(3.238.173.209) 您好!臺灣時間:2021/05/12 13:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:郭姉傛
研究生(外文):Kuo,Pei-Jung
論文名稱:餵食麥芽醇鋁對大鼠免疫反應之影響
論文名稱(外文):Effects of Aluminum Maltolate Ingestion on the Immune Response of SD Rats
指導教授:王果行王果行引用關係吳文勉
指導教授(外文):Hsu Wang, Guoo-ShyngWu, Wen-Mein
口試委員:郭志宏
口試委員(外文):Guo, Chih-Hung
口試日期:2012-06-11
學位類別:碩士
校院名稱:輔仁大學
系所名稱:營養科學系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:74
中文關鍵詞:麥芽醇鋁免疫反應免疫球蛋白嬰幼兒
外文關鍵詞:aluminumaluminum maltolateimmune responseimmunoglobulininfants
相關次數:
  • 被引用被引用:1
  • 點閱點閱:127
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
近年來過敏疾病盛行率逐年增加,過敏的原因很多可能為遺傳、環境或其他因子,其致病機制與體內傾向於較強的第二型輔助型 T 細胞免疫反應(type II helper cell response, Th2)有關。鋁使用於疫苗佐劑已有八十年以上的歷史,鋁鹽使得疫苗的功用更為有效,主要引起以體液型免疫為主,活化Th2細胞。新生兒配方乳較母乳含有較高量的鋁,雖然鋁之吸收率相當的低 (<0.3 %),但嬰幼兒腎功能尚未發育完全,代謝體內鋁的效果可能受到影響。另外,麥芽醇為合法的食品增味劑,對於鋁具有高度親和力,可能增強人體消化道對鋁的吸收。因此,本研究主要探討體內若有較高的鋁幼鼠是否會影響其免疫反應,發展成為易過敏的體質。實驗一,比較麥芽醇鋁與氯化鋁之吸收率:將三天大新生SD幼鼠,連續14天分別管餵不同物質:控制組 (0.9 % NaCl)、麥芽醇組 (0.08% matol)、麥芽醇鋁組 (1.3 µg Al/g b.wt/day) 及氯化鋁組 (1.3 µg Al/g b.wt/day),每天管餵兩次,連續注射14天,在18天齡時進行犧牲,取血液及臟器測定組織及血清中鋁含量。結果顯示,麥芽醇鋁組血鋁較其他三組高。因此,後續實驗選擇使用麥芽醇鋁處理。實驗二,將三天大之新生 SD 幼鼠繼續由母鼠餵哺,每天管餵 (gavage) 兩次,分別給予生理食鹽水 (控制組,C)、 0.08% 麥芽醇 (麥芽醇組, M) 及 1.3 μg Al/g b.wt/day 麥芽醇鋁 (麥芽醇鋁組,Al);至3週斷奶後繼續以含鋁低的粉末飼料 (AIN93G) 餵養,並於飲水分別供應DI水 (控制組,C)、0.035% 麥芽醇 (麥芽醇組, M) 或25 mg Al/L 麥芽醇鋁 (麥芽醇鋁組, Al)。於7週齡時腹腔注射卵白蛋白 (ovalbumin, OVA)/TiterMax Gold 佐劑誘發幼鼠適應性免疫反應。於動物3、6及12週齡時取血液及測定血液抗體含量 (IgG、IgM、IgA、IgE)。12週齡時,犧牲動物並收集血液、腸道、各臟器及腸繫膜淋巴結 (mesenteric lymph node, MLN),分析血液中抗體及抗原專一的IgG及IgE等抗體量,脾臟淋巴細胞及MLN細胞增生能力及細胞激素分泌量。結果顯示,餵食麥芽醇鋁12週後,麥芽醇鋁組體重顯著低於控制組,且麥芽醇鋁組之脾臟相對體重的比值顯著較高。同時,麥芽醇鋁組在血鋁及臟器中的鋁濃度皆顯著高於其他2組。就全身免疫指標而言,麥芽醇鋁會使血清免疫球蛋白 IgG 濃度下降;但脾臟細胞分泌細胞激素及細胞增生程度各組間皆無顯著差異。此外,麥芽醇鋁組腸均質液中 IgA含量較低,但MLN細胞增生及細胞激素之分泌相較於其他2組皆無顯著差異。綜合以上結果可知,麥芽醇鋁吸收率較氯化鋁佳,且餵食麥芽醇鋁12週體內鋁含量確實顯著的上升,並會改變免疫反應,但在此組織及血液鋁濃度下,並沒有使免疫反應偏向Th2。
The prevalence of allergy has been related to genetic and environmental factors which are responsible for the predisposition and expression of allergy. The allergic reactions are associated with the stronger type 2 T helper cell (Th2) response. Aluminum salts have been used as common adjuvants in vaccines for 80 years. Aluminum salt makes the vaccine more effective, and mainly induces the humoral immunity which activates Th2 response. The aluminum content of infant formula is higher than the breast milk. Although the absorption of dietary Al is low (<0.3%), Al