跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/07 23:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭士豪
論文名稱:蟬花發酵產物對 Cisplatin 誘導 SD 大鼠腎損傷的保護作用
指導教授:邱駿紘邱駿紘引用關係喬長誠喬長誠引用關係
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:126
中文關鍵詞:順鉑腎毒性蟬花抗發炎抗氧化
外文關鍵詞:cisplatin nephrotoxicityCordyceps soboliferaanti-inflammationanti-oxidant
相關次數:
  • 被引用被引用:2
  • 點閱點閱:523
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  順鉑是一種 DNA-烷化劑型的有效化療藥物,被廣泛用來治療實質固態癌,例如睪丸、卵巢、子宮及乳癌等。然而,腎毒性是順鉑在治療上限制其劑量使用最主要的副作用因素。近年來許多資料指出發炎反應與氧化傷害參與在順鉑所引起腎毒性的致病機制。過去的研究証實蟲草屬產物具有抗發炎與抗氧化的功用,而蟬花萃取物則可減輕因脂多糖所造成的腎臟損傷,但目前尚無證據顯示蟬花是否對順鉑所引起的腎傷害有保護的作用。因此,在本研究中,以大鼠模式來探討蟬花發酵產物對順鉑誘發腎損傷的保護作用。
  實驗將 SD 大鼠隨機分成控制組、順鉑組、蟬花發酵產物組、順鉑暨蟬花發酵產物低劑量組和順鉑暨高劑量蟬花發酵產物組等五組。順鉑(7.5 mg/kg B.W.)以腹腔注射在犧牲前第四天給予,蟬花發酵產物(50 或 200 mg/kg B.W.)在順鉑注射前 8 天起開始管灌餵食持續 12 天。實驗結果顯示順鉑處理組血清中有較高的尿素氮、肌酸肝和一氧化氮,尿蛋白也顯著升高。同時其腎臟組織有較顯著的丙二醛含量及腎組織誘導型一氧化氮合成酶蛋白質表現顯著提升,而抗氧化酵素(超氧化歧化酶、過氧化氫酶、麩胱苷肽過氧化酶)蛋白質表現則顯著減少。組織學觀察到順鉑造成腎絲球損傷及空泡化。
  在給予蟬花發酵產物的實驗動物對順鉑所造成之腎損傷包括生化指標、酵素活性與蛋白質表現及腎組織異常均有顯著改善。
  綜合以上結果顯示,蟬花發酵產物對順鉑毒性的保護作用可能是透過抗氧化及抗發炎的作用。

Cisplatin is a potent chemotherapeutic DNA-alkylating agent used to treat many types of solid tumors such as testis, ovary, cervix and breast. However, nephrotoxicity is the major side effect representing a dose-limiting factor in cisplatin therapy. Recently, accumulated data pointed out that inflammatory response and oxidative damage involved
in the pathogenesis of cisplatin nephrotoxicity. Previous studies demonstrated that Cordyceps possess the effects of both anti-inflammation and anti-oxidant and the extract of Cordyceps sobolifera(CS) could ameliorate the kidney damage induced by LPS.
However, the protective effect of CS on ciaplatin induced renal injury is not clear. In the present study, we investigated the effect of fermentation product of CS against cisplatin induced renal injury in rats. Male SD
rats were divided into five groups; control group, Cisplatin groups, CS group, Cisplatin + low dose CS and Cisplatin + high dose CS. Cisplatin (7.5 mg/kg B.W.)was injected intraperitoneally 4 days prior to the sacrifice and CS(50 or 200 mg/kg B.W.) was administered once per day for 12 consecutive days by gavage, starting 8 days before cisplatin
injection. The results revealed that significant elevation of serum BUN, creatinine, nitric oxide and urinary protein were observed in animals injected with cisplatin. Cisplatin treated rats also showed a marked increase in renal MDA level and an apparent decrease in the activities of
antioxidant enzymes (SOD, CAT and GPx). The expression of iNOS in kidney was elevated in cisplatin treated animals; on the other hand, the expressions of antioxidant enzymes were obviously declined. The histological examination showed severe glomerular damage. In contrast, supplementation of CS resulted in significant improvements in 4 biochemical markers, enzyme activities, protein expressions and
histological features. The results suggest that CS may attenuate cisplatin induced renal injury through anti-oxidative and anti-inflammatory effects.
