跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/01 18:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:盧彥銘
研究生(外文):Lu Yan-Ming
論文名稱:應用多壁奈米碳管去除水中二價汞之研究
論文名稱(外文):Removal of Hg(II) from water by multiwall carbon nanotubes
指導教授:黃文鑑黃文鑑引用關係
指導教授(外文):Huang Winn-Jung
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:111
中文關鍵詞:多壁奈米碳管動力吸附等溫吸附含氧官能基
外文關鍵詞:MercuryMultiwall carbon nanotubesKinetic adsorptionIsotherm adsorptionOxygen functional groups
相關次數:
  • 被引用被引用:0
  • 點閱點閱:106
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用多壁奈米碳管(Multiwall Carbon Nanotubes,簡稱MWCNTs)吸附移除水相中微量汞(Hg(II)),同時為探討MWCNTs之物化性質對Hg(II)之吸附特性,選取改質後之MWCNTs,包括分別富含羥基-OH(MWCNTs-OH)、羧基-COOH(MWCNTs-COOH)等官能基之碳管進行Hg(II)之動力吸附及等溫吸附實驗,研究中亦選取一種商業活性碳(F400)進行比較。實驗結果顯示經氧化劑及酸化改質的MWCNTs,其表面特性分析結果發現其金屬催化劑及觸媒載體已被移除,並可提高MWCNTs的管帽(tip)開口率,增加表面活性位址與產生利於吸附之含氧官能基。MWCNTs吸附移除水相中Hg(II)的結果證實MWCNTs-OH及MWCNTs-COOH在酸性水體對Hg(II)有較佳吸附移除效果,本研究選取之四種吸附劑對Hg(II)的吸附量依序為MWCNTs-OH > MWCNTs-COOH > AC-F400 > MWCNTs-Raw,且各吸附劑之吸附量均隨pH降低而增加,其中pH值控制在9以上,吸附量與最佳pH值4.3比較,將大幅降低3-4倍,顯見pH對於MWCNTs吸附水中Hg(II)是主要影響因子。再者,各組吸附結果經四組動力吸附模式分析,發現較符合擬二階動力吸附模式(Pseudo second-order kinetic model)。另在等溫吸附模式之分析則以Freundlich模式較Langmuir模式更符合Hg(II)等溫及吸附實驗結果。
The physical and chemical properties of MWCNTs, were determined with Fourier transform infarared spectroscopy (FTIR), thermgravimetric analyzer (TGA), Boehm's titration, and field emission scanning electron microscope (FESEM). The kind of MWCNTs used for Hg(II) adsorption experiments including bonding phenolic functional group (MWCNTs-OH), bonding carboxylic functional group (MWCNTs-COOH), which modified surface chemical characteristics by acids. The commercial activated carbon (named AC-F400) was also apply for same test process. The results from the kinetic experiments indicated that the MWCNTs modified by oxidants acids, which the catalytic metal and media have been removal during acidification and oxidation processes. Moreover, the tip of MWCNTs would cut by acid or oxidant, then increased the surface area, activated sites, and oxygen-rich functional group. The results also show that the aadsorption of Hg(II) on the MWCNTs is strongly dependent on pH. The adsorption capacity of the adsorbents for Hg(II) in pH 4.3 is higher than that of pH over 9, which adsorption capacity wrer decreased 3-4 time than pH 4.3. Additionally, compare with the four adsorbents in adsorption capacity of Hg(II), the ranking are MWCNTs-OH > MWCNTs-COOH > AC-F400 > MWCNTs-Raw. Results of adsorption kinetic model and isotherm model for fits the experimental data shows that the pseudo second-order kinetic model fits the adsorption kinetic data of Hg(II) is better than other kinetic models. Moreover, the Freundlich model fits the adsorption isotherm data better than the Langmuir model.
摘要 I
Abstract II
目   錄 III
表 目 錄 VI
圖 目 錄 VIII
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1汞在環境中的流佈及在食物鏈之生物累積及生物毒性作用 3
2.1.1汞的來源 3
2.1.2汞的水化特性 4
2.1.3汞在環境中的轉換 6
2.1.4汞的生物累積及生物毒性作用 9
2.2奈米碳管 11
2.2.1奈米碳管介紹 11
2.2.2奈米碳管製程介紹 13
2.2.3奈米碳管特性 17
2.3奈米碳管在污染整治之應用 18
2.3.1奈米碳管吸附水中重金屬之相關研究 18
2.3.2奈米碳管吸附水中有機物之相關研究 24
2.3.3影響奈米碳管吸附水中重金屬之因素 27
2.3.4 pH對奈米碳管的影響 28
2.3.5 離子強度對奈米碳管的影響 28
2.4 本研究應用之相關吸附機制探討 29
2.4.1物理吸附 29
2.4.2化學吸附 30
2.4.3動力吸附模式 30
2.4.4等溫吸附模式 34
第三章 實驗與方法 37
3.1 實驗設計架構 37
3.2 實驗設備與藥品 39
3.2.1吸附材料 39
3.2.2吸附材料表面特性分析設備 40
3.2.4動力吸附實驗 43
3.2.5等溫吸附實驗 44
3.2.6實驗使用設備及藥品 45
3.3水中汞分析方法 46
第四章 結果與討論 49
4.1奈米碳管特性分析結果 49
4.1.1場發射掃描式電子顯微鏡(FE-SEM)分析結果 49
4.1.2穿透式電子顯微鏡(FE-TEM)分析結果 55
4.1.3熱重分析儀(TGA)分析結果 57
4.1.4傅立葉紅外線光譜分析儀(FTIR)分析結果 60
4.1.5界達電位(Zeta Potential)分析結果 62
4.1.6表面酸鹼滴定(Boehm's titration)分析結果 64
4.1.7元素分析儀(EA)分析結果 65
4.2奈米碳管吸附水中Hg(II)批次實驗 66
4.2.1不同pH條件之奈米碳管吸附Hg(II)結果 66
4.3動力吸附實驗 69
4.3.1一階動力方程式(First-order kinetic model) 72
4.3.2擬一階動力方程式(Pseudo first-order kinetic model) 75
4.3.3擬二階動力方程式(Pseudosecond-order kinetic model) 78
4.3.4 粒內擴散模式(Intraparticle diffusion model) 81
4.3.5動力吸附模式比較(Kinetic model comparsion) 84
4.4等溫吸附實驗 93
第五章 結論與建議 101
參考文獻 103