metabolism in the body may be affected in neonates who have immature kidneys. On the other hand, maltol is a legal flavor enhancer and has a high affinity with Al, which may enhance the Al absorption in the gastrointestinal tract. Therefore, the present study aimed to understand the effects of Al on immune system of neonates, and whether those animals with higher plasma and/or tissues Al levels are more susceptible to specific antigen. The purpose of the first experiment is to compare the absorption of aluminum maltolate with aluminum chloride, done by a gavage animal model. Three-day-old pups were divided into four groups with gavage twice a day of 0 (Control, C), 0 (Maltol, M), 1.3 (Al maltolate, ALM) and 1.3 (Al chloride, AlCl3) µg Al/g b.wt/day respectively for 14 days. Then, blood, liver and brain were collected for analysis. Results showed that Al levels in serum and tissues of animals in ALM were the highest among 4 groups. In the second experiment, 3-day-old pups were divided into three groups with gavage of 0 (Control, C), 0 (Maltol, M) and 1.3 (Al maltolate, ALM) µg Al/g b.wt/day respectively. After weaning, animals were continuously fed with semi-purified diet (AIN93G) through drinking water provided DI water, maltol (0.035%) water and aluminum maltolate (25 mg/L) water respectively throughout the experiment period. OVA/TiterMax Gold adjuvant-immunization were intra- peritoneally injected to rats at 7-week of age. Blood samples were collected at the ages of 3, 6 , 12 week respectively. At the age of 12-week, animals were sacrificed, followed by collection of blood, liver, spleen and mesenteric lymph node (MLN) for analysis. Cell proliferation and cytokine concentration of splenocyte and MLN lymphocyte were also measured. Results showed body weight of the rats significantly decreased in ALM group. The ratio of spleen weight/body weight in the ALM group was the highest among 3 groups. The Al concentration of organs and serum in the ALM group were highest among 3 groups. In the systemic immunity, the level of IgG was significantly lowest in ALM group. There was no significant difference of cell proliferation or cytokine concentrations of splenocytes among experimental groups. Meanwhile, the level of IgA in homogenized intestine fluid was significantly lowest in ALM group. There was no significant of cell proliferation or cytokine concentrations of