目錄
目錄............................................I
圖目錄..........................................V
表目錄...........................................VIII
中文摘要.........................................1
英文摘要.........................................3
第一章 緒論.....................................5
第二章 文獻回顧..................................8
第一節 蟲草屬介紹................................8
(一)、冬蟲夏草(Cordyceps sinensis)............8
(二)、蛹蟲草(Cordyceps militaris).............10
(三)、蟬花蟲草(Cordyceps sobolifera)..........11
(四)、蟲草屬之療效與應用.........................13
第二節 順鉑(Cisplatin)........................16
(一)、順鉑之介紹 ............................16
(二)、順鉑之作用機制及臨床應用....................17
(三)、順鉑與急性腎衰竭...........................19
第三章 研究目的..................................32
第四章 材料與方法................................33
第一節 實驗材料..................................33
第二節 蟬花發酵產物之水萃取物及酒精萃取物之製備及
植物性化學物質含量和抗氧化力分析.............41
第三節 動物實驗設計...............................47
第四節 腎功能指數測定.............................50
第五節 一氧化氮(NO)濃度分析......................51
第六節 TNF-α 之酵素免疫分析.......................52
第七節 組織脂質過氧化分析.........................53
第八節 蛋白質定量分析.............................54
第九節 組織抗氧化酵素活性分析......................55
第十節 尿液蛋白含量測定...........................60
第十一節 西方墨點法分析腎臟組織中誘導型一氧化氮合成酶
(iNOS)、超氧歧化酶(SOD)、過氧化氫酶(CAT)
及麩胱苷肽過氧化酶(GPx)蛋白質表現量.......61
第十二節 組織石蠟切片與化學染色....................64
第十三節 統計分析 .............................66
第五章 結果......................................67
第一節 蟬花發酵產物之水萃取物及酒精萃取物之總多酚和
類黃酮含量及抗氧化力分析....................67
第二節 蟬花發酵產物之投予對大鼠血清中尿素氮(BUN)及
肌酸酐(CRE)的影響........................72
第三節 蟬花發酵產物之投予對大鼠血清中一氧化氮(NO)
生成的影響................................76
第四節 蟬花發酵產物之投予對腎損傷大鼠 TNF-α 之影響..78
第五節 蟬花發酵產物之投予對腎損傷大鼠尿蛋白
(Urine protein)之影響....................80
第六節 蟬花發酵產物之投予對大鼠腎臟組織中脂質過氧化
的影響....................................82
第七節 蟬花發酵產物之投予對大鼠腎臟組織中超氧歧化酶
(SOD)活性的影響...........................84
第八節 蟬花發酵產物之投予對大鼠腎臟組織中過氧化氫
(CAT)活性的影響...........................86
第九節 蟬花發酵產物之投予對大鼠腎臟組織中麩胱苷肽
過氧化酶(GPx)活性的影響...................88
第十節 蟬花發酵產物之投予對大鼠腎臟中誘導型一氧化氮
合成酶(iNOS)、超氧歧化酶(SOD)、過氧化氫酶
(CAT)及麩胱苷肽過氧化酶(GPx)蛋白質表現的
影響......................................90
第十一節 蟬花發酵產物之投予對大鼠組織型態的影響.......94
第六章 討論......................................97
第七章 結論......................................102
第八章 參考文獻...................................103
附表.............................................123
圖目錄
圖一、冬蟲夏草型態..................................9
圖二、蛹蟲草型態....................................10
圖三、蟬花蟲草型態..................................12
圖四、順鉑之結構...................................16
圖五、順鉑作用機制..................................17
圖六、順鉑造成急性腎衰竭的過程.......................20
圖七、順鉑誘發氧化傷害機制圖.........................23
圖八、一氧化氮合成途徑..............................24
圖九、順鉑訊息傳遞途徑..............................26
圖十、抗氧化酵素作用機轉............................27
圖十一、實驗流程設計...............................48
圖十二、蟬花發酵產物之水萃取物及酒精萃取物清除DPPH
自由基能力.................................69
圖十三、蟬花發酵產物之水萃取物及酒精萃取物還原力之比較.70
圖十四、蟬花發酵產物之水萃取物及酒精萃取物螯合亞鐵能力
之比較....................................71
圖十五、不同處理之大鼠血清中尿素氮(BUN)的含量.......73
