跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/31 01:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:翁文忠
研究生(外文):Weng, Wen-Chung
論文名稱:陰極流道設計之質子交換膜燃料電池瞬態特性分析
論文名稱(外文):Transient Characteristics Of Proton Exchange Membrane Fuel Cells With The Cathode Flow Field Designs
指導教授:李弘毅李弘毅引用關係顏維謀顏維謀引用關係
指導教授(外文):Li, Hung-YiYan, Wei-Mon
口試委員:黃正弘段伴虬張永鵬蔡國隆
口試委員(外文):Huang, Cheng-HungTuan, Pan-ChioChang, Yeon-PunTsai, Go-Long
口試日期:2012-06-01
學位類別:博士
校院名稱:華梵大學
系所名稱:機電工程學系博碩專班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:158
中文關鍵詞:陰極流道設計瞬態特性電壓負載效應瞬態響應時間overshoot及undershoot現象
外文關鍵詞:cathode flow field designstransient characteristicsvoltage loading effecttransient response timeovershoot and undershoot phenomena
相關次數:
  • 被引用被引用:1
  • 點閱點閱:253
  • 評分評分:
  • 下載下載:71
  • 收藏至我的研究室書目清單書目收藏:2
本論文係利用計算流體力學軟體CFDRC建立三維、兩相、瞬態PEMFC全電池數值分析模型,首先探討不同陰極流道設計對於PEMFC瞬態特性之影響,並針對不同電壓負載效應對於瞬態響應時間及電池內部局部電流密度分佈、氧氣與氫氣濃度分佈進行模擬分析,期能藉此了解燃料電池的瞬態響應時間及其整體電流密度之overshoot與undershoot現象。在完成初步架構之研究後,接著將探討流道轉折數目效應、流道寬度比效應及流道檔板效應對於電池瞬態特性的影響,並且使用不同入口燃料流量及電壓改變速率來探討電池之瞬態響應時間及電池內部在不同時間下之局部電流密度分佈與氧氣濃度分佈,期能運用數值模擬方式,更詳細分析其瞬態特性,並有助於未來的發展。
從研究結果得知,當電池操作電壓處於0.7V之穩定狀態時,由於電化學反應薄弱,因此無論是改變陰極流道設計或是使用不同的操作參數對於局部電流密度分佈皆無明顯的影響;而當電池操作電壓由0.7V瞬間下降至0.5V時,電化學反應變得劇烈,為了確保有足夠的氧氣供給電池使用,此時陰極擴散層與觸媒層具有較高的氧氣濃度分佈,導致局部電流密度急遽上升,因此可推斷overshoot現象是當操作電壓由高向低瞬間變化時,氧氣濃度分佈較高且較均勻所致;當電池操作電壓由0.5V瞬間回升至0.7V時,電化學反應變得較為緩和,此時氧氣濃度分佈較低且較不均勻,因此整體電流密度產生了undershoot現象。
研究中發現,入口燃料流速為影響電池瞬態響應時間的關鍵因素之ㄧ,當入口燃料流速越快,電池達到穩定狀態的時間會越快,即瞬態響應時間越短。在陰極流道設計方面,直通型流道加檔板設計、四進四出之蛇型流道設計、7個流道轉折數目之單進單出蛇型流道設計、流道寬度比75%之單進單出蛇型流道設計及兩流道檔板數目之三進三出蛇型流道設計之瞬態響應時間皆為最長。在電壓負載效應方面,電池操作電壓下降速率越慢或瞬間變化之電壓量越小,其整體電流密度之overshoot或undershoot現象皆越不明顯,但瞬態響應時間越快。

This work establishes three-dimensional transient numerical models of proton exchange membrane fuel cells (PEMFCs) with different cathode flow field designs. Exactly how flow field designs, voltage loading, channel bending numbers, channel width ratios, channel with baffles, and inlet fuel flow rates affect the transient characteristics of the PEMFCs are examined to understand the transient response time and overshoot or undershoot of the local current density distribution.
When the operating voltage instantaneously drops from 0.7V to 0.5V, the electrochemical reactions increase. To ensure sufficient oxygen supply for the fuel cell, the oxygen mass fractions are high in the cathode gas diffusion and cathode catalyst layers, causing overshoot of the local current density distribution. When the operating voltage suddenly increases from 0.5V to 0.7V, the electrochemical reactions become mild, and furthermore the oxygen mass fraction distribution becomes low, leading to undershoot of the local current density distribution.