表 目 錄
表2-1汞中毒在人體所產生症狀(Zahir et al., 2005) 10
表2-2奈米碳管對水中二價金屬最大吸附量 23
表3-1奈米碳管基本物化特性 39
表3-2 ICP-OES 操作條件 47
表4-1 FTIR波長對照表(Lu and Chiu, 2008;Lu et al., 2008) 61
表4-2四種吸附劑酸鹼滴定分析結果 64
表4-3四種吸附劑在pH=4.3之一階動力常數 74
表4-4四種吸附劑在pH=6.4之一階動力常數 74
表4-5四種吸附劑在pH=9.2之一階動力常數 74
表4-6四種吸附劑在pH=4.3之擬一階動力常數 77
表4-7四種吸附劑在pH=6.4之擬一階動力常數 77
表4-8四種吸附劑在pH=9.2之擬一階動力常數 77
表4-9四種吸附劑在pH=4.3之擬二階動力常數 80
表4-10四種吸附劑在pH=6.4之擬二階動力常數 80
表4-11四種吸附劑在pH=9.2之擬二階動力常數 80
表4-12四種吸附劑在pH=4.3之粒內擴散模式常數 83
表4-13四種吸附劑在pH=6.4之粒內擴散模式常數 83
表4-14四種吸附劑在pH=9.2之粒內擴散模式常數 83
表4-15四種吸附劑在pH=4.3之Sest模擬參數 92
表4-16四種吸附劑在pH=6.4之Sest模擬參數 92
表4-17四種吸附劑在pH=9.2之Sest模擬參數 92
表4-18四種吸附劑對Hg(II)等溫吸附參數 95