圖十六、不同處理之大鼠血清中肌酸酐(CRE)的含量.......75
圖十七、不同處理之大鼠血清中一氧化氮(NO)的含量......77
圖十八、不同處理之大鼠血清中腫瘤壞死因子-α(TNF-α)
的含量....................................79
圖十九、不同處理之大鼠尿蛋白含量.....................81
圖二十、不同處理之大鼠腎臟中丙二醛(MDA)的含量........83
圖二十一、不同處理之大鼠腎臟中超氧歧化酶(SOD)的活性..85
圖二十二、不同處理之大鼠腎臟中過氧化氫酶(CAT)的活性..87
圖二十三、不同處理之大鼠腎臟中麩胱苷肽過氧化酶(GPx)
的活性...................................89
圖二十四、不同處理之大鼠腎臟中誘導型一氧化氮合成酶(iNOS)
、超氧歧化酶(SOD)、過氧化氫酶(CAT)及麩胱苷肽
過氧化酶(GPx)蛋白質表現量..................91
圖二十五、不同處理之大鼠腎臟組織病理變化..............95
表目錄
表一、台灣地區十大死亡原因(2011)...................7
表二、脂質過氧化分析實驗配方表.......................54
表三、蟬花萃取物之植物性化學物質成分..................67
附表一、蟬花發酵產物萃取物之抗氧化能力................123
附表二、不同處理之大鼠生化檢測數值....................124
附表三、不同處理大鼠腎臟組織脂質過氧化與抗氧化酵素活性..125
附表四、不同處理大鼠腎臟組織中誘導型一氧化氮合成酶(iNOS)
、超氧歧化酶(SOD)、過氧化氫酶(CAT)及麩胱苷肽
過氧化酶(GPx)蛋白質表現量..................126

行政院衛生署-統計公佈欄
http://www.doh.gov.tw/CHT2006/DM/DM2_2_p02.aspx?class_no=440&now_fod_list_no=11468&level_no=1&doc_no=77184,2012 年 7月 23 日。
王琦和韓曉餞,2002 年,蛹蟲草對老年大鼠自由基代謝影響的研究。遼寧師專學報,第 4 卷,第 4 期,第 104-106 頁。
王國棟,1995 年,冬蟲夏草類--生態、培植、應用。科學技術文獻出版社,第 1-307 頁。
李冰嵐,1993 年,蟬花的本草學考證。現代應用藥學,第 10 卷,第 2 期,第 22-23 頁。
車振明,2004 年,蟲草多糖生物活性研究進展及其應用前景。食用菌,第 24 卷,第 6 期,第 3-5 頁。
林子揚,2009 年,蟬花發酵液對大鼠糖尿病腎損傷的保護作用。私立弘光科技大學生物科技研究所碩士論文。
林政賢,2007 年,蟬花萃取物對於脂多醣體誘導之肝臟及腎臟損傷的影響。私立弘光科技大學生物科技研究所碩士論文。
金周慧和陳以平,2006 年,蟬花湯延緩慢性腎功能衰竭進展的臨床觀。中醫藥學刊,第 24 卷,第 8 期,第 1457-1459 頁。
貢成良、潘中華、鄭小堅、薛仁孙、曹廣力,2005 年,家蠶蛹蟲草的延緩衰老作用研究。蘇州大學學報工科版,第 25 卷,第 2 期,第 24-27 頁。
徐文媛和吳亭瑤,2002 年,冬蟲夏草,善用別誤用。常春月刊,第 237 期,第 35-67頁。
馬玲、劉春光、姚小曼,1995 年,蟲草多糖對小鼠免疫功能的影響。衛生毒理學雜誌,第 9 卷,第 3 期,第 162-167 頁。
柴建萍、白興榮、謝道燕,2003 年,蛹蟲草主要有效成分及其藥理功效。雲南製藥科技,第 4 卷,第 22-23 頁。
陳萬群和陳古榮,1994 年,冬蟲夏草代用品研究發展。中草藥,第 25 卷,第 5 期,第 269-271 頁。
陳勁初,2012 年,南方蟲草之后:蟬花,元氣齋出版社,第 32 頁。
張東柱、周文能、王也珍、朱宇敏,2001 年,大自然的魔術師-台灣大型真菌。行政院農業委員會出版,第 444 頁。
溫魯、唐玉玲、張平,2006 年,蟬花與有關蟲草活性成份檢測比較。江蘇中醫藥,第 27 卷,第 1 期,第 45-46 頁。
黎孝韻和曾國慶,2008 年,自由基及抗氧化物功能的探討。藥學雜誌,第 95 期,第 95-103 頁。
鄭豐、田勁、黎磊石,1992 年,冬蟲夏草對腎毒性急性腎功能衰竭的療效及機制探討。中國中西醫結合雜誌,第 12 卷,第5期,第 288-291 頁。
劉森琴、袁溫魯、袁夏敏、袁蔣寧,2008 年,人工培育蟬花的活性成分含量測定。安徽農業科學,第 36 卷,第 2 期,第 429 頁。
Aebi, H., 1984. Catalase in vitro. Meth. Enzymol. 105, 121-126.
Ahmed, A.F., El-Maraghy, N.N., Abdel Ghaney, R.H., Elshazly, S.M., 2012. Therapeutic effect of captopril, pentoxifylline, and Cordyceps Sinensis in pre-hepatic portal hypertensive rats. Saudi J. Gastroenterol. 18(3):182-187.
Ali, B.H., Al Moundhri, M.S., 2006. Agents ameliorating or augmenting the nephrotoxicity of cisplatin and other platinum compounds:a review of some recent research. Food Chem. Toxicol. 44(8), 1173-1183.
Annie, S., Rajagopal, P.L., Malini, S., 2005. Effect of Cassia auriculata Linn. root extract on cisplatin and gentamicin-induced renal injury. Phytomedicine. 12(8), 555-560.
Antunes, L.M., Darin, J.D., Bianchi, M.D., 2000. Protective effects of vitamin C against cisplatin-induced nephrotoxicity and lipid peroxidation in adult rate:A dose-dependent study. Pharmacol. Res. 41(4), 405-411.
An, Y., Xin, H., Yan, W., Zhou, X., 2011. Amelioration of cisplatin-induced nephrotoxicity by pravastatin in mice. Exp. Toxicol. Pathol. 63(3), 215-219.
