跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/01 03:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:梁明瑋
研究生(外文):Liang, Mingwei
論文名稱:模糊終端滑模控制之設計與應用
論文名稱(外文):Design of Fuzzy Terminal Sliding Mode Control with Applications
指導教授:楊基鑫
指導教授(外文):Yang, Chiching
口試委員:林俊良陳恒輝
口試委員(外文):Lin, ChunliangChen, Henghui
口試日期:2012-07-13
學位類別:碩士
校院名稱:修平科技大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:79
中文關鍵詞:模糊終端滑模控制同步控制訊號追蹤控制混沌陀螺儀MEMS諧振器
外文關鍵詞:fuzzy terminal sliding mode controlcontrol of synchronizationsignal tracking controlchaotic gyroMEMS resonator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:314
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
針對混沌陀螺儀(Chaos Gyro) 系統的同步控制, 以及微機電系統(Micro-Electro-Mechanical-System,MEMS)諧振器(resonator)對正弦波訊號的追蹤控制,本論文提出一種使用模糊邏輯理論取代符號函數的模糊終端滑模控制(Fuzzy Terminal Sliding Mode Control, FTSMC)方法,應用此方法可以完成上述兩個問題的控制目標。藉由終端滑模面快速收斂的特性,可保證誤差系統狀態軌跡到達滑模面之後,誤差狀態會在有限的時間內到達原點。另外藉由模糊邏輯理論取代滑模控制的符號函數,可降低輸入信號的顫振現象(chattering effect)。控制系統的穩定性利用Lyapunov穩定定理作分析,可以證明混沌陀螺儀同步控制系統與MEMS 諧振器訊號追蹤控制系統的穩定性。本論文亦完成數值模擬結果來驗證控制系統的性能。
In this thesis, the fuzzy terminal sliding mode control (FTSMC) scheme is proposed to apply the synchronization of two chaotic gyros and the sine-wave signal tracking control of the micro-electro-mechanical-system (MEMS) resonator. In the FTSMC scheme, a common fuzzy logic method is introduced to replace the switching function (signum function) to reduce the chattering effect of control input. Besides, according to the characteristics of terminal sliding surface, the controlled systems can be performed the fast convergent responses to achieve the control goal. Sufficient conditions to guarantee the stability of closed-loop system are provided in the sense of the Lyapunov stability theorem. Numerical simulations are also given to demonstrate the effectiveness of the presented scheme.
摘 要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
符號表 IX
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 內容大綱 3
第二章 滑模控制理論介紹 4
2.1 變結構系統 4
2.2 順滑模態控制原理 7
2.3 滑模控制系統的顫振問題 9
2.4 終端滑模控制 10
2.5 模糊邏輯理論方法 12
第三章 混沌陀螺系統之同步控制 24
3.1 混沌陀螺系統模型 25
3.2 模糊終端滑模設計 27
3.3 控制器設計 27
3.4 穩定性的分析 29
3.5 到達滑模面的時間分析 32
3.6 數值模擬與結果討論 33
3.7 結論 38
第四章 MEMS諧振器信號追蹤控制應用與模擬 39
4.1 MEMS微諧盪器 40
4.2 MEMS諧振器模型 41
4.3 終端模糊滑模設計 44
4.4 控制器設計 44
4.5 穩定性的分析 46
4.6 到達滑模面的時間分析 49
4.7 數值模擬與結果討論 49
4.8 結論 57
第五章 結論與未來展望 59
5.1 結論 59
5.2 未來展望 59
參考文獻 60


[1] Feng Yong, Bao Sheng, Yu Xing Huo, "Design method of non-singular terminal sliding mode control systems", Control and Decision, Vol.17 No.2, 2002-02.
[2] X. Yu and M. Zhihong, “Multi-input Uncertain Linear Systems with Terminal Sliding-Mode Control”, Automatica, Vol. 34, No. 3, pp. 389-392, 1998.
[3] Wu Y, Yu X H, Man Z H, “Terminal Sliding Mode Control Design For Uncertain Dynamic System”, System and Control Letters, pp. 281-288, 1988.
[4] Utkin V I, “Variable structure systems with sliding modes,” IEEE Transactions AutomaticControl, 1977, 22(2), pp.212-222
[5] 高為炳, 變結構控制的理論及設計方法, 北京, 科學出版社, 1996.