MLN among 3 groups. In conclusions, dietary Al maltolate with Al level equivalents to infant formula seems to be better absorbed than AlCl3 by neonatal pups. Al contents in serum, spleen, liver, and kidney were significantly elevated with dietary Al-maltolate treatment for 12 weeks. In addition, the higher Al content in the body indeed changed the immune responses, however, there was no sign of the immune response toward Th2 under the blood and tissues Al levels in this study.
第一章 前言 1
第二章 文獻回顧
一、鋁
(一) 鋁的來源 2
(二) 鋁的吸收排泄 3
二、合法的食品添加物麥芽醇 4
三、免疫系統
(一) 免疫反應 5
(二) 新生兒免疫系統 6
(三) 細胞激素與免疫球蛋白
1.免疫球蛋白 7
2.細胞激素概述 7
四、過敏反應
(一) 過敏的簡介 9
(二) 過敏的致病機轉 9
五、鋁與免疫反應
(一) 鋁佐劑 10
(二) 鋁與免疫 11
第三章 研究目的 14
第四章 材料與方法
一、實驗動物 15
二、實驗設計與分組
(一) 實驗一---管餵不同的鋁型式對幼鼠鋁含量之影響 15
(二) 實驗二---餵食麥芽醇鋁對大鼠免疫反應之影響 15
(三) 鋁給予的方式 16
三、各項指標分析方法
(一) 動物致免模式 19
(二) 動物犧牲 19
(三) 脾臟及腸道細胞培養上清液之收集 22
(四) 腸道均質液之取得 24
(五) 血清及各組織鋁之測定 24
(六) 免疫球蛋白含量分析 26
(七) 淋巴細胞增生反應分析 27
(八) 細胞激素含量分析 27
四、統計方法 28
第五章 結果
實驗一
一、管餵不同的鋁型式對幼鼠生長及臟器重之影響 29
二、管餵不同的鋁型式對幼鼠血清、肝臟及組織中的鋁含量之影響 29
實驗二
一、餵食麥芽醇鋁12週對SD鼠生長之影響 29
二、餵食麥芽醇鋁12週後SD鼠血清及組織中鋁含量 30
三、餵食麥芽醇鋁12週後對SD鼠先天免疫之影響
(一) 餵食麥芽醇鋁12週後對SD鼠血清中抗體分泌量之影響 30
(二) 餵食麥芽醇鋁12週後對SD鼠脾臟細胞增生之影響 31
(三) 餵食麥芽醇鋁12週後對SD鼠脾臟細胞分泌細胞激素及其Th1/Th2 ratio 之影響 31
四、餵食麥芽醇鋁12週後對SD鼠適應性免疫之影響
(一) 餵食麥芽醇鋁12週後對SD鼠血清中OVA-IgG專一性抗體分泌量之影響 31
(二) 餵食麥芽醇鋁12週後對SD鼠脾臟細胞經OVA刺激後增生之影響 31
五、餵食麥芽醇鋁12週對SD鼠腸道免疫之影響
(一) 餵食麥芽醇鋁12週對SD鼠 MLN 淋巴細胞增生之影響 32
(二) 餵食麥芽醇鋁12週對SD鼠腸道均質液中 IgA 抗體分泌量之影響 32
(三) 餵食麥芽醇鋁12週後對SD鼠MLN細胞分泌細胞激素及其Th1/Th2 ratio 之影響 32
(四) 餵食麥芽醇鋁12週對SD鼠腸道適應性免疫之影響 33
第六章 討論
一、管餵不同鋁型式對幼鼠生長之影響 34
二、攝食麥芽醇鋁對大鼠血液中鋁含量之影響 34
三、攝食麥芽醇鋁對臟器中鋁含量之影響 35
四、鋁對於免疫細胞之影響 36
五、鋁對免疫球蛋白之影響 39
六、鋁對腸道免疫系統之影響 40
七、餵食麥芽醇鋁對適應性免疫的影響 40
第七章 結論 41
第八章 參考文獻 42
表目錄
表一、免疫球蛋白 7
表二、細胞激素 8
表三、管餵不同型式的鋁對幼鼠體重之影響 54
表四、管餵不同鋁型式對幼鼠各臟器重及臟器相對體重百分比之影響 55
表五、管餵不同鋁型式十四天幼鼠血清及組織中鋁的濃度 56
表六、餵食麥芽醇鋁SD鼠體重變化 57
表七、餵食麥芽醇鋁12週SD鼠各臟器重及臟器相對體重百分比 58
表八、餵食麥芽醇鋁12週SD鼠血鋁濃度變化 59
表九、餵食麥芽醇鋁12週SD鼠血清及組織鋁濃度 60
表十、餵食麥芽醇鋁12週對SD鼠脾臟細胞細胞激素分泌量及Th1/Th2 ratio之影響 61
表十一、餵食麥芽醇鋁12週對SD鼠MLN細胞細胞激素分泌量及Th1/Th2 ratio之影響 62
圖目錄
圖一、實驗設計與流程圖 (實驗一) 63
圖二、實驗設計與流程圖 (實驗二) 64
圖三、餵食麥芽醇鋁12週SD鼠血清中抗體分泌量 65
圖四、血清鋁濃度與IgG之相關性 66
圖五、餵食麥芽醇鋁12週對SD鼠脾臟B細胞 (A) 及T細胞 (B) 增生反應之影響 67
圖六、餵食麥芽醇鋁12週SD鼠血清中 OVA-IgG 專一性抗體分泌量 68
圖七、餵食麥芽醇鋁12週對SD鼠脾臟細胞經OVA刺激後增生之影響 69
圖八、餵食麥芽醇鋁12週對SD鼠MLN淋巴細胞經 PMA 刺激後增生之影響 70
圖九、餵食麥芽醇鋁12週SD鼠腸道均質液中IgA抗體分泌量 71
圖十、血清鋁濃度與腸道均質液中IgA之相關性 72
圖十一、餵食麥芽醇鋁12週對SD鼠MLN淋巴細胞經OVA刺激後增生之影響 73
圖十二、Peroxynitrite (ONOO-) 的形成,對身體造成的傷害 37
附錄
A、無焰原子吸光分析鋁之條件 74