Arjumand, W., Seth, A., Sultana, S., 2011. Rutin attenuates cisplatin induced renal inflammation and apoptosis by reducing NFκB, TNF-α and caspase-3 expression in wistar rats. Food Chem. Toxicol. 49(9), 2013-2021.
Arthur, J.R., 2000. The glutathione peroxidase. Cell. Mol. Life Sci. 57(13-14), 1825-1835.
Atasayar, S., Gürer-Orhan, H., Orhan, H., Gürel, B., Girgin, G., Ozgüneş, H., 2009. Preventive effect of aminoguanidine compared to vitamin E and C on cisplatin-induced nephrotoxicity in rats. Exp. Toxicol. Pathol. 61(1):23-32.
Avissar, N., Ornt, D.B., Yagil, Y., Horowitz, S., Watkins, R.H., Kerl, E.A., Takahashi, K., Palmer, I.S., Cohen, H.J., 1994. Human kidney proximal tubules are the main source of plasma glutathione peroxidase. Am. J. Physiol. 266(2 Pt 1), C367-C375.
Azambuja, A.A., Lunardelli, A., Nunes, F.B., Gaspareto, P.B., Donadio, M.V., Figueiredo, C.E., Oliveira, J.R., 2011. Effect of fructose-1,6-bisphosphate on the nephrotoxicity induced by Cisplatin in Rats. Inflammation. 34(1), 67-71.
Badary, O.A., Abdel-Maksoud, S., Ahmed, W.A., Owieda, G.H., 2005. Naringenin attenuates cisplatin nephrotoxicity in rats. Life Sci. 76(18), 2125-2135.
Bao, Y., Jemth, P., Mannervik, B., Williamson, G., 1997. Reduction of thymine hydroperoxide by phospholipid hydroperoxide glutathione peroxidase and glutathione transferases. FEBS Lett. 410(2-3), 210-212.
Beda, N. and Nedospasov, A., 2005. A spectrophotometric assay for nitrate in an excess of nitrite. Nitric Oxide. 13(2), 93-97.
Bhattacharya, I.D., Picciano, M.F., Milner, J.A., 1988. Characteristics of human milk glutathione peroxidase. Biol Trace Elem Res. 18, 59-70.
Billiar, T.R., Curran, R.D., Harbrecht, B.G., Stuehr, D.J., Demetris, A.J., Simmons, R.L., 1990. Modulation of nitrogen oxide synthesis in vivo:NG-monomethyl-L-arginine inhibits endotoxin-induced nitrate/nitrate biosynthesis while promoting hepatic damage. J. Leukoc. Biol. 48(6), 565-569.
Björnstedt, M., Hamberg, M., Kumar, S., Xue, J., Holmgren, A., 1995. Human thioredoxin reductase directly reduces lipid hydroperoxides by NADPH and selenols. J. Biol. Chem. 270(20), 11761-11764.
Boulikas, T. and Vougiouka, M., 2004. Recent clinical trials using cisplatin, carboplatin and their combination chemotherapy drugs (review). Oncol. Rep. 11(3), 559-595.
Boyer, R.F and McCleary, C.J., 1987. Superoxide ion as a primary reductant in ascorbate-mediated ferritin iron release. Free Radic. Biol. Med. 3:389-395.
Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.
Brand-Williams, W., Cuvelier, M. E. and Berset, C. 1995. Use of a free radical method to evaluate antioxidant activity. Lebensm-Wiss. U. Technol. 28:25-30.
Bray, H.G. and Thorpe, W.V. 1954. Analysis of phenolic
compounds of interest in metabolism. Methods Biochem Anal. 1:27-52.
Bredt, D.S. and Christopherson, K.S., 1997. Nitric oxide in excitable
tissues:physiological roles and disease. J. Cli. Invest. 100(10),
2424-2429.
Buege, J.A. and Aust, S.D., 1978. Microsomal lipid peroxidation. Meth. Enzymol. 52, 302-310.
Chen, J., Zhang, W., Lu, T., Li, J., Zheng, Y., Kong, L., 2006. Morphlorphological and genetic characterization of a cultivated Cordyceps sinensis fungus and its polysaccharide component possessing antioxidant property in H22 tumor-bearing mice. Life Sci. 78(23), 2742-2748.
Chirino, Y.I., Hernandez-Pando, R., Pedraza-Chaverri, J., 2004. Peroxynitrite decomposition catalyst ameliorates renal damage and protein nitration in cisplatin-induced nephrotoxicity in rats. BMC Pharmacol. 4(20).
Chirino, Y.I. and Pedraza-Chaverri, J., 2009. Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp. Toxicol. Pathol. 61(3), 223-242.
Chu, F.F., Doroshow, J.H., Esworthy, R.S., 1993. Expression, characterization, and tissue distribution of a new cellular
selenium-dependent glutathione peroxidase, GSH-Px-GI. J. Biol. Chem. 268(4), 2571-2576.
Dobyan, D.C., Levi, J., Jacobs, C., Kosek, J., Weiner, M.W., 1980. Mechanism of cis-platinum nephrotoxicity:II. Morphologic observa-tions. J. Pharmacol. Exp. Ther. 213(3), 551-556.
