跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/31 04:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳韋岑
研究生(外文):Chen, Wei-Tsen
論文名稱:高頻超音波電腦斷層影像應用於軟組織特性識別
論文名稱(外文):Identification of Soft Tissue Properties by High Frequency Ultrasound Computed Tomography
指導教授:黃執中
指導教授(外文):Huang, Chih-Chung
口試委員:王士豪崔博翔
口試委員(外文):Wang, Shyh-HauTsui, Po-Hsiang
口試日期:2012-07-02
學位類別:碩士
校院名稱:輔仁大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:56
中文關鍵詞:高頻超音波超音波電腦斷層影像濾波反投影斑馬魚睪丸
外文關鍵詞:High-frequency ultrasoundUltrasound computed tomographyFiltered back projection algorithmZebrafishTestis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文研究為發展高頻超音波電腦斷層重建影像系統(High Frequency Ultrasound Computed Tomography),本系統所使用超音波換能器中心頻率由26 MHz至35MHz,並將超音波換能器裝載於三維馬達平台上行機械式掃描,待測物體則透過步進馬達旋轉並同時擷取其每個不同角度下的投影量,使用穿透模式(Transmission)及回波模式(Pulse-Echo)擷取超音波訊號,將擷取的超音波回波訊號進行相對衰減量運算,可以得到衰減投影量分布情形,以及利用超音波的到達反射面或是偵測器的時間差,可得到各角度聲速投影量分佈情形,透過濾波反投影法即可重建高解析超音波電腦斷層影像。在驗證系統解析度上,以內徑200 μm毛細管做為重建的物體,驗證所得到的超音波電腦斷層重建影像與毛細管內徑一致。在假體實驗方面,以兩種濃度不同明膠溶液製作出左右與內外硬度不同的假體進行實驗,無論使用穿透模式與回波模式重建聲速與衰減的超音波電腦斷層影像,超音波電腦斷斷層重建影像可以清楚分辨出這兩種形式的假體。在動物實驗上,進行老鼠睪丸的離體實驗,以正常的老鼠睪丸與已注射福馬林溶液的老鼠睪丸當作實驗組與對照組,偵測老鼠睪丸內部軟組織硬化位置與大小,最後進行老鼠睪丸的三維超音波電腦斷層影像重建,此外,更將超音波電腦斷層影像系統應用於斑馬魚組織特性研究上,重建斑馬魚超音波電腦斷層影像。
This study developed a high frequency ultrasound computed tomography imaging system. High ultrasound computed tomography is one of the methods that can be capable to recognize the tissue properties and have the high resolution. Using the transmission and pulse echo method captured the ultrasound signal. The center frequencies of high frequency transducers ranging from 26 MHz to 35 MHz were used in this system. The transducer was fixed on the three axes step motor table. The step motor made the object rotate and capturing the projection of the object in each angle. The filtered backprojection algorithm was used to reconstruct the two dimensional ultrasound computed tomography. The resolution of the system can be verified by scanning the 200 μm diameter micro-tube. In phantom experiments, the two type phantoms were composed of two different gelatins (gelatin concentration of 4% and 6%). The slight difference of gelatin phantom in different concentrations can be recognized easily by using the ultrasound computed tomography system. In vitro experiment, the high frequency ultrasound computed tomography was be used for the testis of rat, and the ultrasound computed tomography imaging can recognize the small different of soft tissue in the testis of rat and reconstruct three dimension ultrasound computed tomography image for testis of rat. the ultrasound computed tomography imaging system also reconstruct the zebrafish image.
目錄
摘要 i
英文摘要 ii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 研究背景 1
1.3 文獻回顧 2
1.4 研究目的 5
第二章 基礎理論 7
2.1 超音波簡介 7
2.1.1 超音波原理 7
2.1.2 反射與折射 7
2.1.3 衰減與聲阻抗 9
2.1.4 超音波換能器與聲場 10
2.2 高頻超音波簡介 13
2.3 超音波影像模式 15
2.3.1 振幅模式(A-mode) 15
2.3.2 亮度模式(B-mode) 16
2.4 超音波電腦斷層重建原理 17
2.4.1 雷登轉換(Radon transform) 17
2.4.2 傅立葉切面定理(Fourier Slice Theorem) 20
2.5 投影量種類 21
2.5.1 聲速投影量 21
2.5.2 衰減投影量 23
2.6 假影 23
第三章 實驗材料與方法 25
3.1 系統架構 25
3.2 系統解析度 29
3.3 軟組織分辨力 30
3.4 老鼠睪丸實驗架設 32
3.5 斑馬魚實驗架設 33
第四章 結果與討論 34
4.1 系統解析度驗證 34
4.2 假體影像 34
4.2.1 使用中心頻率為26 MHz重建超音波電腦斷層影像 35
4.2.2 使用中心頻率為35 MHz重建超音波電腦斷層影像 36
4.3 老鼠睪丸成像 39
4.4 斑馬魚成像 43
4.5 討論 47
第五章 結果與未來展望 51
5.1 結論 51
5.2 未來展望 52
參考文獻 53

參考文獻
[1]G. N. Hounsfield, “A method of apparatus for examination of a body by radiation such as X-ray or gamma radiation,” The Patent Office, London, Patent Specification 1 283 915, 1972.