[6] Slotine J J, Sastry S S, “Tracking control of nonlinear systems using sliding surfaces withapplication to robot manipulator,” International Journal of Control, 1983, 38(2), pp.465-492.
[7] Chung S C Y, Lin C L, “A transformed Lure problem for sliding mode control and chatteringreduction,” IEEE Transactions Automatic Control, 1999, 44(3), pp.563-568.
[8] Yu X H, Xu J X, “Variable Structure Systems: Towards the 21st Century,” Springer, Berlin,2002.
[9] Yu X H, Xu J X, “Model reference adaptive control systems with terminal sliding modes,”International Journal of Control, 1996, 64(6), pp.1165-1176.
[10] Man Z H, Yu X H, “Terminal sliding mode control of MIMO linear systems,” Proceedings ofthe 35th Conference on Decision and Control, 1996, pp.4619-4624.
[11] Wu Y, Yu X H, Man Z H, “Terminal sliding mode control design for uncertain dynamicsystems,” Systems and Control Letters, 1998, 34 , pp.281-288.
[12] Liu Qi-ming, "Design of Fuzzy Reach Law of Sliding-Mode Control",Journal of Fudan University (Natural Science), Vol. 43 No. 5, Oct . 2004
[13] Slotine J J E, Hedrick J K, M isaw a E A, "Nonlinear state estimation using sliding observers". P roc. 25th Conf. Dec. , Cont. : A lthens, Greece, Dec 1986. 332-339.
[14] Slitine J J E, "Sliding cont roller design for nonlinear systems", Int. J. Control, 1984, 40 (2) : 421- 434
[15] 高為炳, “變結構研究的發展與現狀”, 控制與決策,1993, 8 (4) : 241- 248.
[16] Burton J A, Zinober S I, "Continuous approximations of variable structure control ", Int. J. SYS. SCI, 1986, 17 (6) : 252- 259.
[17] 王豐堯,"滑模變結構控制", 北京: 機械工業出版,1995.
[18] S. T. Venkataraman, S. Gulati, "Control of Nonlinear Systems Using Terminal Sliding Modes", American Control Conference, pp. 891 - 893, 24-26 June 1992.
[19] Xing-Huo YU, Jian-Xin XU, “Variable Structure Systems: Towards the 21st Century”, Springer, June 7 2002.
[20] Xing-Huo YU, Zhi-Hong MAN, "Model reference adaptive control systems with terminal sliding modes", International Journal of Control, Volume. 64, Issue. 6, 1996.
[21] Man Zhihong, Xing-Huo Yu, "Terminal sliding mode control of MIMO linear systems", Circuits and Systems I: Fundamental Theory and Applications, Volume. 44 , Issue. 11, PP. 1065 - 1070, Nov 1997.
[22] Wu Y, Yu X, Man Z, "Terminal sliding mode control design for uncertain dynamic systems", Systems and Control Letters, Volume. 34, Number 5, pp. 281 - 287, 27 July 1998.
[23] Feng Y, Yu X, Man Z, "Non-singular terminal sliding mode control of rigid manipulators", Automatica, Volume. 38, Number. 12, pp. 2159-2167, December 2002.
[24] C.W. Tao, Mei-Lang Chan, Tsu-Tian Lee, "Adaptive fuzzy sliding mode controller for linear systems with mismatched time-varying uncertainties", Systems, Man, and Cybernetics, Part B: Cybernetics, Volume. 33, Issue. 2, pp. 283 - 294, Apr 2003.
[25] Hw ang G C, Chang S, "A stability app roach to fuzzy control design for nonlinear system", Fuzzy Sets and System s, 1992, 48: 279- 287.
[26] 向殿 政男, "ファジィ・リレーショナル・データベース", 啓学出版,152ページ,1987年2月.
[27] 林信成, 彭啟峰, “Oh! Fuzzy 模糊理論剖析” 第三波文化事業, 1994.
[28] E.H. Mamdani, "Application of fuzzy algorithms for control of simple dynamic plant", Electrical Engineers,Volume. 121, Issue. 12, pp.1585-1588, December 1974.
[29] Olivia Mendoza, Patricia Melin, Guillermo Licea, "A hybrid approach for imagerecognition combining type-2 fuzzy logic, modular neural networks and the Sugeno integral", Information Sciences, Volume. 179, Issue. 13, , pp. 2078–2101, 13 June 2009.