Dziezak, J. D., 1986. Antioxidants-The ultimate answer to oxidation. Food Technol. 40:94-105.
El-Awady, el-S.E., Moustafa, Y.M., Abo-Elmatty, D.M., Radwan, A., 2011. Cisplatin-induced cardiotoxicity:Mechanisms and
cardioprotective strategies. Eur. J. Pharmacol. 650(1), 335-341.
Escames, G., Lopez, L.C., Ortiz, F., Ros, E., Acuna-Castroviejo, D., 2006. Age-dependent lipopolysaccharide-induced iNOS expression and multiorgan failure in rats:effects of melatonin treatment. Exp. Gerontol. 41(11), 1165-1173.
Fouad, A.A., Morsy, M.A., Gomaa, W., 2008. Protective effect of carnosine against cisplatin-induced nephrotoxicity in mice. Environ. Toxicol. Pharmacol. 25(3), 292-297.
Girard, A., Madani, S., Boukortt, F., Cherkaoui-Malki, M., Belleville, J., Prost, J., 2006. Fructose-enriched diet modifies antioxidant status and lipid metabolism in spontaneously hypertensive rats. Nutrition. 22(7-8), 758-766.
Green, L.C., Wagner, D.A., Glogowski, J., Skipper, P.L., Wishnok, J.S., Tannenbaum S.R., 1982. Analysis of nitrate, nitrite, and (15N)nitrate in biological fluids. Anal. Biochem. 126(1), 131-138.
Grossniklaus, H.E., Waring, G.O., Akor, C., Castellano-Sanchez, A.A., Bennett, K., 2003. Evaluation of hematoxylin and eosin and special stains for the detection of acanthamoeba keratitis in penetrating keratoplasties. Am. J. Ophthalmol. 136(3), 520-526.
Guerrero-Beltrán, C.E., Calderón-Oliver, M., Tapia, E., Medina-Campos, O.N., Sánchez-González, D.J.,
Martínez-Martínez, C.M., Ortiz-Vega, K.M., Franco, M., Pedraza-Chaverri, J., 2010. Sulforaphane protects against
cisplatin-induced nephrotoxicity. Toxicol. Lett. 192(3):278-285.
Halliwell, B., 2006. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant. Physiol. 141(2), 312-22.
Hoekstra, W.G., 1975. Biochemical function of selenium and its relation to vitamin E. Fed. Proc. 34(11), 2083-2089.
Holliday, J. and Cleaver, M., 2004. On the trail of the yak ancient Cordyceps in the modern world. Aloha medicinals. 1-63.
Ibrahim, M.Y., Abdul, A.B., Ibrahim, T.A., AbdelWahab, S.I., Elhassan, M.M., Mohan, S., 2010. Attenuation of cisplatin-induced nephrotoxicity in rats using zerumbone. Afr. J. Biotechnol. 9(28), 4434-4441.
Iiyama, K., Chieda, Y., Lee, J.M., Kusakabe, T., Yasunaga, A.C., Shimizu, S., 2007. Effect of superoxide dismutase gene inactivation on virulence of Pseudomonas aeruginosa PAO1 toward the silkworm. Bombyx mori. Appl. Environ. Microbiol. 73(5), 1569-1575.
Ioannidis, P., Courtis, N., Havredaki, M., Michailakis, E., Tsiapalis, C.M., Trangas, T., 1999. The polyadenylation inhibitor cordycepin(3'dA) causes a decline in c-MYC mRNA levels without affecting c-MYC protein levels. Oncogene, 18(1), 117-25.
Jaber, B.L., Pereira, B.J., Bonventre, J.V., Balakrishnan, V.S., 2005. Polymorphism of host response genes:Implications in the pathogenesis and treatment of acute renal failure. Kidney Int. 67(1), 14-33.
Jaiswal, M., Larusso, N.F., Gores, G.J., 2001. Nitric oxide in gastrointestinal epithelial cell carcinogenesis:linking inflammation to oncogenesis. Am. J. Physiol. Gastrointest. Liver Physiol. 281(3), 626-634.
Jones, T.W., Chorpa, S., Kaufman, J.S., Flamenbaum, W., Trump, B.F., 1985. Cis-diaminedichloroplatinum-induced acute renal failure in the rat. Toxicol Pathol. 13(4), 296-305.
Karimi, G., Ramezani, M., Tahoonian, Z., 2005. Cisplatin nephrotoxicity and protection by milk thistle extract in rats. Evid. Based Complement Alternat Med. 2(3), 383-386.
Karpuzoglu, E. and Ahmed, S.A., 2006. Estrogen regulation of nitric oxide and inducible nitric oxide synthase(iNOS) in immune cells:implications for immunity, autoimmune disease, and apoptosis. Nitric Oxide. 15(3), 177-186.
Kawai, Y., Nakao, T., Kunimura, N., Kohda, Y., Gemba, M., 2006. Relationship of intracellular calcium and oxygen radicals to Cisplatin-related renal cell injury. J. Pharmacol. Sci. 100(1), 65-72.