圖 目 錄
圖2-1汞在不含氯水中之物種分布圖 (Powell et al., 2005) 5
圖2-2汞在含氯水中之物種分布圖 (López-Muñoz et al., 2011) 5
圖2-3甲基汞在水中之物種分布圖 (Gardfeldt et al., 2001) 6
圖2-4汞在環境中轉換示意圖(Subir et al., 2011) 8
圖2-5 C60結構圖(Rao et al., 1995) 12
圖2-6奈米碳管示意圖:(a)單壁奈米碳管;(b)多壁奈米碳管(Yang and Xing, 2007) 12
圖2-7化學氣相層積法設備(Deck and Vecchio, 2005) 14
圖2-8電弧放電法設備(Lau and Hui, 2002) 15
圖2-9雷射剝離法設備(Guo et al., 1995) 16
圖2-10奈米碳管吸附水中重金屬示意圖(Rao et al., 2007) 27
圖3-1實驗流程圖 38
圖4-1 MWCNTs-Raw之SEM影像圖及EDS分析 51
圖4-2 MWCNTs-OH之SEM影像圖及EDS分析 52
圖4-3 MWCNTs-COOH之SEM影像圖及EDS分析 53
圖4-4 AC-F400之SEM影像圖及EDS分析 54
圖4-5 MWCNTs之FE-TEM影像圖 56
圖4-6三種奈米碳管及活性碳模擬含氧環境之熱重分析圖 58
圖4-7三種奈米碳管及活性碳模擬無氧環境之熱重分析圖 59
圖4-8四種吸附劑經FTIR分析圖譜 61
圖4-9本實驗選取四種吸附劑之界達電位分佈 63
圖4-10四種吸附劑元素分析圖 65
圖4-11四種吸附劑在改變pH值條件之吸附量趨勢 68
圖4-12不同pH條件之奈米碳管去除汞變化趨勢(Tawabini et al., 2010) 68
圖4-13四種吸附劑在pH=4.3之動力吸附圖 70
圖4-14四種吸附劑在pH=6.4之動力吸附圖 70
圖4-15四種吸附劑在pH=9.2之動力吸附圖 71
圖4-16四種吸附劑在pH=4.3之一階動力模式圖 72
圖4-17四種吸附劑在pH=6.4之一階動力模式圖 73
圖4-18四種吸附劑在pH=9.2之一階動力模式圖 73
圖4-19四種吸附劑在pH=4.3之擬一階動力模式圖 75
圖4-20四種吸附劑在pH=6.4之擬一階動力模式圖 76
圖4-21四種吸附劑在pH=9.2之擬一階動力模式圖 76
圖4-22四種吸附劑在pH=4.3之擬二階動力模式圖 78
圖4-23四種吸附劑在pH=6.4之擬二階動力模式圖 79
圖4-24四種吸附劑在pH=9.2之擬二階動力模式圖 79
圖4-25四種吸附劑在pH=4.3之粒內擴散模式圖 81
圖4-26四種吸附劑在pH=6.4之粒內擴散模式圖 82
圖4-27四種吸附劑在pH=9.2之粒內擴散模式圖 82
圖4-28 MWCNTs-Raw在pH=4.3吸附模擬圖 86
圖4-29 MWCNTs-Raw在pH=6.4吸附模擬圖 86
圖4-30 MWCNTs-Raw在pH=9.2吸附模擬圖 87
圖4-31 MWCNTs-OH在pH=4.3吸附模擬圖 87
圖4-32 MWCNTs-OH在pH=6.4吸附模擬圖 88
圖4-33 MWCNTs-OH在pH=9.2吸附模擬圖 88
圖4-34 MWCNTs-COOH在pH=4.3吸附模擬圖 89
圖4-35 MWCNTs-COOH在pH=6.4吸附模擬圖 89
圖4-36 MWCNTs-COOH在pH=9.2吸附模擬圖 90
圖4-37 AC-F400在pH=4.3吸附模擬圖 90
圖4-38 AC-F400在pH=6.4吸附模擬圖 91
圖4-39 AC-F400在pH=9.2吸附模擬圖 91
圖4-40四種吸附劑吸附Hg(II)之等溫吸附平衡圖 95
圖4-41 MWCNTs-Raw之Langmuir等溫吸附線性化圖 96
圖4-42 MWCNTs-OH之Langmuir等溫吸附線性化圖 96
圖4-43 MWCNTs-COOH之Langmuir等溫吸附線性化圖 97
圖4-44 AC-F400之Langmuir等溫吸附線性化圖 97
圖4-45 MWCNTs-Raw之Freundlich等溫吸附線性化圖 98
圖4-46 MWCNTs-OH之Freundlich等溫吸附線性化圖 98
圖4-47 MWCNTs-COOH之Freundlich等溫吸附線性化圖 99
圖4-48 AC-F400之Freundlich等溫吸附線性化圖 99


Association of Metropolitan Sewerage Agencies (AMSA), 2002, “Mercury Source Control and Pollution Prevention Program (Final Report)”.

Aucott, M.L., Caldarelli, A.D., Zsolway, R.R., Pietarinen, C.B., England, R., 2009, “Ambient elemental, reactive gaseous, and particle-bound mercury concentrations in New Jersey, U.S, measurements and associations with wind direction,” Environmental Monitoring and Assessment, Vol. 158, pp. 295–306.