One of the decisive factors for transient response time is the inlet fuel flow velocity. The cells with larger inlet fuel flow velocity perform better and reach a steady state condition faster. For the cathode flow field designs, the transient response times are longest with the parallel flow field design with baffle, quadruple serpentine flow field design, single serpentine flow field design with seven bends, single serpentine flow field design with width ratio of 75%, and triple serpentine flow field design with two baffles. For the voltage loading effects, when the voltage dropping rate is slower or the voltage loading is smaller, the transient response time decreases and the overshoot or undershoot of the local current density distribution is more unobvious.

目錄

致謝………………………………………………………………………I
摘要……………………………………………………………………II
ABSTRACT…………………………………………………………IV
目錄……………………………………………………………………VI
表目錄………………………………………………………………VIII
圖目錄………………………………………………………………X
符號說明……………………………………………………………XVI
一、緒論………………………………………………………………1
1.1 前言……………………………………………………………1
1.2 文獻回顧.………………………………………………………3
1.2.1 實驗操作量測與穩態數值模擬…………………………3
1.2.2 瞬態數值模擬…………………………………………8
1.3 研究動機………………………………………………………12
二、理論分析…………………………………………………………19
2.1 基本假設…………………………………………………19
2.2 統御方程式…………………………………………………22
2.3 邊界條件……………………………………………………28
三、數值方法…………………………………………………………31
3.1 數值方法……………………………………………………31
3.2 格點數測試…………………………………………………34
3.3 Time Step測試………………………………………………36
3.4 文獻結果比較………………………………………………37
四、結果與討論…………………………………………………………42
4.1 陰極流道設計及電壓負載效應對PEMFC全電池數值分析模型瞬態特性之影響………………………………………………………42
4.2 陰極入口數目之蛇型流道設計及入口燃料流量對PEMFC全電池數值分析模型瞬態特性之影響……………………………………57
4.3 陰極流道轉折數目效應及流道寬度比效應對PEMFC全電池數值分析模型瞬態特性之影響…………………………………………71
4.4 陰極流道檔板效應及電壓改變率對PEMFC全電池數值分析模型瞬態特性之影響……………………………………………………82
五、結論與未來展望…………………………………………………122
參考文獻………………………………………………………………127
個人研究經歷…………………………………………………………137

參考文獻

1. Wood, III, D.L., Yi, J.S., and Nguyen, T.V., 1998, “Effect of Direct Liquid Water Injection and Interdigitated Flow Field on the Performance of Proton Exchange Membrane Fuel Cells,” Electrochemical Acta, Vol. 43, No. 24, pp. 3795-3809.
2. Satija, R., Jacobson, D.L., Arif, M., and Werner, S.A., 2004, “In Situ Neutron Imaging Technique for Evaluation of Water Management Systems in Operating PEM Fuel Cells,” J. Power Sources, Vol. 129, pp. 238-245.
3. Yang, H., Zhao, T.S., and Ye, Q., 2005, “In Situ Visualization Study of CO2 Gas Bubble Behavior in DMFC Anode Flow Fields,” J. Power Sources, Vol. 139, pp. 79-90.
4. Hsieh, S.S., Yang, S.H., and Feng, C.L., 2006, “Characterization of the Operational Parameters of a H2/air Micro PEMFC with Different Flow Fields by Impedance Spectroscopy,” J. Power Sources, Vol. 162, pp. 262-270.
5. Scholta, J., Haussler, F., Zhang, W., Kuppers, L., Jorissen, L., and Lehnert, W., 2006, “Development of a Stack Having an Optimized Flow Field Structure with Low Cross Transport Effects,” J. Power Sources, Vol. 155, pp. 60-65.
6. Xu, C. and Zhao, T.S., 2007, “A New Flow Field Design for Polymer Electrolyte-based Fuel Cells,” Electrochemistry Communications, Vol. 9, pp. 497-503.
7. Nguyen, T.V., 1996, “A Gas Distributor Design for Proton-exchange-membrane Fuel Cells,” J. Electrochemical Soc., Vol. 143, No. 5, pp. L103-L105.
8. Gurau, V., Liu, H., and Kakac, S., 1998, “Two-dimensional Model for Proton Exchange Membrane Fuel Cells,” AIChE J., Vol. 44, pp. 2410-2422.
9. He, W., Yi, J.S., and Nguyen, T.V., 2000, “Two-phase Flow Model of the Cathode of PEM Fuel Cells Using Interdigitated Flow Fields,” AIChE J., Vol. 46, No. 10, pp. 2053-2064.