Kernodle, S.P. and Scandalios, J.G., 2001. Structural oranization, regulation, and expression of the chloroplastic superoxide dismutase SOD1 gene in maize. Arch. Biochem. Biophys. 391(1), 137-147.
Kiho, T., Hui, J., Yamane, A., Ukai, S., 1993. Polysaccharides in fungi. XXXII. Hypoglycemic activity and chemical properties of a polysaccharide from the cultural mycelium of Cordyceps sinensis. Biol. Pharm. Bull. 16(12), 1291-1293.
Kim, H.G., Shrestha, B., Lim, S.Y., Yoon, D.H., Chang, W.C., Shin, D.J., Han, S.K., Park, S.M., Park, J.H., Park, H.I., Sung, J.M., Jang, Y., Chung, N., Hwang, K.C., Kim, T.W., 2006. Cordycepin inhibits lipopolysaccharide-induced inflammation by the
suppression of NF-kappa B through Akt and p38 inhibition in
RAW 264.7 macrophage cells. Eur. J. Pharmacol. 545(2-3),
192-199.
Knowles, R.G. and Moncada, S., 1991. Nitric oxide synthases in mammals. Biochem. J. 298(Pt 2), 249-258.
Koc, Y., Urbano, A.G., Sweeney, E.B., McCaffrey, R., 1996. Induction of apoptosis by cordycepin in ADA-inhibited
TdT-positive leukemia cells. Leukemia. 10(6), 1019-1024.
Kuo, Y.C., Weng, S.C., Chou, C.J., Chang, T.T., Tsai, W.J., 2003. Activation and proliferation signals in primary human T lymphocytes inhibited by ergosterol peroxide isolated from Cordyceps cicadae. Br. J. Pharmacol. 140(5), 895-906.
Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227(5259), 680-685.
Lameire, N., Van Biesen, W., Vanholder, R., 2005. Acute Renal Failure. Lancet. 365(9457), 417-430.
Lawerence, R.A. and Burk, R.F., 1976. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem. Biophys. Res. Commun. 71(4), 952-958.
Lee, J.H., Lee, H.J., Lee, H.J., Choi, W.C., Yoon, S.W., Ko, S.G., Ahn, K.S., Choi, S.H., Ahn, K.S., Lieske, J.C., Kim. S.H., 2009. Rhus verniciflua Stokes prevents cisplatin-induced cytotoxicity andreactive oxygen species production in MDCK-I renal cells and intact mice. Phytomedicine. 16(2-3), 188-197.
Li, S.P., Li, P., Dong, T.T., Tsim, K.W., 2001. Anti-oxidation activity of different types of natural Cordyceps sinensis and cultured Cordyceps mycelia. Phytomedicine 8(3), 207-212.
Li, S.P., Yang, F.Q., Tsim, W.K., 2006. Quality control of Cordyceps sinensis, a valued traditional Chinese medicine. J Pharm Biomed Anal. 41(5), 1571-1584.
Liu, Y.K and Shen, W., 2003. Inhibitive effect of Cordyceps sinensis on experimental hepatic fibrosis and its possible mechanism. World J. Gastroenterol. 9(3), 529-533.
Liu, Z., Li, P., Zhao, D., Tang, H., Guo, J., 2010. Protective effect of extract of Cordyceps sinensis in middle cerebral artery occlusion-induced focal cerebral ischemia in rats. Behav Brain Funct. 6:61. 1-6.
Lo, H.C., Hsu, T.H., Tu, S.T., Lin, K.C., 2006. Anti-hyperglycemic activity of natural and fermented Cordyceps sinensis in rats with diabetes induced by nicotinamide and streptozotocin. Am. J. Chin. Med. 34(5), 819-832.
Mackenzie, I.S., Rutherford, D., MacDonald, T.M., 2008. Nitric oxide and cardiovascular effects: new insights in the role of nitric oxide for the management of osteoarthritis. Arthritis Res. Ther. Suppl 2:S3.
Marklund, S. and Marklund, G., 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47(3), 469-474.
Matés, J.M., Perez-Gomez, C., Nunez de Castro, I., 1999. Antioxidant enzymes and human disease. Clin Biochem. 32(8), 595-603.
Mehta, R.L., Kellum, J.A., Shah, S.V., Molitoris, B.A., Ronco, C., Warnock, D.G., Levin, A., 2007. Acute Kidney Injury Network:report of an initiative to improve outcomes in acute kidney injury. Crit Care. 11(2), R31.
Mora, L.O., Antunes, L.M., Francescato, H.D., Bianchi, M.,2003. The effects of oral glutamine on cisplatin-induced nephrotoxicity in rats. Pharmacol Res 47(6), 517-22.
Naghizadeh, B., Mansouri, S.M., Mashhadian, N.V., 2010. Crocin attenuates cisplatin-induced renal oxidative stress in rats. Food Chem Toxicol. 48(10), 2650-2655.
Nathan, C., 1997. Inducible nitric oxide synthase:what difference does it make ? J. Clin. Invest. 100(10), 2417-2423.
