跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 23:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:史卓強
研究生(外文):Shih, Cho-Chiang
論文名稱:發展高頻超音波聲幅射力脈波影像系統應用於眼角膜組織彈性偵測
論文名稱(外文):Development Of A High Frequency Acoustic Radiation Force Impulse Imaging System For Detecting The Elastic Properties Of Cornea Tissue
指導教授:黃執中
指導教授(外文):Huang, Chih-Chung
口試委員:王士豪崔博翔
口試委員(外文):Wang, Shyh-HauTsui, Po-Hsiang
口試日期:2012-07-02
學位類別:碩士
校院名稱:輔仁大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:74
中文關鍵詞:高頻超音波聲幅射力彈性影像眼角膜共焦換能器
外文關鍵詞:high frequency ultrasoundacoustic radiation forceelastographycorneaconfocal transducer
相關次數:
  • 被引用被引用:1
  • 點閱點閱:312
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
近年來,隨著近視族群人口的增長,對於長時間配戴隱形眼鏡以及接受雷射手術而使角膜產生病變的案例也逐年增高。因此,本研究發展了一套高頻的超音波聲輻射力脈波影像系統(High Frequency Acoustic Radiation Force Impulse Imaging System)用於偵測眼角膜組織的彈性分布。實驗使用了雙環共焦超音波換能器,外環的中心頻率為10 MHz,主要用來激發超音波聲輻射力使組織產生局部的位移量;內環的中心頻率為50 MHz,主要用來偵測組織的位移量。將此超音波換能器裝載於三維馬達平台上,進行不同深度的平面式掃描,將擷取到的超音波回波訊號進行互相關(Cross-Correlation)分析,可以得到不同位置且不同深度下的位移量,最後,結合其分佈的情況,可重建出高頻超音波聲輻射力脈波影像。本系統使用三種不同的仿體進行實驗並且成像,結果顯示出利用本系統可以區別最小的範圍為0.4 mm。而在眼角膜組織的離體實驗中,是利用正常的豬眼角膜以及具有局部硬化的豬眼角膜作為實驗目標,結果指出,本系統藉由分析聲幅射力在角膜組織中所產生的位移,能夠對於豬眼角膜彈性上的細微差異有所辨別,進而建構出一張具有彈性分布的高頻超音波聲輻射力脈波影像。
Recently, the myopia populations has grown up. The patients suffering from cornea lesions, caused by wearing the contact lenses for longtime and undergoing the laser eye surgery, have also show their crucial. The purpose of this study is to develop the high resolution of high frequency acoustic radiation force impulse imaging system to detect the elastic properties of cornea. A high frequency dual confocal ultrasound transducer was used in these experiments. The central frequency of the outer element is 10 MHz, which is used to induce the localized displacement of tissue. The central frequency of the inner element is 50 MHz, which is used to detect the localized displacement of tissue. In order to scan the tissue with different depths, the dual confocal ultrasound transducer was attached on the 3-axis motor system. The ultrasonic scatter signals fetched from the tissue were analyzed to get the distribution of displacements under different locations and different depths by cross-correlation. High frequency radiation force image can be constructed by combining these distributions of displacements. System verifications were performed on three kinds of tissue mimicking gelatin-based phantoms. The results indicate that the system can be used to distinguish the different elastic regions with minimum value of 0.4 mm. In the in vitro porcine cornea experiments, the system was utilized to detect the elastic properties for both healthy and localized sclerosing cornea. The results demonstrated that the inhomogeneous elastic distribution in the cornea tissue can be unidentified by analyzing the tissue displacement which is generated by the acoustic radiation force. Finally, the high resolution of high frequency acoustic radiation force impulse image can be constructed to provide enough elastic properties information of cornea.
摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究背景 2
1.3 文獻回顧 3
1.4 研究目的 6
第二章 基本理論 7
2.1 超音波簡介 7
2.1.1 應變與應力的關係 7
2.1.2 超音波疏密波 8
2.1.3 超音波剪向波 9
2.1.4 超音波聲阻抗 10
2.1.5 超音波的反射和折射 10
2.1.6 超音波衰減 12
2.2 基本超音波成像 13
2.2.1 振幅模式(A-mode) 13
2.2.2 亮度模式(B-mode) 13
2.3 彈性影像 15
2.3.1 彈性模數 15
2.3.2 彈性影像 17
2.4 超音波聲輻射力彈性影像 20
2.4.1 超音波聲輻射力 20
2.4.2 聲輻射力脈波彈性影像 21
2.4.3 諧波移動影像 25
2.4.4 剪波彈性影像 27
第三章 實驗材料與方法 30
3.1 超音波聲輻射力影像系統 30
3.1.1 超音波雙環共焦換能器 30
3.1.2 聲場量測 32
3.1.3 系統架構 34
3.1.4 掃描方式 36
3.1.5 成像方式 38
3.2 仿體製作 40
3.3 豬眼角膜實驗 43
第四章 結果與討論 45
4.1 仿體實驗 45
4.1.1 仿體單點位移測試 45
4.1.2 分層仿體成像及結果分析 47
4.1.3 球狀嵌入仿體成像及結果分析 50
4.2 豬眼角膜實驗 52
4.2.1 正常豬眼角膜成像及結果分析 53
4.2.2 硬化豬眼角膜成像及結果分析 56
第五章 結論與未來展望 60
5.1 結論 60
5.2 未來展望 61
參考文獻 62

[1] 近視人口調查,中華民國行政院衛生署國民健康局,http://www.bhp.doh.gov.tw/,2012。
[2]陳薇婷,健康與護理Ⅲ,泰宇出版,台北, 2007。
[3]陸文秀,準分子雷射屈光性角膜手術學,宏欣文化,台北, 2005。
[4]K. W. Hollman, S. Y. Emelianov, J. H. Neiss, G. Jotyan, G. J. R. Spooner, T. Juhasz, R. M. Kurtz and M. O’Donnell, “Strain imaging of corneal tissue with an ultrasound elasticity microscope,” Cornea, vol. 21, no. 1, pp. 68-73, 2001.