10. Rowe, A. and Li, X., 2001, “Mathematical Modeling of Proton Exchange Membrane Fuel Cells,” J. Power Sources, Vol. 102, pp. 82-96.
11. Berning, T., Lu, D.M., and Djilali, N., 2002, “Three-dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell,” J. Power Sources, Vol. 106, pp. 284-294.
12. Djilali, N. and Lu, D., 2002, “Influence of Heat Transfer on Gas and Water Transport in Fuel Cells,” Int. J. Therm. Sci., Vol. 41, pp. 29-40.
13. You, L. and Liu, H., 2002, “A Two-phase Flow and Transport Model for the Cathode of PEM Fuel Cells,” Int. J. Heat and Mass Transfer, Vol. 45, pp. 2277-2287.
14. Ge, S.H. and Yi, B.L., 2003, “A Mathematical Model for PEMFC in Different Flow Modes,” J. Power Sources, Vol. 124, pp. 1-11.
15. Mazumder, S. and Cole, J.V., 2003a, “Rigorous 3-D Mathematical Modeling of PEM Fuel Cells I. Model Predictions without Liquid Water Transport,” J. Electrochemical Soc., Vol. 150, pp. 1503-1509.
16. Mazumder, S. and Cole, J.V., 2003b, “Rigorous 3-D Mathematical Modeling of PEM Fuel Cells II. Model Predictions with Liquid Water Transport,” J. Electrochemical Soc., Vol. 150, pp. 1510-1517.
17. Natarajan, D. and Nguyen, T.V., 2003, “Three-dimensional Effects of Liquid Water Flooding in the Cathode of a PEM Fuel Cell,” J. Power Sources, Vol. 115, pp. 66-80.
18. Berg, P., Promislow, K., Pierre, J.S., Stumper, J., and Wetton, B., 2004, “Water Management in PEM Fuel Cells,” J. Electrochemical Soc., Vol. 151, pp. 341-353.
19. Cha, S.W., O’Hayre, R., Saito, Y., and Prinz, F.B., 2004, “The Scaling Behavior of Flow Patterns: a Model Investigation,” J. Power Sources, Vol. 134, pp. 57-71.
20. Hu, M., Gu, A., Wang, M., Zhu, X., and Yu, L., 2004a, “Three Dimensional, Two Phase Flow Mathematical Model for PEM Fuel Cell: Part I. Model Development,” Energy Conversion and Management, Vol. 45, pp. 1861-1882.
21. Hu, M., Gu, A., Wang, M., Zhu, X., and Yu, L., 2004b, “Three Dimensional, Two Phase Flow Mathematical Model for PEM Fuel Cell: Part II. Analysis and Discussion of the Internal Transport Mechanisms,” Energy Conversion and Management, Vol. 45, pp. 1883-1916.
22. Pasaogullari, U. and Wang, C.Y., 2004, “Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells Using Fluent,” Electrochemical Engine Center, University Park, PA, 16802.
23. Yan, W.M., Soong, C.Y., Chen, F., and Chu, H.S., 2004, “Effects of Flow Distributor Geometry and Diffusion Layer Porosity on Reactant Gas Transport and Performance of Proton Exchange Membrane Fuel Cells,” J. Power Sources, Vol. 125, pp. 27-39.
24. Liu, H.C., Yan, W.M., Soong, C.Y., and Chen, F., 2005, “Effects of Baffle-blocked Flow Channel on Reactant Transport and Cell Performance of a Proton Exchange Membrane Fuel Cell,” J. Power Sources, Vol. 142, pp. 125-133.
25. Soong, C.Y., Yan, W.M., Tseng, C.Y., Liu, H.C., Chen, F., and Chu, H.S., 2005, “Analysis of Reactant Gas Transport in a PEM Fuel Cell with Partially Blocked Fuel Flow Channels,” J. Power Sources, Vol. 143, pp. 36-47.
26. Ying, W., Sohn, Y.J., Lee, W.Y., Ke, J., and Kim, C.S., 2005, “Three-dimensional Modeling and Experimental Investigation for an Air-breathing Polymer Electrolyte Membrane Fuel Cell (PEMFC),” J. Power Sources, Vol. 145, pp. 563-571.