[2]G. N. Hounsfield, “Computerized transverse axial scanning (tomography): Part1. Description of system,” British J. Radiology, vol. 46, pp. 1016-1022, 1973.
[3]W. A. Kalender, “X-ray computed tomograpgy,” Phys. Med. Biol. vol. 51, no. 13, pp. 29-43, 2006.
[4]J. F. Greenleaf and R. C. Bahn, “Clinical imaging with transmissive ultrasonic computerized tomography,” IEEE Trans. Biomed. Eng., vol. BME- 28, no. 2, pp. 177-185, 1981.
[5]K. A. Dines and A. Kak, “Ultrasonic attenuation tomography of soft biological tissues,” Ultrasonic Imaging, vol. 1, pp. 16-33,1979
[6]C. Li, N. Duric, P. Littrup and L. Huang, “In vivo breast sound-speed imaging with ultrasound tomography,” Ultrasound Med. Biol, vol. 35, no. 10, pp. 1615-1628, 2009.
[7]F. S. Fooster, J. Mehi, M. Lukacs, D. Hirson, C. White, C. Chaggares and A. Needles, “A new 15-50 MHz array-based micro-ultrasound scanner for preclinical imaging,” Ultrasound Med. Biol, vol. 35, no. 10, pp. 1700-1708, 2009.
[8]http://www.doh.gov.tw/statistic/index.htm,中華民國行政院衛生署,2012.
[9]S. F. Perry, M. Ekker, A. P. Farrell and C. J. Brauner, zebrafish, Academic Press, New York, 2010.
[10]L. Landini and L. Verrazzani, “Spectral characterization of tissues microstructure by ultrasound: a stochastic approach,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. 37, no. 5, pp. 448-456, 1990.
[11]G. Cincotti, G. Loi and M. Pappalardo, “Frequency decomposition and compounding of ultrasound medical images with wavelet packets,” IEEE Trans. Med. Imag., vol. 20, no. 8, pp. 764-771, 2001.
[12]D. B. Fogel, E. C. Wasson, E. M. Boughton, V. W. Porto and P. J. Angeline, “Linear and neural models for classifying breast masses,” IEEE Trans. Med. Imag., vol. 17, no. 3, pp. 485-488, 1998.
[13]A. Madabhushi and D. N. Metaxas, “Combining low-, high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions,” IEEE Trans. Med. Imag., vol. 22, no. 2, pp. 155-169, 2003.
[14]V. P. Jackson, “The role of US in breast imaging,” Radiology, vol. 177, pp. 305-311, 1990.
[15]H. Azhari and D. Sazbon, “Volumetric imaging with ultrasound spiral CT,” Radiology, vol. 212, pp. 270-275, 1999.
[16]J. F. Greenleaf and R. C. Bahn, “Clinical imaging with transmissive ultrasonic tomography,” IEEE Trans. Biomed. Eng., vol. BME-28, no. 2, pp. 177-185, 1981.
[17]M. T. Nguyen, U. Faust, H. Bressmer and P. Kugel, “Ultrasound tomography system using transmission and reflection mode with electronic scanning,” Proc. IEEE Eng. Med. Biol. Soc., vol. 5, pp. 2142-2143, 1992.
[18]R. Stozka, J. Würfel and T. O.Müller, “Medical imaging by ultrasound computer tomography,” Proc. SPIE Med. Imag., pp. 132, 2002.
[19]P. L. Carson, C. R. Meyer, A. L. Scherzinger and T. V. Oughton, “Breast imaging in coronal planes with simultaneous pulse echo and transmission ultrasound,” Science, vol. 214, no. 4, pp. 1141-1143, 1981.
[20]J. F. Greenleaf, J. Ylitalo and J. J. Gisvold, “Ultrasonic computed tomography breast examination,” IEEE Eng. Med. Biol. Mag., vol. 6, pp. 27-32, 1987.
[21] J. S. Schreiman, J. J. Gisvold, J. F. Greenleaf and R. C. Bahn, “Ultrasound transmission computed tomography of the breast,” Radiology, vol. 150, pp. 523-530, 1984.
[22]S. Sanei, “Characterization of fat and malignancy in transmissive ultrasound breast tomographs applying fuzzy logic,” Proc. IEEE Eng. Med. Biol. Soc., vol. 20, pp. 1367-1370, 1998.
[23]A. C. Kak and K. A. Dines, “Signal processing pulsed ultrasound: measurement of attenuation of soft biological tissues,” IEEE Trans. Biomed. Eng., vol. BME-25, no. 7, pp. 321-344, 1978.
[24]C. Li, N. Duric, P. Littrup and L. Huang, “In vivo breast sound-speed imaging with ultrasound tomography,” Ultrasound Med. Biol, vol. 35, no. 10, pp. 1615-1628, 2009.