Niedernhofer, L.J., Daniels, J.S., Rouzer, C.A., Greene, R.E., Marnett, L.J., 2003. Malondialdehyde, a product of lipid peroxidation, is mutagenic in human cells. J. Biol. Chem. 278(33), 31426-31433.
Oyaizu, M., 1986. Studies on products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 44:307-314.
Pabla, N and Dong, Z., 2008. Cisplatin nephrotoxicity:Mechanisms and renoprotective strategies. Kidney Int. 73(9), 994-1007.
Pérez-Rojas, J.M., Guerrero-Beltrán, C.E., Cruz, C.,
Sánchez-González, D.J., Martínez-Martínez, C.M.,
Pedraza-Chaverri, J., 2011. Preventive effect of
tert-butylhydroquinone on cisplatin-induced nephrotoxicity in rats. Food Chem. Toxicol. 49(10), 2631-2637.
Quettier-Deleu, C., Gressier, B., Vasseur, J., Dine, T., Brunet, C., Luyckx, M., Cazin, M., Cazin, J.C., Bailleul, F., Trotin, F., 2000. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J
Ethnopharmacol. 72(1-2):35-42.
Ragazzi, E. and Veronese, G., 1973. Quantitative analysis of phenolic compounds after thin-layer chromatographic separation. J. Chromatogr. 77(2):369-375.
Reddy, M.M., Mahipal, S.V., Subhashini, J., Reddy, M.C., Roy, K.R., Reddy, G.V., Reddy, P.R., Reddanna, P., 2006. Bacterial lipopolysaccharide-induced oxidative stress in the impairment of steroidogenesis and spermatogenesis in rats. Reprod. Toxicol. 22(3), 493-500.
Rosenberg, B., Vancamp, L., Krigas, T., 1965. Inhibition of cell division in escherichia coli by electrolysis products from a Platinum electrode. Nature. 205, 698-699.
Roveri, A., Maiorino, M., Ursini, F., 1994. Enzymatic and immunological measurements of soluble and membrane-bound phospholipid-hydroperoxide glutathione peroxidase. Meth. Enzymol. 233, 202-212.
Saad, A.A., Youssef, M.I., El-Shennawy, L.K., 2009. Cisplatin induced damage in kidney genomic DNA and nephrotoxicity in male rats:The protective effect of grape seed proanthocyanidin extract. Food Chem Toxicol. 47(7), 1499-1506.
Sahin, K., Tuzcu, M., Gencoglu, H., Dogukan, A., Timurkan, M., Sahin, N., Aslan, A., Kucuk, O., 2010. Epigallocatechin-3-gallate activates Nrf2/HO-1 signaling pathway in cisplatin-induced nephrotoxicity in rats. Life Sci. 87(7-8), 240-245.
Sahu, B.D., Rentam, K.K., Putcha, U.K., Kuncha, M., Vegi, G.M., Sistla, R., 2011. Carnosic acid attenuates renal injury in an experimental model of rat cisplatin-induced nephrotoxicity. Food Chem Toxicol. 49(12), 3090-3097.
Sanchez-Gonzalez, P.D., Lopez-Hernandez, F.J., Perez-Barriocanal, F., Morales, AI, Lopez-Novoa, J.M., 2011. Quercetin reduces cisplatin nephrotoxicity in rats without compromising its anti-tumour activity. Nephrol. Dial. Transplant. 26(11), 3484-3495.
Sattler, W., Maiorino, M., Stocker, R., 1994. Reduction of HDL- and LDL-associated cholesterylester and phospholipid hydroperoxides by phospholipid hydroperoxide glutathione peroxidase and Ebselen (PZ 51). Arch. Biochem. Biophys. 309(2), 214-221.
Schraufstatter, I., Hyslop, P.A., Jackson, J.H., Cochrane, C.G., 1988. Oxidant-induced DNA damage of target cells. J Clin. Invest. 82(3), 1040-1050.
Schrier, R.W., 2008. Blood Urea Nitrogen and Serum Creatinine:Not Married in Heart Failure. Circ Heart Fail. 1(1), 2-5.
Shimada, K., Fujikawa, K., Yahara, K., Nakamura, T., 1992. Antioxidative properties of xanthan on the antioxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40:945-948.
Shin, S., Lee, S., Kwon, J., Moon, S., Lee, S., Lee, C.K., Cho, K., Ha, N.J., Kim, K., 2009a. Cordycepin suppresses expression of diabetes regulating genes by inhibition of
lipopolysaccharide-induced inflammation in macrophages. Immune Netw. 9(3):98-105.
Shin, S., Lee, S., Kwon, J., Moon, S., Lee, S., Lee, C.K., Cho, K., Ha, N.J., Kim, K., 2009b. Cordycepin suppresses expression of diabetes regulating genes by inhibition of
lipopolysaccharide-induced inflammation in macrophages. Immune Netw. 9(3):98-105.