27. Ying, W., Yang, T.H., Lee, W.Y., Ke, J., and Kim, C.S., 2005, “Three-dimensional Analysis for Effect of Channel Configuration on the Performance of a Small Air-breathing Proton Exchange Membrane Fuel Cell (PEMFC),” J. Power Sources, Vol. 145, pp. 572-581.
28. Jang, J.H., Yan, W.M, Li, H.Y., and Chou, Y.C., 2006, “Humidity of Reactant Fuel on the Cell Performance of PEM Fuel Cell with Baffle-blocked Flow Field Designs,” J. Power Sources, Vol. 159, pp. 468-477.
29. Kanezaki, T., Li, X., and Baschuk, J.J., 2006, “Cross-leakage Flow between Adjacent Flow Channels in PEM Fuel Cells,” J. Power Sources, Vol. 162, pp. 415-425.
30. Liu, H.C., Yan, W.M., Soong, C.Y., Chen, F., and Chu, H.S., 2006, “Reactant Gas Transport and Cell Performance of Proton Exchange Membrane Fuel Cells with Tapered Flow Field Design,” J. Power Sources, Vol. 158, pp. 78-87.
31. Sun, L., Oosthuizen, P.H., and McAuley, K.B., 2006, “A Numerical Study of Channel-to-channel Flow Cross-over Through the Gas Diffusion Layer in a PEM-fuel-cell Flow System Using a Serpentine Channel with a Trapezoidal Cross-sectional Sharp,” Int. J. Therm. Sci., Vol. 45, pp. 1021-1026.
32. Yan, W.M., Liu, H.C., Soong, C.Y., Chen, F., and Cheng, C.H., 2006, “Numerical Study on Cell Performance and Local Transport Phenomena of PEM Fuel Cells with Novel Flow Field Designs,” J. Power Sources, Vol. 161, pp. 907-919.
33. Shimpalee, S. and Van Zee, J.W., 2007, “Numerical Studies on Rib & Channel Dimension of Flow-field on PEMFC Performance,” Int. J. Hydrogen Energy, Vol. 32, pp. 842-856.
34. Wang, X.D., Duan, Y.Y., and Yan, W.M., 2007, “Numerical Study of Cell Performance and Local Transport Phenomena in PEM Fuel Cells with Various Flow Channel Area Ratios,” J. Power Sources, Vol. 172, pp. 265-277.
35. Wang, X.D., Duan, Y.Y., and Yan, W.M., 2007, “Novel Serpentine-baffle Flow Field Design for Proton Exchange Membrane Fuel Cells,” J. Power Sources, Vol. 173, pp. 210-221.
36. Najjari, M., Khemili, F., and Nasrallah, S.B., 2008, “The Effects of the Cathode Flooding on the Transient Responses of a PEM Fuel Cell,” Renewable Energy, Vol. 33, pp. 1824-1831.
37. Wang, X.D., Duan, Y.Y., Yan, W.M., and Peng, X.F., 2008, “Local Transport Phenomena and Cell Performance of PEM Fuel Cells with Various Serpentine Flow Field Designs,” J. Power Sources, Vol. 175, pp. 397-407.
38. Amphlett, J.C., Mann, R.F., Peppley, B.A., Roberge, P.R., and Rodrigues, A., 1996, “A Model Predicting Transient Responses of Proton Exchange Membrane Fuel Cells,” J. Power Sources, Vol. 61, pp. 183-188.
39. Natarajan, D. and Nguyen, T.V., 2001, “A Two-dimensional, Two-phase, Multicomponent, Transient Model for the Cathode of a Proton Exchange Membrane Fuel Cell Using Conventional Gas Distributors,” J. Electrochemical Soc., Vol. 148, pp. 1324-1335.
40. Ceraolo, M., Miulli, C., and Pozio, A., 2003, “Modelling Static and Dynamic Behaviour of Proton Exchange Membrane Fuel Cells on the Basis of Electro-chemical Description,” J. Power Sources, Vol. 113, pp. 131-144.
41. Yerramalla, S., Davari, A., Feliachi, A., and Biswas, T., 2003, “Modeling and Simulation of the Dynamic Behavior of a Polymer Electrolyte Membrane Fuel Cell,” J. Power Sources, Vol. 124, pp. 104-113.
42. Friede, W., Rael, S., and Davat, B., 2004, “Mathematicl Model and Characterization of the Transient Behavior of a PEM Fuel Cell,” IEEE Transactions on Power Electronics, Vol. 19, No. 5, pp. 1234-1241.