[25]J. W. Jeong, T. S. Kim, D. C. Shin, S. Do, M. Singh and V. Z. Marmarelis, “Soft tissue differentiation using multiband signatures of high resolution ultrasonic transmission tomography,” IEEE Trans. Med. Imag., vol. 24, no. 3, pp. 399-408, 2005.
[26]S. K. Kenue and J. F. Greenleaf, “Limited angle multifrequency diffraction tomography,” IEEE Trans. Son. Ultrason., vol. SU-29, no. 6, pp. 213-217, 1982.
[27]K. A. Dines and S. A. Goss, “Computed ultrasonic reflection tomography,” IEEE Trans. Ultrason., Ferroelec., Freq. Contr., vol. UFFC-34, no. 3, pp. 309-318, 1987.
[28]H. Schomberg, “An improved approach to reconstructive ultrasound tomography,” J. Phys. D: Appl. Phys., vol. 11, pp. 181-185, 1978.
[29]M. Krueger, A. Pesavento and Ermert, “A modified time-of-flight tomography concept for ultrasonic breast imaging,” Proc. IEEE Ultrason. Symp., pp. 1381-1384, 1996.
[30]N. V. Ruiter, G. F. Schwarzenberg, M. Zapf, R. Liu, R. Stotzka and H. Gemmeke, “3D ultrasound computer tomography: results with a clinical breast phantom,” Proc. IEEE Ultrason. Symp., pp. 989-992, 2006.
[31]M. Ashfaq and H. Ermert, “Ultrasound spiral CT for the female breast first phantom imaging results,” Biomedizinische Technik, vol. 46, pp. 70-71, 2001.
[32]Jorgen Arendt Jensen, Estimation of Blood Velocities Using Ultrasound, Cambridge University Press, 1996.
[33]D. A. Christensen, Ultrasonic Bioinstrumentation, Wiley, New York, 1998.
[34]http://www.visualsonics.com/2012
[35]C. C. Huang, “Cyclic variations of high-frequency ultrasonic backscattering from blood under pulsatile flow,” IEEE Trans. Ultrason., Ferroelec., Freq. Contr., vol. 56, no. 8, pp. 1677-1688, 2009.
[36]C. C. Huang, P. Y. Lee, P. Y. Chen and T. Y. Liu, “Design and implementation of a smart-phone based portable ultrasound pulse-wave doppler device for blood flow measurement,” IEEE Trans. Ultrason., Ferroelec., Freq. Contr., vol. 59, pp. 182-188, 2012.
[37]C. C. Shih, T. Y. Liu and C. C. Huang, “In vitro assessments of viscoelastic properties of fibrin clot by using acoustic radiation force on a solid sphere,” Proc. IEEE Ultrason. Symp., pp. 479-482, 2010.
[38]J. Bercoff, M. Tanter and M. Fink, “Supersonic shear imaging: a new technique for soft tissue elasticity mapping,” IEEE Trans. Ultrason., Ferroelec., Freq. Contr., vol. 51, no. 4, pp. 396-409, 2004.
[39]R. H. Bracewell and A. C. Riddle, “Inversion of fan beam scans in radio astronomy,” Astrophysics Journal, vol. 150, pp. 427-434, 1967.
[40]E. Shieh, K. W. Current, P. J. Hurst and I. Agi, “High-speed computation of the radon transform and backprojection using an expandable multiprocessor architecture,” Proc. IEEE. on Circuits and Systems Symp., vol. 2, no. 4, pp. 347-360. 1992.
[41]J. H. Justice, N. L. Owsley, J. L. Yen and A. C. Kak, Array signal processing, Academic Press, New York,1985.
[42]S. J. Glick, M. A. King and B. C. Penney, “Characterization of the modulation transfer function of discrete filtered backprojection,” IEEE Trans. Med. Imag., vol. 8, no. 2. pp. 203-213, 1989.
[43]A. Rosenfeld and A. C. Kak, Digital picture processing, 2nd ed., Academic Press, New York, 1982.
[44]A. C. Kak and M. Slaney, Princicles of computerized tomographic imaging, IEEE Press, New York, 1988.
[45]C. Pintavirooj, K. Jaruwongrungsee, W. Withayachumnankul, K. Hamamoto and S.Taertulakarn, “Ultrasonic refractive index and sound velocity tomography,” IEEE. Tencon 2004. vol. B, pp. 415-418, 2004.
[46]K. K. Shung, Diagnostic ultrasound: imaging and blood flow measurements, CRC Press, Boca Raton, 2006.
[47]D. W. Fitting, P. L. Carson, J. J. Giesey and P. M. Grounds, “A two-dimensional array receiver for reducing refraction artifacts in ultrasonic computed tomography of attenuation,” IEEE Trans. Ultrason., Ferroelec., Freq. Contr., vol. UFFC-34, no. 3, pp. 346-356, 1987.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top