呂針美 (1996)。高鋁攝食對幼鼠鐵營養狀況之影響。輔仁大學食品營養學系碩士論文。

吳敏瑄 (2011)。高鋁攝取對幼鼠免疫反應的影響。輔仁大學營養科學系碩士論文。

吳家興、林瑞雄、謝貴雄、邱丈連、陳麗美、郎淑提、黃國晉、劉文良、邱宏毅、蕭慧娟、方淑慧、陳雄文、林嘉明、宋鴻樟。台灣北部國中學生氣喘盛行率調查。中華衛誌。 1998;17:214-25.

林明泉 (1999)。臨床血清免疫學 (第二版) 。台北市藝軒出版社。

香港特別行政區政府食物環境衛生署食品安全中心 (2009)。食物中鋁的含量。風險評估研究第三十五號報告書。

莊哲彥 (1992) 臨床免疫學(第三版)。台灣大學醫學院出版委員會,台北市。

徐詩怡 (2009)。胃內注射高鋁對新生幼鼠海馬迴及大腦皮質NMDA receptor表現之影響。輔仁大學營養科學系碩士論文。

陳玉桂 (1997)。鼠乳中鋁和鐵交互作用對幼鼠發育之影響。輔仁大學食品營養學系碩士論文。

許婷雯 (2006)。高鋁攝食對胃管餵幼鼠體內抗氧化狀態之影響。輔仁大學營養科學系碩士論文。

陳德姁 (1998)。高鋁攝取對離乳大白鼠及胃插管幼鼠體內鋅銅營養狀況之影響。輔仁大學食品營養學系碩士論文。

Abreo K, Sella M, Alvarez-Hernandez X, Jain S. Antioxidants prevent aluminum-induced toxicity in cultured hepatocytes. J Inorg Biochem. 2004;98:1129-34.

Aguilera Montilla N, Pérez Blas M, López Santalla M, Martín Villa JM. Mucosal immune system: A brief review. Inmunología. 2004;23:204-16.

Akinbami LJ, Schoendorf KC. Trends in childhood asthma: prevalence, health care utilization, and mortality. Pediatrics 2002;110:315-22.

Alfrey AC. Aluminum metabolism. Kidney Int Supp. 1986;18:S8-11.

Allain P, Mauras Y, Krari N, Duchier J, Cournot A, Larcheveque J. Plasma and urine aluminium concentrations in healthy subjects after administration of sucralfate. Br J Clin Pharmacol. 1990;29:391-5.

Andreoli SP. Aluminum levels in children with chronic renal failure who consume low-phosphorus infant formula. J Pediatr. 1989;116:282-5.

Aoyagi N, Kimura N, Murata T. Studies on Passiflora incarnate dry extract. I. Isolation of maltol and pharmacological action of maltol and ethyl-maltol. Chem Pharm Bull. 1974;22:1008-13.

Azik FM, Ekim M, Sakallioglu O, Aydin A. A different interaction between parathyroid hormone, calcitriol and serum aluminum in chronic kidney disease; a pilot study. Int Urol Nephrol. 2011;43:467-70.

Bertholf RL, Herman MM, Savory J, Carpenter RM, Sturgill BC, Katsetos CD, Vandenberg SR, Wills MR. A long-term intravenous model of aluminum maltol toxicity in rabbits: tissue distribution, hepatic, renal, and neuronal cytoskeletal changes associated with systemic exposure. Toxicol Appl Pharmacol. 1989;98:58-74.

Bingham PM, Stevens-Tuttle D, Lavin E, Acree T. Odorants in breast milk. Arch Pediatr Adolesc Med. 2003;157:1031.

Bishop NJ, Morley R, Day JP, Lucas A. Aluminum neurotoxicity in preterm infants receiving intravenous-feeding solutions. N Engl J Med. 1997;336:1557-61.

Bishop NJ, Robinson MJ, Lendon M, Hewitt CD, Day JP, O'Hara M. Increased concentration of aluminium in the brain of a parenterally fed preterm infant. Arch Dis Child. 1989;64:1316-7.

Bjeldanes LF, Chew H. Mutagenicity of 1,2-dicarbonyl compounds: Maltol, kojic acid, diacetyl and related substances. Mutat Res. 1979;67: 367-71.

Brandtzaeg PE. Current understanding of gastrointestinal immunoregulation and its relation to food allergy. Ann N Y Acad Sci. 2002;964:13-45.

Brandtzaeg PE. History of oral tolerance and mucosal immunity. Ann N Y Acad Sci. 1996;778:1–27.

Brewer JM, Alexander J. Cytokines and the mechanisms of action of vaccine adjuvants. Cytokines Cell Mol Ther. 1997;3:233-46.

Brock JH, Mainou-Fowler T. The role of iron and transferring in lymphocyte transformation. Immunol Today. 1983;4:347-51.

Brock JH, Mainou-Fowler T, Webster LM. Evidence that transferrin may function exclusively as an iron donor in promoting lymphocyte proliferation. Immunology 1986;57:105-10.

Brunner R, Wallmann J, Szalai K, Karagiannis P, Altmeppen H, Riemer AB, Jensen-Jarolim E, Pali-Scholl I. Aluminium per se and in the anti-acid drug sucralfate promotes sensitization via the oral route. Allergy 2009;64:890-7.

Brunner R, Wallmann J, Szalai K, Karagiannis P, Kopp T, Scheiner O, Jensen-Jarolim E, Pali-Schöll I. The impact of aluminium in acid-suppressing drugs on the immune response of BALB/c mice. Clin Exp Allergy. 2007;37:1566-73.

Burrell SA, Exley C. There is (still) too much aluminium in infant formulas. BMC Pediatr. 2010;10:63.