Sleijfer, D.T., Meijer, S., Mulder, N.H., 1985. Cisplatin a review of clinical applications and renal toxicity. Pharm Weekbl Sci. 7(6), 237-244.
Song, L.Q., Ming, Y.S., Peng, M.X., Xia J.L., 2010. The protective effects of Cordyceps sinensis extract on extracellular matrix accumulation of glomerular sclerosis in rats. Afr. J. Pharm. Pharmacol. 4(7), 471-478.
Takahashi, K., Avissar, N., Whitin, J., Cohen, H., 1987. Purification and characterization of human plasma glutathione peroxidase:a selenoglycoprotein distinct from the known cellular enzyme. Arch. Biochem. Biophys. 256(2), 677-686.
Thigpen, T., Vance, R., Puneky, L., Khansur, T., 1994. Chemotherapy in Advanced Ovarian Carcinoma:Current Standards of Care Based on Randomized Trials. Gynecol. Oncol. 55(3 Pt 2), S97-S107.
Thomas, J.P., Maiorino, M., Ursini, F., Girotti, A.W., 1990. Protective action of phosphlipid hydroperoxide glutathione peroxidase against membrane-damaging lipid peroxidation. J. Biol. Chem. 265(1), 454-461.
Turchi, J.J., 2006. Nitric oxide and cisplatin resistance:NO easy answers. Proc. Natl. Acad. Sci. 103(12), 4337-4338.
Turrens, J.F., 2003. Mitochondrial formation of reactive oxygen species. J. Physiol. 552(Pt 2), 335-344.
Ursini, F. and Bindoli, A., 1987. Therole of selenium peroxidases in the protection against oxidative damage of membranes. Chem. Phys. Lipids. 44(2-4), 255-276.
Wang, D. and Lippard, S.J., 2005. Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov. 4(4), 307-320.
Wang, S.Y. and Shiao, M.S., 2000. Pharmacological functions of chinese medicinal Fungus Cordyceps sinensis and related species. J. Food Drug Anal. 8(4), 248-257.
Wang, Y., Yin, H., Lv, X., Wang, Y., Gao, H., Wang, M., 2010. Protection of chronic renal failure by a polysaccharide from Cordyceps sinensis. Fitoterapia. 81(5):397-402.
Wojcikowski, K., Johnson, D.W., Gobe, G., 2006. Herbs or natural substances as complementary therapies for chronic kidney disease : ideas for future studies. J. Lab. Clin. Med. 147(4), 160-166.
Wu, M.F., Li, P.C., Chen, C.C., Ye, S.S., Chien, C.T., Yu, C.C., 2011. Cordyceps sobolifera extract ameliorates
lipopolysaccharide-induced renal dysfunction in the rat. Am. J. Chin. Med. 39(3), 523-535.
Xiao, J.H., Xiao, D.M., Chen, D.X., Xiao, Y., Liang, Z.Q., Zhong, J.J., 2012. Polysaccharides from the medicinal mushroom Cordyceps taii show antioxidant and immunoenhancing activities in a D-galactose-induced aging mouse model. Evid Based Complement Alternat Med. 2012. 1-15.
Yamaguchi, Y., Kagota, S., Nakamura, K., Shinozuka, K., Kunitomo, M., 2000. Antioxidant activity of the extracts from fruiting bodies of cultured Cordyceps sinensis. Phytother Res. 14(8), 647-649.
Yao, X., Panichpisal, K., Kurtzman, N., Nugent, K., 2007. Cisplatin Nephrotoxicity:A Review. Am. J. Med. Sci. 334(2), 115-124.
Yildirim, Z., Sogut, S., Odaci, E., Iraz, M., Ozyurt, H., Kotuk, M., Akyol, O., 2003. Oral erdosteine administration attenuates cisplatin-induced renal tubular damage in rats. Pharmacol. Res. 47(2), 149-156.
Yilmaz, H.R., Iraz, M., Sogut, S., Ozyurt, H., Yildirim, Z., Akyol, O., Gergerlioglu, S., 2004. The effects of erdosteine onthe activities of some metabolic enzymes during cisplatin-induced nephrotoxicity in rats. Pharmacol Res. 50(3), 287-290.
Young, I.S. and Woodside, J.V., 2001. Antioxidants in health and disease. J. Clin. Pathol. 54(3), 176-186.
Yu, H.M., Wang, B.S., Huang, S.C., Duh, P.D., 2006. Comparison of protective effects between cultured Cordyceps militaris and natural Cordyceps sinensis against oxidative damage. J. Agric. Food Chem. 54(8):3132-3138.
Zhu, R., Chen Y., Deng, Y., 2005. The mechanism study of artificial culture Cordyceps sobolifera mycelium preventing the progression of glomerulosclerosis. Chin. J. Chin-West Nephrol. 6:132-136.
Zhu, R., Chen, Y.P., Deng, Y.Y., Zheng, R., Zhong, Y.F., Wang, L., Du, L.P., 2011. Cordyceps cicadae extracts ameliorate renal malfunction in a remnant kidney model. J Zhejiang Univ Sci B. 12(12):1024-1033.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