43. Pathapati, P.R., Xue, X., and Tang, J., 2005, “A New Dynamic Model for Predicting Transient Phenomena in a PEM Fuel Cell System,” Renewable Energy, Vol. 30, pp. 1-22.
44. Shan, Y. and Choe, S.Y., 2005, “A High Dynamic PEM Fuel Cell Model with Temperature Effects,” J. Power Sources, Vol. 145, pp. 30-39.
45. Wang, Y. and Wang, C.Y., 2005, “Transient Analysis of Polymer Electrolyte Fuel Cells,” Electrochemical Acta, Vol. 50, pp. 1307-1315.
46. Yan, W.M., Soong, C.Y., Chen, F., and Chu, H.S., 2005, “Transient Analysis of Reactant Gas Transport and Performance of PEM Fuel Cells,” J. Power Sources, Vol. 143, pp. 48-56.
47. Kumar, A. and Reddy, R.G., 2006, “Effect of Gas Flow-field Design in the Bipolar/End Plates on the Steady and Transient State Performance of Polymer Electrolyte Membrane Fuel Cells,” J. Power Sources, Vol. 155, pp. 264-271.
48. Shimpalee, S., Lee, W.K., Van Zee, J.W., and Naseri-Neshat, H., 2006, “Predicting the Transient Response of a Serpentine Flow-field PEMFC I. Excess to Normal Fuel and Air,” J. Power Sources, Vol. 156, pp. 355-368.
49. Shimpalee, S., Lee, W.K., Van Zee, J.W., and Naseri-Neshat, H., 2006, “Predicting the Transient Response of a Serpentine Flow-field PEMFC II: Normal to Minimal Fuel and Air,” J. Power Sources, Vol. 156, pp. 369-374.
50. Song, D., Wang, Q., Liu, Z.S., and Huang, C., 2006, “Transient Analysis for the Cathode Gas Diffusion Layer of PEM Fuel Cells,” J. Power Sources, Vol. 159, pp. 928-942.
51. Yan, W.M., Chu, H.S., Chen, J.Y., Soong, C.Y., and Chen, F., 2006, “Transient Analysis of Water Transport in PEM Fuel Cells,” J. Power Sources, Vol. 162, pp. 1147-1156.
52. Guilin, H. and Jianren, F., 2007, “Transient Computation Fluid Dynamics Modeling of a Single Proton Exchange Membrane Fuel Cell with Serpentine Channel,” J. Power Sources, Vol. 165, pp. 171-184.
53. Meng, H., 2007, “Numerical Investigation of Transient Responses of a PEM Fuel Cell Using a Two-phase Non-isothermal Mixed-domain Model,” J. Power Sources, Vol. 171, pp. 738-746.
54. Shah, A.A., Kim, G.-S., Sui, P.C., and Harvey, D., 2007, “Transient Non-isothermal Model of a Polymer Electrolyte Fuel Cell,” J. Power Sources, Vol. 163, pp. 793-806.
55. Shimpalee, S., Spuckler, D., and Van Zee, J.W., 2007, “Prediction of Transient Response for a 25-cm2 PEM Fuel Cell,” J. Power Sources, Vol. 167, pp. 130-138.
56. Wu, H., Berg, P., and Li, X., 2007, “Non-isothermal Transient Modeling of Water Transport in PEM Fuel Cells,” J. Power Sources, Vol. 165, pp. 232-243.
57. Li, H.Y., Weng, W.C., Yan, W.M., and Wang, X.D., 2011, “Transient Characteristics of Proton Exchange Membrane Fuel Cells with Different Flow Field Designs,” J. Power Sources, Vol. 196, pp. 235-245.
58. Wang, X.D., Xu, J.L., Yan, W.M., Lee, D.J., and Su, A., 2011, “Transient Response of PEM Fuel Cells with Parallel and Interdigitated Flow Field Designs,” Int. J. Heat and Mass Transfer, Vol. 54, pp. 2375-2386.
59. Dullien, F.A.L., 1991 , “Porous Media,” Academic Press, New York.
60. Springer, T.E., Zawodinski, T.A., and Gottesfeld, S., 1991, “Polymer Electrolyte Fuel Cell Model,” J. Electrochemical Soc., Vol. 138, No. 8, pp. 2334-2342.
61. Nguyen, T.V. and White, R.E., 1993, “A Water and Heat Management Model for Proton-exchange-membrane Fuel Cells,” J. Electrochemical Soc., Vol. 140, No. 8, pp. 2178-2186.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top