[5]M. Tanter, D. Touboul, J. L. Gennisson, J. Bercoff and M. Fink, ”High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging,” IEEE Trans. Medical Imaging, vol. 28, no. 12, pp. 1881-1893, 2009.
[6]R. H. Silverman, “High-resolution ultrasound imaging of the eye-a review,” Clin. Experiment Ophthalmol., vol. 37, no. 1, pp.54-67, 2008.
[7]K. Nightingale, M. S. Soo, R. Nightingale and G. Trahey, ”Acoustic radiation force impulse imaging: In vivo demonstration of clinical feasibility,” Ultrasound Med. Biol., vol. 28, no. 2, pp. 227-235, 2002.
[8]C. C. Huang, C. C. Shih, T. Y. Liu, and P. Y. Lee, “Assessing the viscoelastic properties of thrombus using a solid-sphere-based instantaneous force approach,” Ultrasound Med. Biol., vol. 37, no. 10, pp. 1722-1733, 2011.
[9]H. Xie, K. Kim, S. R. Aglyamov, S. Y. Emelianov, M. O’Donnell, W. F. Weitzel, S. K. Wrobleski, D. D. Myers, T. W. Wakefield and J. M. Rubin, ”Correspondence of ultrasound elasticity imaging to direct mechanical measurement in aging DVT in rats,” Ultrasound Med. Biol., vol. 31, no. 10, pp. 1351-1359, 2005.
[10]J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi and X. Li, "Elastography: A quantitative method for imaging the elasticity of biological tissues," Ultrasonic Imaging, vol. 13, no. 2, pp. 111-134, 1991.
[11]L. Sandrin, M. Tanter, S. Catheline and M. Fink, “Shear modulus imaging with 2-D transient elastography,” IEEE Trans Ultrason. Ferroelectro. Freq. Control, vol. 49, no. 4, pp. 426-435, 2002.
[12]J. L. Gennisson, S. Lerouge and G. Cloutier, “Assessment by transient elastography of the viscoelastic properties of blood during clotting,” Ultrasound Med. Biol., vol. 32, no. 10, pp. 1529-1537, 2006.
[13]K. R. Nightingale, M. L. Palmeri, R. W. Nightingale and G. E. Trahey, “On the feasibility of remote palpation using acoustic radiation force,” J. Acoust. Soc. Am., vol. 110, no. 1, pp. 625-634, 2001.
[14]M. L. Palmeri, K. D. Frinkley, K. G. Oldenburg and K. R. Nightingale, “Characterizing acoustic attenuation of homogeneous media using focused impulsive acoustic radiation force,” Ultrasound Imaging, vol. 28, no. 2, pp. 114-128, 2006.
[15]A. B. Karpiouk, S. R. Aglyamov, Y. A. Ilinskii, E. A. Zabolotskaya and S. Y. Emelianov, “Assessment of shear modulus of tissue using ultrasound radiation force acting on a spherical acoustic inhomogeneity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 56, no. 11, pp. 2380-2387, 2009.
[16]J. Bercoff, M. Tanter and M. Fink, “Supersonic shear imaging: A new technique for soft tissue elasticity mapping,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 51, no. 4, pp. 396-409, 2004.
[17]M. Tanter, J. Bercoff, A. Athanasiou, T. Deffieux, J. L. Gennisson, G. Montaldo, M. Muller, A. Tardivon and M. Fink, “Quantitative assessment of breast lesion viscoelasticity: Initial clinical results using supersonic shear imaging,” Ultrasound Med. Biol., vol. 34, no. 9, pp. 1373-1386, 2008.
[18]M. Fatemi, L. E. Wold, A. Alizad and J. F. Greenleaf, “Vibro-acoustic tissue mammography,” IEEE Trans. Medical Imaging, vol. 21, no. 1, pp. 1-8, 2002.