Chen, C., Hu, J., Shao, D., Li, J., Wang, X., 2009, “Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II),” Journal of Hazardous Materials, Vol. 164, pp. 923-928.

Deck, C.P., Vecchio, K., 2005, “Growth mechanism of vapor phase CVD-grown multi-walled carbon nanotubes,” Carbon, Vol. 43, pp. 2608-2617.

El-Sheikh, A.H., Al-Degs, Y.S., Al-As'ad, R.M., Sweileh, J.A., 2011, “Effect of oxidation and geometrical dimensions of carbon nanotubes on Hg(II) sorption and preconcentration from real waters,” Desalination, Vol. 270, pp.214-220.

Gardfeldt, K., Sommar, J., Stromberg, D., Feng, X., 2001, “Oxidation of atomic mercury by hydroxyl radicals and photoinduced decomposition of methylmercury in the aqueous phase,” Atmospheric Environment, Vol. 35, pp.3039-3047.

Guo, T., Nikolaev, P., Thess, A., Colbert, D.T., Smalley, R.E., 1995, “Catalytic growth of single-walled nanotubes by laser vaporization,” Chemical Physics Letters, Vol. 243, pp. 49-54.

Gupta, S.S., Bhattacharyya, K.G., 2011, “Kinetics of adsorption of metal ions on inorganic materials: A review,” Advances in Colloid and Interface Science, Vol. 162, pp. 39-58.

Huang, C.P., Blankenship, D.W., 1984, “The Removal of Mercury (II) from Dilute Aqueous Solution by Activated Carbon,” Water Research, Vol. 18, pp.37-46.

Huang, W.J., Cheng, Y.L., 2008 “Effect of Characteristics of Activated Carbon on Removal of Bromate,” Separation and Purification Technology, Vol. 59, pp.101-107.

Iijima, S., 1991, “Helical Microtubules of Graphitic carbon,” Nature, Vol. 354, pp. 56-58.

Iijima, S., Ichihashi, T., 1993, “Single-shell Carbon Nanotubes of 1-nm Diameter,” Nature, Vol. 363, pp. 603-605.

Kabbashi, N.A., Atieh, M.A., Al-Mamun, M., Mirghami, M.E.S., Alam, M.Z., Yahya, N., 2009, “Kinetic adsorption of application of carbon nanotubes for Pb(II) removal from aqueous solution,” Journal of Environmental Sciences, Vol. 21, pp. 539-544.

Kudo, A., Fujikawa, Y., Miyahara, S., Zheng, J., Takigami, H., Sugahara, M. and Muramatsu, H., 1998, “Lessons from minamata mercury pollution, Japan-after a continuous 22 years of observation,” Water Science and Technology, Vol. 38, pp.187-193.

Lau, K.T., Hui, D., “The revolutionary creation of new advanced materials-carbon nanotubes composites,” Composiyes, Vol. 33, pp.263-277.

Li, Y.H., Ding, J., Luan, Z., Di, Z., Zhu, Y., Xu, Z., Wu, D., Wei, B., 2003, “Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes,” Carbon, Vol. 41, pp. 2787-2792.

Liao, Q., Sun, J., Gao, L., 2008, “The adsorption of resorcinol from water using multi-walled carbon nanotubes,” Colloids and Surfaces A: Physicochem. Eng. Aspects, Vol. 312, pp. 160-165.

Lin, S., Wang, D.M., Li, M., Ayca, E., Huang, C.P., 2007, “On the Opportunities of Nano-technology in Environmental Applications-A Reality Assessment and Future Potential, ” 第四屆環境保護與奈米科技學術研討會論文集, pp.1-27.

López-Muñoz, M.J., Aguado, J., Arencibia, A., Pascual, R., 2011 “Mercury removal from aqueous solutions of HgCl2 by Heterogeneous photocatalysis with TiO2,” Applied Catalysis B: Environmental, Vol. 104, pp.220-228.

Lu, C., Chiu, H., 2006, “Adsorption of zinc(II) fromwater with purified carbon nanotubes,” Chemical Engineering Science, Vol. 61, pp. 1138-1145.

Lu, C., Chiu, H., 2008, “Chemical modification of multiwalled carbon nanotubes for sorption of Zn2+ from aqueous solution,” Chemical Engineering Journal, Vol. 139, pp. 462-468.