[30] Olivia Mendozaa, Patricia Melínb, Oscar Castillob, "Interval type-2 fuzzy logic and modular neural networks for face recognition applications", Applied Soft Computing, Volume. 9, Issue. 4, pp. 1377–1387, September 2009.
[31] Chia-Feng Juang, Chun-Lung Lai, Chiu-Chuan Tu, "Dynamic programming prediction errors of recurrent neural fuzzy networks for speech recognition", Expert Systems with Applications, Volume. 36, Issue. 3, Part. 2,pp. 6368–6374, April 2009.
[32] Inventor: Gustavo Hernandez-Abrego, San Jose, CA (US), Xavier Menendez-Pidal, Los Gotos, CA (US), Thomas Kemp, Esslingen (DE), Katsuki Minamino, Tokyo (JP), Helmut Lucke, Tokyo (JP), Assignee: Sony Corporation, Tokyo (JP), Sony Electronics Inc, Park Ridge, NJ (JP),“System and method for an automatic set-up of speech recognition engines”, United States Patent, Patent No. US 7,716,047 B2, may.11, 2010.
[33] Servet Soyguder, Hasan Alli, "An expert system for the humidity and temperaturecontrol in HVAC systems using ANFIS and optimization with Fuzzy Modeling Approach", Energy and Buildings,Volume. 41, Issue. 8, pp. 814–822, August 2009.
[34] Sepehr Sanaye, Masoud Dehghandokht, Amir Fartaj, "Temperaturecontrol of a cabin in an automobile using thermal modeling and fuzzy controller", Applied Energy,Volume. 97, pp. 860–868, September 2012, Energy Solutions for a Sustainable World - Proceedings of the Third International Conference on Applied Energy, May 16-18, 2011 - Perugia, Italy.
[35] Cheng Liu, Jin-Feng Peng, Fu-Yu Zhao, Chong Li, "Design and optimization of fuzzy-PID controller for the nuclear reactor powercontrol", Nuclear Engineering and Design, Volume. 239, Issue. 11,pp. 2311–2316, November 2009.
[36] Chun-Yan Lia, Guo-Ping Liub, "Optimal fuzzypowercontrol and management of fuel cell/battery hybrid vehicles", Journal of Power Sources,Volume. 192, Issue. 2, pp. 525–533, 15 July 2009.
[37] Chia-Feng Juang, "Reinforcement Ant Optimized Fuzzy Controller for Mobile-Robot Wall-Following Control", Industrial Electronics, Volume. 56 , Issue. 10, pp 3931 - 3940, Oct. 2009.
[38] HUI ZHU, N. MASTORAKIS, X. D. ZHUANG, "Fuzzy Virtual Objects for Real-Time Moving Control of Mobile Robot in Dynamic Environments", Advances in Computational Intelligence, Man-Machine Systems and Cybernetics, pp 232 - 235, 2010.
[39] Rongqing Guo, "Modeling and simulation of driving system for electric vehicle based on fuzzy control strategy", Electric Information and Control Engineering (ICEICE), pp.5957 - 5961, 15-17 April 2011.
[40] Jian-Bo Cao , "Fuzzy-Logic-Based Sliding-Mode Controller Design for Position-Sensorless Electric Vehicle", Power Electronics, Volume. 24 , Issue. 10 ,pp.5957 - 5961, Oct. 2009.
[41] T.L. Liao, “Adaptive synchronization of two Lorenz systems”, Chaos Solitons,Fractals, Vol.9 , pp.1555–1561, 1988.
[42] Yau,H.-T., Kuo C.-L., Yan,J.-J., “Fuzzy Sliding Mode Control for a Class of Chaos Synchronization with Uncertainties”, International Journal of Nonlinear Sciences and Numerical Simulation,Vol.7.3, pp.333-338, 2006.
[43] Santo Banerjee, M.R.K Ariffin, “Chaos Synchronization based Data Transmission with Asymmetric Encryption”, International Journal of Computer Applications (0975 – 8887), Volume 37– No.12, January 2012
[44]C.K. Duan, S.S. Yang, M. Min, S. Xia, “Feedback-control to realize and stabilize chaos synchronization”, Chaos, Solitons & Fractals, Vol.9, pp.921–929, 1998.
[45]Teh-Lu Liao, Shin-Hwa Tsai, “Adaptive synchronization of chaotic systems and its application to secure communications”, Chaos, Solitons & Fractals, Volume 11, Issue 9, July, Pages 1387–1396, 2000.