[19]C. Maleke and E. E. Konofagou, “Harmonic motion imaging for focused ultrasound (HMIFU): a fully integrated technique for sonication and monitoring of thermal ablation in tissues,” Phys. Med. Bio., vol. 53, no. 6, pp. 1773-1793, 2008.
[20]C. Maleke, M. Pernot and E. E. Konofagou, “Single-element focused ultrasound transducer method for harmonic motion imaging,” Ultrasound Imaging, vol. 28, no. 3, pp.144-158, 2006.
[21]J. Vappou, C. Maleke and E. E. Konofagou, “Quantitative viscoelastic parameters measured by harmonic motion imaging,” Phys. Med. Biol., vol. 54, no. 11, pp. 3579-3594, 2009.
[22]M. L. Palmeri, S. A. McAleavey, K. L. Fong, G. E. Trahey and K. R. Nightingale, “Dynamic mechanical response of elastic spherical inclusions to impulsive acoustic radiation force excitation,” IEEE Trans Ultrason. Ferroelectro. Freq. Control, vol. 53, no. 11, pp. 2065-2079, 2006.
[23]G. E. Trahey, M. L. Palmeri, R. C. Bentley and K. R. Nightingale, “Acoustic radiation force impulse imaging of the mechanical properties of arteries: in vivo and ex vivo results,” Ultrasound Med. Biol., vol. 30, no. 9, pp. 1163-1171, 2004.
[24]B. J. Fahey, K. R. Nightingale, S. A. McAleavey, M. L. Palmeri, P. D. Wolf and G. E. Trahey, “Acoustic radiation force impulse imaging of myocardial radiofrequency ablation: initial in vivo results,” IEEE Trans Ultrason. Ferroelectro. Freq. Control, vol. 52, no. 4, pp. 631-641, 2005.
[25]M. H. Wang, M. L. Palmeri, C. D. Guy, L. Yang, L. W. Hedlund, A. M. Diehl and K. R. Nightingale, “In vivo quantification of liver stiffness in a rat model of hepatic fibrosis with acoustic radiation force,” Ultrasound Med. Biol., vol. 35, no. 10, pp. 1709-1721, 2009.
[26]W. Meng, G. Zhang, C. Wu, G. Wu, Y. Song and Z. Lu, ” Preliminary results of acoustic radiation force impulse ultrasound imaging of breast lesions,” Ultrasound Med. Biol., vol. 37, no. 9, pp. 1436-1443, 2011.
[27]H. Wang, P. L. Prendiville, P. J. McDonnell and W. V. Chang, “An ultrasonic technique for the measurement of the elastic moduli of human cornea,” J. Biomechanics., vol. 29, no. 12, pp.1633-1636, 1996.
[28]J. Bercoff, M. Tanter and M. Fink, “Supersonic shear imaging: a new technique for soft tissue elasticity mapping,” IEEE Trans Ultrason. Ferroelectro. Freq. Control, vol. 51, no. 4, pp. 396-409, 2004.
[29]K. K. Shung, Diagnostic ultrasound: imaging and blood flow measurements, CRC Press, Boca Raton, 2006.
[30]A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes and S.Y. Emelianov, “Shear wave elasticity imaging : a new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol., vol. 24, no. 9, pp. 1419-1435, 1998.
[31]E. E. Konofagou, J. Ophir, T. A. Krouskop and B. S. Garra, “Elastography: from theory to clinical applications,” Proc. Summer Bioengineering Conference, pp. 367-368, 2003.
[32]H. Starritt, F. Duck and V. Humphrey, “Forces acting in the direction of propagation in pulsed ultrasound fields,” Phys. Med. Biol., vol. 36, no. 11, pp. 1465-1474, 1991.
[33]M. Palmeri, K. Frinkley, L. Zhai, R. Bentley, K. Ludwig, M. Gottfried and K. Nightingale, “Acoustic radiation force impulse (ARFI) imaging of the gastrointestinal tract,” Proc. IEEE Ultrason. Symp., pp. 744-747, 2004.
[34]S. Catheline, J. L. Gennisson, G. Delon, M. Fink, R. Sinkus, S. Abouelkaram and J. Culioli, “Measurement of viscoelastic properties of homogenerous soft solid using transient elastography: An inverse problem approach,” J. Acoust. Soc. Am., vol. 116, no. 6, pp. 3734-3741, 2004.
[35]R. M. Christensen, Theory of viscoelasticity: An introduction, Academic Press, New York, 1971.
[36]M. W. Urban, R. R. Kinnick and J. F. Greenleaf, “Measuring the phase of vibration of spheres in a viscoelastic medium as an image contrast modality,” J. Acoust. Soc. Am., vol. 118, no. 6, pp. 3465-3472, 2005.
[37]S. Chen, M. W. Urban, C. Pislaru, R. Kinnick, Y. Zheng, A. Yao and J. F. Greenleaf, “Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity,” IEEE Trans Ultrason. Ferroelectro. Freq. Control, vol. 56, no. 1, pp. 55-62, 2009.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top