferroelectricity in a pure BiFeO3 ceramic”, Appl.Phys. Lett. 76, 2764 (2000).
[9]B. Ramachandran, and M. S. Ramachandra Rao,“Low temperature magnetocaloric effect in polycrystalline BiFeO3 ceramics”, Appl. Phys. Lett. 95, 142505 (2009).
[10]J.-C. Chen and J.-M. Wu,“Dielectric properties and ac conductivitiesof dense single-phased BiFeO3 ceramics”, Appl. Phys. Lett. 91,182903 (2007).
[11]林灯祺,”複鐵性BiFeO3陶瓷之結構相變與摻BaTiO3效應”, 天主教輔仁大學物理學系碩士論文(2010).
[12]楊偉群,”複鐵性BiFeO3陶瓷A-site離子置換之效應”, 天主教輔仁大學物理學系碩士論文 (2011).
[13]C. Ederer and N. A. Spaldin,“Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite”, Phy. Rev. B. 71, 060401(R) (2005).
[14]S. Y. Yang, L. W. Martin, S. J. Byrnes, T. E. Conry, S. R. Basu, D. Paran, L. Reichertz, J. Ihlefeld, C. Adamo, A. Melville, Y.-H. Chu,C.-H. Yang, J. L. Musfeldt, D. G. Schlom, J. W. Ager III, and R. Ramesh,”Photovoltaic effects in BiFeO3”, Appl. Phys. Lett. 92, 222901 (2008).
[15]S. R. Basu, L. W. Martin, Y.-H. Chu, M. Gajek, R. Ramesh, R. C. Rai, X.Xu, and J. L. Musfeldt,“Photoconductivity in BiFeO3 thin films”, Appl. Phys. Lett. 92, 091905 (2008).
[16]A. J. Hauser, J. Zhang, L. Mier, R. A. Ricciardo, P. M. Woodward, T. L.Gustafson, L. J. Brillson, and F. Y. Yang,”Characterization of electronic structure and defect states of thin epitaxial BiFeO3 films by UV-visible absorption and cathodoluminescence spectroscopies”, Appl. Phys. Lett. 92, 222901(2008).
[17]Y. P. Wang, G. L. Yuan, X. Y. Chen, J. M. Liu, and Z. G. Liu, “Electrical and magnetic properties of single-phased and highly resistive ferroelectromagnet BiFeO3 ceramic”, J. Phys. D: Appl. Phys. 39, 2019–2023 (2006).
[18]Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J.-M. Liu, and Z. G. Liu,“Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering”, Appl. Phys. Lett. 84, 1731-1733 (2004).
[19]J.-C. Chen and J.-M. Wu,“Dielectric properties and ac conductivities of dense single-phased BiFeO3 ceramics”, Appl. Phys. Lett. 91, 182903 (2007).
[20]B. Kundys, M. Viret, D. Colson, and D. O. Kundys,” Light-induced size changes in BiFeO3 crystals”, Nature Materials 9,803–805 (2010).
[21] Dawei Cao, Hui Zhang, Liang Fang, Wen Dong, Fengang Zheng, and Mingrong Shen,” Interface layer thickness effect on the photocurrent of Pt sandwiched polycrystalline ferroelectric Pb(Zr,Ti)O3 films”, Appl. Phys. Lett. 97, 102104 (2010).
[22]S. R. Basu, L. W. Martin, Y. H. Chu, M. Gajek, R. Ramesh, R. C. Rai, X. Xu, and J. L. Musfeldt,”Photoconductivity in BiFeO3 thin films”, Appl. Phys. Lett. 92, 091905 (2008).
[23]A. J. Hauser, J. Zhang, L. Mier, R. A. Ricciardo, P. M. Woodward, T. L. Gustafson, L. J. Brillson, F. Y. Yang,” Characterization of electronic structure and defect states of thin epitaxial BiFeO3 films by UV-visible absorption and cathodoluminescence spectroscopies”, Appl. Phys. Lett. 92, 222901 (2008).
[24]C. Kittel,“Introduction to Solid State Physics-8th ed.”, (John Wiley & Sons, New York, 2005).
[25]David J. Griffiths,“Introduction Electrodynamics-3th ed.”, (Prentice Hall, America, 1998).
[26]J. A. C. Bland and B. Heinrich,“Ultrathin Magnetic Structures I”, Springer-Verlag (1994).
[27]王子翔,”(Ba,Ti)取代之BiFeO3複鐵性陶瓷的製程與分析”, 天主教輔仁大學應用科學與工程研究所博士論文(2011).
[28]S. Y. Chu and K. Uchino,“Photostrictive effect in PLZT-Based ceramics and its applications”, Ferroelectrics 174, 185-196 (1995).
[29]P. Poosanaas, K. Tonooka, and K. Uchino,“Photostrictive Actuaors”, Mechatronics 10, 467–87 (2000).
[30]P. Poosanaas, A. Dogan, S. Thakoor, and K. Uchino,“Influence of sample thickness on the performance of photostrictive ceramics”, Journal of Applied Physics 84 (3), 1508-1511 (1998).
[31]K. Uchino, P. Poosanaas and K. Tonooka,“Photostrictive Actuators-New Perspective”, Ferroelectrics 264, 303-308 (2001).
[32]Z. X. Cheng, A. H. Li, X. L. Wang, S. X. Dou, K. Ozawa, H. Kimura,S. J. Zhang, and T. R. Shrout,“Structure, ferroelectric properties, and magnetic properties of the La-doped bismuth ferrite”, J. Appl. Phys.103, 07E507 (2008).
[33]Qing-hui Jiang, Ce-wen Nan, Yao Wang, Yu-heng Liu, and Zhi-jian Shen,“Synthesis and properties of multiferroic BiFeO3 ceramics”, J. Electroceram 21, 690-693, (2008).
[34]D. Lebeugle, D. Colson, A. Forget, M. Viret, P. Bonville, J. F. Marucco, and S. Fusil,“Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals”, Phys. Rev. B 76, 024116, (2007).
[35]P. Fischer, M. Polomska, I. Sosnowska, and M. Szyman´ski, “Temperature dependence of the crystal and magnetic structures of BiFeO3”, J. Phys. C 13, 1931 (1980).
[36]Chi-Shun Tu, F.-T. Wang, R. R. Chien, V. Hugo Schmidt, C.-M. Hung, and C.-T. Tseng,” Dielectric and photovoltaic phenomena in tungsten-doped Pb(Mg1/3Nb2/3)1−xTixO3 crystal”, Appl. Phys. Lett. 88, 032902 (2006).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