Cann CE, Prussin SG, Gordan GS. Aluminum uptake by the parathyroid glands. J Clin Endocrinol Metab. 1979;49:543-5.

Cannata JB, Fernandez-Soto I, Fernandez-Menendez MJ, Fernandez-Martin JL, McGregor SJ, Brock JH, Halls D. Role of iron metabolism in absorption and cellular uptake of aluminum. Kidney Int. 1991;39:799-803.

Chmielnicka J, Nasiadek M, Lewandowska-Zyndul E, Pinkowski R. Effect of aluminum on hematopoiesis after intraperitoneal exposure in rats. Ecotoxicol Environ Saf. 1996;33:201-6.

Cox JC, Coulter AR. Adjuvants--a classification and review of their modes of action. Vaccine 1997;15:248-56.

Day JP, Barker J, Evans LJ, Perks J, Seabright PJ, Ackrill P, Lilley JS, Drumm PV, Newton GW. Aluminum absorption studied by 26Al tracer. Lancet 1991;337:1345.

de Jong G, van Dijk JP, van Eijk HG. The biology of transferrin. Clin Chim Acta. 1990;190:1-46.

Deng Z, Coudray C, Gouzoux L, Mazur A, Rayssiguier Y, Pepin D. Effect of oral aluminum and aluminum citrate on blood level and short-term tissue distribution of aluminum in the rat. Biol Trace Elem Res. 1998;63:139-47.

Domingo JL, Gomez M, Llobet JM, Corbella J. Influence of some dietary constituents on aluminum absorption and retention in rats. Kidney Int. 1991;39:598-601.

Domingo JL, Llorens J, Sanchez DJ, Gomez M, Llobet JM, Corbella J. Age-related effects of aluminum ingestion on brain aluminum accumulation and behavior in rats. Life Sci. 1996;58:1387-95.

Ericsson H. Purification and adsorption of diphtheria toxoid. Nature 1946;158:350.

Fernandez-Lorenzo JR, Cocho JA, Rey-Goldar ML, Couce M, Fraga JM. Aluminum contents of human milk, cow's milk, and infant formulas. J Pediatr Gastroenterol Nutr. 1999;28:270-5.

Fewtrell MS, Bishop NJ, Edmonds CJ, Isaacs EB, Lucas A. Aluminum exposure from parenteral nutrition in preterm infants: bone health at 15-year follow-up. Pediatrics 2009;124:1372-9.

Froment DP, Molitoris BA, Buddington B, Miller N, Alfrey AC. Site and mechanism of enhanced gastrointestinal absorption of aluminum by citrate. Kidney Int. 1989;36:978-84.

Galle P, Campos H, Chadenas D. Abnormal concentration of aluminium in the lysosomes of a primary parathyroid adenoma. Ann Pathol. 1987;7:65-8.

Ganrot PO. Metabolism and possible health effects of aluminum. Environ Health Perspect. 1986;65:363-441.

Garbossa G, Galvez G, Castro ME, Nesse A. Oral aluminum administration to rats wih normal renal function. 1. Impairment of erythropoiesis. Hum Exp Toxicol. 1998;17:312-7.

Gardner P. Calcium and T lymphocyte activation. Cell 1989;59:15-20.

Garnett WR. Sucralfate--alternative therapy for peptic-ulcer disease. Clin Pharm. 1982;1:307-14.

Genes for asthma? An analysis of the European Community Respiratory Health Survey. Am J Respir Crit Care Med. 1997;156:1773-80.

Glynn AW, Thuvander A, Sundstrom B, Sparen A, Danielsson LG, Jorhem L. Does aluminium stimulate the immune system in male rats after oral exposure? Food Addit Contam. 1999;16:129-35.

Golub MS, Takeuchi PT, Gershwin ME, Yoshida SH. Influence of dietary aluminum on cytokine production by mitogen-stimulated spleen cells from Swiss Webster mice. Immunopharmacol Immunotoxicol. 1993;15:605-19.

Gomez M, Esparza JL, Cabre M, Garcia T, Domingo JL. Aluminum exposure through the diet: metal levels in AbetaPP transgenic mice, a model for Alzheimer's disease. Toxicology 2008;249:214-9.

Gomez M, Sanchez DJ, Llobet JM, Corbella J, Domingo JL. The effect of age on aluminum retention in rats. Toxicology 1997;116:1-8.

Gralla EJ, Stebbins RB, Coleman GL, Delahunt CS. Toxicity studies with ethyl maltol. Toxicol Appl Pharmacol. 1969;15:604-13.

Graske A, Thuvander A, Johannisson A, Gadhasson I, Schutz A, Festin R, Wicklund Glynn A. Influence of aluminium on the immune system--an experimental study on volunteers. Biometals. 2000;13:123-33.

Greene WC, Parker CM, Parker CW. Calcium and lymphocyte activation. Cell Immunol. 1976;25:74-89.