Lu, C., Chiu, H., Liu, C., 2006a, “Removal of Zinc(II) from Aqueous Solution by Purified Carbon Nanotubes: Kinetics and Equilibrium Studies,” Industrial & Engineering Chemistry Research, Vol. 45, pp. 2850-2855.

Lu, C., Chung, Y.L., Chang, K.F., 2005, “Adsorption of trihalomethanes from water with carbon nanotubes,” Water Research, Vol. 39, pp. 1183-1189.

Lu, C., Chung, Y.L., Chang, K.F., 2006b, “Adsorption thermodynamic and kinetic studies of trihalomethanes on multiwalled carbon nanotubes,” Journal of Hazardous Materials B, Vol. 138, pp. 304-310.

Lu, C., Liu, C., Rao, G.P., 2008, “Comparisons of sorbent cost for the removal of Ni2+ from aqueous solution by carbon nanotubes and granular activated carbon,” Journal of Hazardous Materials, Vol. 151, pp. 239-246.

Lv, X., Xu, J., Jiang, G., Xu, X., 2011, “Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes,” Chemosphere, Vol. 85, pp. 1204-1209.

Masciangioli, T., Zhang, W.X., 2003, “Environmental Technologies at the Nanoscale,” Environmental Science and Technology, Vol. 37, pp. 102A–108A.

Mobasherpour, I., Salahi, E., Ebrahimi, M., “Thermodynamics and kinetics of adsorption of Cu(II) from aqueous solutions onto multi-walled carbon nanotubes,” Journal of Saudi Chemical Society, Article in press, 2011.

Niu, H.Y., Wang, J.M., Shi, Y.L., Cai, Y.Q., Wei, F.S., 2009, “Adsorption behavior of arsenic onto protonated titanate nanotubes prepared via hydrothermal method,” Microporous and Mesoporous Materials, Vol. 122, pp. 28-35.

Pan, B., Xing, B., 2008, “Adsorption Mechanisms of Organic Chemicals on Carbon Nanotubes,” Environmental Science and Technology, Vol. 42, pp. 9005-9013.

Powell, K. J., Brown, P. L., Byrne, R. H., Gajda, T., Hefter, G., Sjoberg, S., Wanner, H., 2005, “Chemical speciation of environmentally significant heavy metals with inorganic ligands,” International union of pure and applied chemistry, Vol. 77, pp. 739–800.

Rao, C.N.R., Seshadri, R., Govindaraj, A., Sen, R., 1995, “Fullerenes, nanotubes, onions ans related carbon structures,” Materials Science and Engineering, Vol. 15, pp.209-262.

Rao, G.P., Lu, C., Su, F., 2007, “Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review,” Separation and Purification Technology, Vol. 58, pp. 224-231.

Ren, X., Chen, C., Nagatsu, M., Wang, X., 2011, “Carbon Nanotubes as Adsorbents in Environmental Pollution Management-A review,” Chemical Engineering Journal, Vol. 170, pp. 395–410.

Stafiej, A., Pyrzynska, K., 2007, “Adsorption of heavy metal ions with carbon nanotubes,” Separation and Purification Technology, Vol. 58, pp. 49-52.

Su, F., Lu, C., Hu, S., 2010, “Adsorption of benzene, toluene, ethylbenzene and p-xylene by NaOCl-oxidized carbon nanotubes,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 353, pp. 83-91.

Subir, M., Ariya, P.A., Dastoor, A.P., 2011, “A review of uncertainties in atmospheric modeling of mercury chemistry I. Uncertainties in existing kinetic parameters e Fundamental limitations and the importance of heterogeneous chemistry,” Atmospheric Environment, Vol. 45, pp. 5664-5676.

Tawabini, B., Al-Khaldi, S., Atieh, M., Khaled, M., 2010, “Removal of mercury from water by multi-walled carbon nanotubes,” Water Science & Technology-wst, Vol. 61.3, pp. 591-598.

Theron, J., Walker, J.A., Cloete, T.E., 2008, “Nanotechnology and Water Treatment: Applications and Emerging Opportunities-Critical Reviews,” Microbiology, Vol. 34, pp. 43-69.

UNEP, 2002, “Global Mercury Assessment.”

USEPA, 1997, “Aqueous Mercury Treatment (Capsule Report),” EPA/625/R-97/004.

USEPA, 2007, “Treatment Technologies for Mercury in Soil, Waste, and Water”.

USEPA, 2008, “Health Services Industry Detailed Study - Dental Amalgam”.