[46]Her-Terng Yau, “Nonlinear rule-based controller for chaos synchronization of two gyros with linear-plus-cubic damping”, Chaos, Solitons and Fractals, Vol. 34(4), pp 1357-1365, 2007.
[47]Her-Terng Yau, “Chaos synchronization of two uncertain chaotic nonlinear gyros using fuzzy sliding mode control”, Mechanical Systems and Signal Processing Vol.22, pp.408-418, 2008.
[48]Jun-Juh Yan, Meei-Ling Hung, Jui-Sheng Lin, Teh-Lu Liao, “Controlling chaos of a chaotic nonlinear gyro using variable structure control”, Mechanical Systems and Signal Processing, Volume 21, Issue 6,pp 2515-2522, August, 2007.
[49]H.-K. CHEN, “Chaos and chaos synchroni-zation of a symmetric gyro with linear-plus-cubic damping”, Journal of Sound and Vibration, Volume 255, Issue 4, Pages 719–740, 22 August 2002.
[50]R. V. Dooren, “Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping”, Journal of Sound and Vibration, 268 632-634, 2003.
[51]Chao-Lin Kuo, Tzuu-Hseng S. Li, and Nai Ren Guo, “Design of a Novel Fuzzy Sliding-Mode Control for Magnetic Ball Levitation System”, Journal of Intelligent and Robotic Systems, Vol. 42, No. 3, pp. 295-316, 2005.
[52] A. Grau, J. Romeu, Lee, Ming-Jer,S. Blanch, L. Jofre, F. De Flaviis, "A Dual-Linearly-Polarized MEMS-Reconfigurable Antenna for Narrowband MIMO Communication Systems", Antennas and Propagation, Volume 58, Issue 1, pp.4-17, Jan. 2010.
[53] Inventor: Masahiro Tada, Kanagawa (JP), Assignee: Sony Corporation, Tokyo (JP), “MEMS type oscillator, process for fabricating the same, filter, and communication unit”, United States Patent, Patent No. US 7,504,909 B4, mar.17, 2009.
[54] J.C.M. Hwang, "Robust RF MEMS switches and phase shifters for aerospace applications", Radio-Frequency Integration Technology, pp.245-248, Jan.9, 2009-Dec.11, 2009.
[55] Stauffer Jean-Michel, "RS9000, a novel MEMS accelerometer family for Mil/Aerospace and safety critical applications", Position Location and Navigation Symposium (PLANS), pp.1-5, May.4-6, 2010.
[56] Rafael. Aguilar, Luís F. Ramos, Paulo B. Lourenço, Ricardo. Severino, Ricardo. Gomes, Paulo. Gandra, Mário. Alves, Eduardo. Tovar, "Prototype WSN platform for performing dynamic monitoring of civil engineering structures", Wireless sensors networks SHM,2011.
[57] Lin Chih-Ting, "When Civil Structures Bump into Automation Technologies: An interview with Dr. Kuo‐Chun Chang",International Journal of Automation and Smart Technology, auSMT Vol.1 No.2,pp.1-5, 2011.
[58] Yingli Zhu, Jingjiang Song, Fuzhou Dong, "Applications of wireless sensor network in the agriculture environment monitoring", International Workshop on Automobile, Power and Energy Engineering, Volume 16, pp.608–614, 2011.
[59] Yong Li, Mahmoud Efatmaneshnik, Andrew G. Dempster, "Attitude determination by integration of MEMS inertial sensors and GPS for autonomous agriculture applications", GPS SOLUTIONS, Volume 16, Number 1, pp.41-52, 2012.
[60] Crisan, N. , "Antenna-Based Signal Fishing", Wireless and Mobile Communications, ICWMC '09, pp.152-156, 2009.
[61] C.B. Williams, R.C. Woods, R.B. Yates,“Feasibility study of a vibration powered micro-electric generator,” Compact Power Sources (Digest No. 96/107), IEE Colloquium, pp.7/1-7/3 ,1996.
[62] Aaron Partridge, David Hsieh, “MEMS Replacing Quartz Oscillators”, SiTime Corporation, 10 March 2009.
[63] Yu-Lin Zou, “Study on Ka-band Low Phase Noise Push-Push Oscillator.”, National Central University Department of Electrical Engineering, Master thesis, June 2006.
[64] Katrien Marent, Director of External Communications,"Panasonic and imec present thin film packaged MEMS resonator with industry record Q factor and low bias voltage", San Francisco, US – IEDM – December 6, 2010.