Greger JL. Aluminum and tin. World Rev Nutr Diet. 1987;54:255-85.

Greger JL. Aluminum metabolism. Annu Rev Nutr. 1993;13:43-63.

Greger JL, Baier MJ. Excretion and retention of low or moderate levels of aluminium by human subjects. Food Chem Toxicol. 1983;21:473-7.

Greger JL, Powers CF. Assessment of exposure to parenteral and oral aluminum with and without citrate using a desferrioxamine test in rats. Toxicology 1992;76:119-32.

Grun JL, Maurer PH. Different T helper cell subsets elicited in mice utilizing two different adjuvant vehicles: the role of endogenous interleukin 1 in proliferative responses. Cell Immunol. 1989;121:134-45.

Guo CH, Hsu G-SW, Lin LY, Wang YH, Lin CY, Yeh MS. Distribution patterns of trace metals and of lipid peroxidation in plasma and erythrocytes of rat exposed to aluminum. Bio Trace Elem Res. 2004;101:61-71.

Gupta RK, Chang AC, Griffin P, Rivera R, Siber GR. In vivo distribution of radioactivity in mice after injection of biodegradable polymer microspheres containing 14C-labeled tetanus toxoid. Vaccine 1996;14:1412-6.

Gupta RK, Relyveld EH, Lindblad EB, Bizzini B, Ben-Efraim S, Gupta CK. Adjuvants--a balance between toxicity and adjuvanticity. Vaccine 1993;11:293-306.

Hamid Q, Azzawi M, Ying S, Moqbel R, Wardlaw AJ, Corrigan CJ, Bradley B, Durham SR, Collins JV, Jeffery PK Expression of mRNA for interleukin-5 in mucosal bronchial biopsies from asthma. J Clin Invest. 1991; 87:1541-6.

Hawkins NM, Coffey S, Lawson MS, Delves HT. Potential aluminium toxicity in infants fed special infant formula. J Pediatr Gastroenterol Nutr. 1994;19:377-81.

Hewitt CD, Innes DJ, Herman MM, Savory J, Wills MR. Hematological changes after long-term aluminum administration to normal adult rabbits. Ann Clin Lab Sci. 1992;22:85-94.

Hsieh KH, Shen JJ. Prevalence of childhood asthma in Taipei, Taiwan, and other Asian Pacific countries. J Asthma. 1988;25:73-82.

Jan IS, Chou WH, Wang JD, Kuo SH. Prevalence of and major risk factors for adult bronchial asthma in Taipei City. J Formos Med Assoc. 2004;103:259-63.

Johnson VJ, Kim SH, Sharma RP. Aluminum-maltolate induces apoptosis and necrosis in neuro-2a cell: potential role for p53 signaling. Toxicol Sci. 2005;83:329-39.

Jordan MB, Mills DM, Kappler J, Marrack P, Cambier JC. Promotion of B cell immune responses via an alum-induced myeloid cell population. Science 2004;304:1808-10.

Jouhanneau P, Raisbeck GM, Yiou F, Lacour B, Banide H, Drueke TB. Gastrointestinal absorption, tissue retention, and urinary excretion of dietary aluminum in rats determined by using 26Al. Clin Chem. 1997;43:1023-8.

Kamalov J, Carpenter DO, Birman I. Cytotoxicity of environmentally relevant concentrations of aluminum in murine thymocytes and lymphocytes. J Toxicol. 2011;2011:796719.

Kaneko N, Yasui H, Takada J, Suzuki K, Sakurai H. Orally administrated aluminum–maltolate complex enhances oxidative stress in the organs of mice. J Inorg Biochem. 2004;98:2022-31.

Kay AB. Asthma and inflammation. J Allergy Clin Immunol. 1991;87:893-910.

Klein GL, Alfrey AC, Miller NL, Sherrard DJ, Hazlet TK, Ament ME, Coburn JW. Aluminum loading during total parenteral nutrition. Am J Clin Nutr. 1982;35:1425-9.

Klein GL, Targoff CM, Ament ME, Sherrard DJ, Bluestone R, Young JH, Norman AW, Coburn JW. Bone disease associated with total parenteral nutrition. Lancet 1980; 2:1041-4.

Koo WW, Kaplan LA, Krug-Wispe SK. Aluminum contamination of infant formulas. JPEN J Parenter Enteral Nutr. 1988;12:170-3.

Kopf M, Le Gros G, Bachmann M, Lamers MC, Bluethmann H, Kohler G. Disruption of the murine IL-4 gene blocks Th2 cytokine responses. Nature 1993;362:245-8.

Korkmaz A, Reiter RJ, Topal T, Manchester LC, Oter S, Tan DX. Melatonin: an established antioxidant worthy of use in clinical trials. Mol Med. 2009;15:43-50.

Lauricella AM, Garbossa G, Nesse A. Dissimilar behavior of lymph cells in response to the action of aluminium. In vitro and in vivo studies. Int Immunopharmacol. 2001;1:1725-32.

Lauricella AM, Nesse A. Aluminum and immune system. Ther Drug Monit. 1993;15:137.

Liao MF, Liao MN, Lin SN, Chen JY, Huang JL. Prevalence of allergic diseases of schoolchildren in central taiwan. From ISAAC surveys 5 years apart. J Asthma. 2009;46:541-5.

Mailloux RJ, Hamel R, Appanna VD. Aluminum toxicity elicits a dysfunctional TCA cycle and succinate accumulation in hepatocytes. J Biochem Mol Toxicol. 2006;20:198-208.

Martin RB. Aluminum in biological systems. In Aluminum in Chemistry, Biology and Medicine (Nicolini P, Zatta PF, Corain B Eds.). Raven Press, New York. 1991:3-20.

Mayer L. Mucosal immunity and gastrointestinal antigen processing. J Pediatr Gastroenterol Nutr. 2000;30:S4-12.

McLachlan DR. Aluminum and Alzheimer's disease. Neurobiol Aging. 1986;7:525-32.

Mebius RE, Kraal G. Structure and function of the spleen. Nat Rev Immunol. 2005;5:606-16.

Mizoroki T, Meshitsuka S, Maeda S, Murayama M, Sahara N, Takashima A. Aluminum induces tau aggregation in vitro but not in vivo. J Alzheimers Dis. 2007;11:419-27.

Moreno OM. Maltol: acute oral toxicity in rats and mice, acute dermal toxicity in rabbits and guinea pigs, and skin irritation studies in rabbits and guinea pigs. Unpublished report to the Research Institute of Fragrance Materials, Woodcliff Lake, New Jersey, USA.

Mosmann TR, Sad S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today. 1996;17:138-46.

Parham P. The immune system. 3rd ed. New York:Garland Science. 2009.

Pennington JA. Aluminium content of foods and diets. Food Addit Contam. 1988;5:161-232.

Powell JJ, Thompson RP. The chemistry of aluminium in the gastrointestinal lumen and its uptake and absorption. Proc Nutr Soc. 1993;52:241-53.

Ramos L, Torre M, Laborda F, Marina ML. Determination of polychlorinated biphenyls in soybean infant formulas by gas chromatography. J Chromatogr A. 1998;823:365-72.

Rodriguez Rodriguez EM, Sanz Alaejos M, Diaz Romero C. Concentrations of iron, copper and zinc in human milk and powdered infant formula. Int J Food Sci Nutr. 2000;51:373-80.

Romagnani S. Human TH1 and TH2 subsets: doubt no more. Immunol Today. 1991;2(8):256-7.

Romagnani S. T-cell subsets (Th1 versus Th2). Ann Allergy Asthma Immunol. 2000;85:9-21.

Sanchez-Iglesias S, Soto-Otero R, Iglesias-Gonzalez J, Barciela-Alonso MC, Bermejo-Barrera P, Mendez-Alvarez E. Analysis of brain regional distribution of aluminum in rats via oral and intraperitoneal administration. J Trace Elem Med Biol. 2007;21:31-4.

Sandhu G, Djebali D, Bansal A, Chan G, Smith SD. Serum concentrations of aluminum in hemodialysis patients. Am J Kidney Dis. 2011;57:523-5.

Simonyte S, Cherkashin G, Sadauskiene I, Planciuniene R, Stapulionis R, Ivanov L. Effects of lead and aluminum on the specific immune response of growing mice. Ekologija. 2004;2:16-20.

Satoh E, Okada M, Takadera T, Ohyashiki T. Glutathione depletion promotes aluminum-mediated cell death of PC12 cells. Biol Pharm Bull. 2005;28:941-6.

Schelonka RL, Infante AJ. Neonatal immunology. Semin Perinatol. 1998;22:2-14.

Schmidt HHHW, Walter U. NO at work. Cell 1994;78:919-25.

Sedman AB, Klein GL, Merritt RJ, Miller NL, Weber KO, Gill WL, Anand H, Alfrey AC. Evidence of aluminum loading in infants receiving intravenous therapy. N Engl J Med. 1985;312:1337-43.

She Y, Wang N, Chen C, Zhu Y, Xia S, Hu C, Li Y. Effects of Aluminum on Immune Functions of Cultured Splenic T and B Lymphocytes in Rats. Biol Trace Elem Res. 2012;147:246-50.

Shimoda K, van Deursen J, Sangster MY, Sarawar SR, Carson RT, Tripp RA, Chu C, Quelle FW, Nosaka T, Vignali DA. Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature 1996;380: 630-3.