[65] T. Mattila, O. Jaakkola, J. Kiihamäki, J. Karttune, T. Lamminmäki, P. Rantakari, A. Oja, H. Seppä, H. Kattelus, I. Tittonen, “14 MHz micromechanical oscillator”, Sensors and Actuators A: Physical, Volumes 97–98, Selected papers from Eurosenors XV, 1 April 2002, Pages 497–502.
[66] Wan-Chun Chuang, Yuh-Chung Hu, “Review on the Studies of Electro-mechanics for MEMS Devices”, Society of Theoretical and Applied Mechanics of the Republic of China ,
[67] P. Osterberg, H. Yie, X. Cai, J. White, S. Senturia, “Self-consistent simulation and modeling of electrostatically deformed diaphragms”, Proceedings of the IEEE Micro Electro Mechanical Systems, 1994, pp. 28-32.
[68] Her-Terng Yau, Cheng-Chi Wang, Chin-Tsung Hsieh, Ching-Chang Cho, “Nonlinear analysis and control of the uncertain micro-electro-mechanical system by using a fuzzy sliding mode control design”, Computers and Mathematics with Applications 61 (2011) 1912–1916.
[69] M. Siewe Siewe, Usama H. Hegazy, “Homoclinic bifurcation and chaos control in MEMS resonators – printed”, Applied Mathematical Modelling 35 (2011) 5533–5552.
[70] H.H. Haghighi, A.H.D. Markazi, “Chaos prediction and control in MEMS resonators”, Commun. Nonlinear Sci. Numer. Simul. 15 (10) (2010) 3091–3099.
[71] J.M. Nichol, E.R. Hemesath, L.J. Lauhon, R. Budakian, “Controlling the nonlinearity of silicon nanowire resonators using active feedback”, Appl. Phys. Lett. 95 (2009) 123116.
[72] H.S. Haghighi, A.H.D. Markazi, “Chaos prediction and control in MEMS resonators”, Commun. Nonlinear Sci. Numer. Simulat. 10 (2010) 3091–3099.
[73] P. M. Osterberg and S. D. Senturia, "M-TEST: A test chip for MEMS material property measurement using electrostatically actuated test structures," Journal of Microelectromechanical Systems, vol. 6, pp. 107-118, 1997.
[74] W. M. Zhang and G. Meng, "Nonlinear dynamic analysis of electrostatically actuated resonant MEMS sensors under parametric excitation," Ieee Sensors Journal, vol. 7, pp. 370-380, 2007.
[75] L. M. Castaner and S. D. Senturia, "Speed-energy optimization of electrostatic actuators based on pull-in," Journal of Microelectromechanical Systems, vol. 8, pp. 290-298, 1999.
[76] L. Castaner, A. Rodriguez, J. Pons, and S. D. Senturia, "Pull-in time-energy product of electrostatic actuators: comparison of experiments with simulation," Sensors and Actuators a-Physical, vol. 83, pp. 263-269, 2000.
[77] LIU Heng, MENG Ruili, “Resonance frequency tracking control for nonlinear MEMS Resonator”, Chinese journal of sensors and actuators, Vol. 25, No. 3, pp. 338 – 343, Mar 2012.
[78] Hossein Sohanian-Haghighi, Amir Hossein, Davaie-Markazi, “Resonance tracking of nonlinear MEMS Resonator”, IEEE/ASME Transactions on Mechatronics, Vol. 17, No. 4, pp. 617 – 621, 2011.
[79] Aaron Partridge, David Hsieh, “MEMS 震盪器技術設計大要”, 新創, 10 March 2009.
[80] Ji-Chang Lo, Ya-Hui Kuo, “Decoupled Fuzzy Sliding-Mode Control”, IEEE Transactions on fuzzy systems, VOL. 6, NO. 3, AUGUST 1998.
[81] G.-C. Hwang, S.-C. Lin, “A stability approach to fuzzy control design for nonlinear systems”, Fuzzy Sets Syst, vol. 48, pp. 279–287, 1992.
[82] R. Palm, “Robust control by fuzzy sliding mode”, Automatica, vol. 30, no. 9, pp. 1429–1437, 1994.
[83] S.-W. Kim, J.-J. Lee, “Design of a fuzzy controller with fuzzy sliding surface”. Fuzzy Sets Syst., vol. 71, pp. 359–367, 1995.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top