Slanina P, Frech W, Bernhardson A, Cedergren A, Mattsson P. Influence of dietary factors on aluminium absorption and retention in the brain and bone of rats. Acta Pharmacol Toxicol (Copenh). 1985;56:331-6.

Sorenson JR, Campbell IR, Tepper LB, Lingg RD. Aluminum in the environment and human health. Environ Health Perspect. 1974;8:3-95.

Taylor GA, Moore PB, Ferrier IN, Tyrer SP, Edwardson JA. Gastrointestinal absorption of aluminium and citrate in man. J Inorg Biochem. 1998;69:165-9.

Tzanno-Martins C, Azevedo LS, Orii N, Futata E, Jorgetti V, Marcondes M, da Silva Duarte AJ. The role of experimental chronic renal failure and aluminium intoxication in cellular immune response. Nephrol Dial Transplant. 1996;11:474-80.

van Ginkel MF, van der Voet GB, D'Haese PC, De Broe ME, de Wolff FA. Effect of citric acid and maltol on the accumulation of aluminum in rat brain and bone. J Lab Clin Med. 1993;121:453-60.

Van Rhijn A, Corrigan FM, Ward NI. Serum aluminum in senile dementia of Alzheimer’s type and in multi-infarct dementia. Trace Elem Med. 1989;6:24–6.

Walker M. Known contaminants found in infant formula. Mothering. 2000;100:67-70.

Walton JR. Aluminum disruption of calcium homeostasis and signal transduction resembles change that occurs in aging and alzheimer's disease. J Alzheimers Dis. 2012;29:255-73.

Walton JR. Functional impairment in aged rats chronically exposed to human range dietary aluminum equivalents. Neurotoxicology 2009;30:182-93.

Wang HB, Weller PF. Pivotal advance: eosinophils mediate early alum adjuvant-elicited B cell priming and IgM production. J Leukoc Biol. 2008;83: 817-21.

Wang J, Palmer K, Lotvall J, Milan S, Lei XF, Matthaei KI, Gauldie J, Inman MD, Jordana M, Xing Z. Circulating, but not local lung, IL-5 is required for the development of antigen-induced airways eosinophilia. J Clin Invest. 1998;102:1132-41.

Wang Q, Sun H, Wang Z, Li YF. Effect of aluminum on metabolism of nitric oxide and lipid peroxidation of splenic lymphocyte in chickens cultured in vitro. Bioinformatics and Biomedical Engineering (iCBBE) 2011 5th International Conference. Wuhan,China.

Warner JO, Kaliner MA, Crisci CD, Del Giacco S, Frew AJ, Liu GH, Maspero J, Moon HB, Nakagawa T, Potter PC. Allergy practice worldwide: a report by the World Allergy Organization Specialty and Training Council. Int Arch Allergy Immunol. 2006;139:166-74.

White JL, Hem SL. Characterization of aluminium-containing adjuvants. Dev Biol (Basel). 2000;103:217-28.

Worldwide variations in the prevalence of asthma symptoms: the International study of asthma and allergies in childhood (ISAAC). Eur Respir J. 1998; 12:315-35.

Yasumoto E, Nakano K, Nakayachi T, Morshed SR, Hashimoto K, Kikuchi H, Nishikawa H, Kawase M, Sakagami H. Cytotoxic activity of deferiprone, maltol and related hydroxyketones against human tumor cell lines. Anticancer Res. 2004;24:755-62.

Yokel RA, McNamara PJ. Aluminium toxicokinetics: an updated minireview. Pharmacol Toxicol. 2001;88:159-67.

Yuan CY, Lee YJ, Wang Hsu GS. Aluminum overload increases oxidative stress in four functional brain areas of neonatal rats. J Biomed Sci. 2012;19:51. [Epub ahead of print]

Zaman K, Zaman A, Batcabe J. Hematological effects of aluminum on living organisms. Comp Biochem Physiol C. 1993;106:285-93.

Zeager M, Woolf AD, Goldman RH. Wide variation in reference values for aluminum levels in children. Pediatrics 2012;129:e142-7.

Zhang L, Li X, Gu Q, Zhu Y, Zhao H, Li Y, Zhang Z. Effects of subchronic aluminum exposure on serum concentrations of iron and iron-associated proteins in rats. Biol Trace Elem Res. 2011;141:246-53.

Zhao HS, Li YF, Liu FT, Liu YF. Effects of aluminum exposure on antioxidative activity and humoral immune function in chickens: preliminary study of aluminum accumulation on immune system in chickens. Bioinformatics and Biomedical Engineering (iCBBE) 2010 4th International Conference pp.1-4.

Zhu Y, Xu J, Sun H, Hu C, Zhao H, Shao B, Bah AA, Li Y. Effects of aluminum exposure on the allergic responses and humoral immune function in rats. Biometals. 2011;24:973-7

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