Velickovic, Z., Vukovic, G.D., Marinkovic, A.D., Moldovan, M.S., Peric-Grujic, A.A., Uskokovic, P.S., Ristic, M.D., 2012, “Adsorption of arsenate on iron(III) oxide coated ethylenediamine functionalized multiwall carbon nanotubes,” Chemical Engineering Journal, Vol. 181-182, pp. 174-181.

Wang, H.J., Zhou, A.L., Peng, F., Yu, H., Chen, L.F., 2007, “Adsorption characteristic of acidified carbon nanotubes for heavy metal Pb(II) in aqueous solution,” Materials Science and Engineering A, Vol. 466, pp. 201-206.

Wang, J., Zhang, X., Zhang, B., Zhao, Y., Zhai, R., Liu, J., Chen, R., 2010, “Rapid adsorption of Cr (VI) on modified halloysite nanotubes,” Desalination, Vol. 259, pp.22-28.

Wang, S.G., Gong, W.X., Liu, X.W., Yao, Y.W., Gao, B.Y., Yue, Q.Y., 2007, “Removal of lead(II) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes,” Separation and Purification Technology, Vol. 58, pp. 17-23.

Wu, C.H., 2006, “Adsorption of reactive dye onto carbon nanotubes: Equilibrium, kinetics and thermodynamics,” Journal of Hazardous Materials, Vol. 144, pp. 93-100.

Xiong, L., Chen, C., Chen, Q., Ni, J., 2011, “Adsorption of Pb(II) and Cd(II) from aqueous solutions using titanate nanotubes prepared via hydrothermal method,” Journal of Hazardous Materials, Vol. 189, pp. 741-748.

Yang, K., Xing, B., 2007, “Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water,” Environmental Pollution, Vol. 145, pp.529-537.

Yang, K., Zhu, L., Xing, B., 2006, “Adsorption of Polycyclic Aromatic Hydrocarbons by Carbon Nanomaterials,” Environ. Sci. Technol, Vol. 40, pp. 1855-1861.

Yen, J.H., Leu, I.C., Lin, C.C., Hon, M.H., 2004, “Effect of catalyst pretreatment on the growth of carbon nanotubes iamond and Related Materials,” Vol. 13, pp. 1237-1241.

Yu, F., Ma, J., Wu, Y., 2011, “Adsorption of toluene, ethylbenzene and m-xylene on multi-walled carbon nanotubes with different oxygen contents from aqueous solutions,” Journal of Hazardous Materials, Vol. 192, pp. 1370-1379.

Zahir, F., Rizwi, S.J., Haq, S.K., Khan, R.H., 2005, “Low dose mercury toxicity and human health,” Environmental Toxicology and Pharmacology, Vol. 20, pp.351-360.

Zhang, L., Xu, T., Liu, X., Zhang, Y., Jin, H., 2011, “Adsorption behavior of multi-walled carbon nanotubes for the removal of olaquindox from aqueous solutions,” Journal of Hazardous Materials, Vol. 197, pp. 389-396.

Zhua, J., Yang, J., Deng, B., 2009, “Enhanced Mercury Ion Adsorption by Amine-modified Activated Carbon,” Journal of Hazardous Materials, Vol. 166, pp.866-872.

林資萍,2011,「汞及甲基汞在魚體的生物累積性及動物毒性效應研究」,碩士論文,弘光科技大學環境工程研究所。台中市。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 羅文輝、朱立(1993)。<台港審判前犯最新聞之比較研究>,《新聞學研究》,
2. 羅文輝、朱立(1993)。<台港審判前犯最新聞之比較研究>,《新聞學研究》,
3. 羅文輝、朱立(1993)。<台港審判前犯最新聞之比較研究>,《新聞學研究》,
4. 羅文輝、朱立(1993)。<台港審判前犯最新聞之比較研究>,《新聞學研究》,
5. 賴祥蔚(2007)。<媒體素養與言論自由的辨證>,《新聞學研究》,92:97-
6. 賴祥蔚(2007)。<媒體素養與言論自由的辨證>,《新聞學研究》,92:97-
7. 賴祥蔚(2007)。<媒體素養與言論自由的辨證>,《新聞學研究》,92:97-
8. 賴祥蔚(2007)。<媒體素養與言論自由的辨證>,《新聞學研究》,92:97-
9. 管貴貞、連秀鸞(1995)。<詮釋學方法在質性研究中之探究>,《輔導季刊》,
10. 管貴貞、連秀鸞(1995)。<詮釋學方法在質性研究中之探究>,《輔導季刊》,
11. 管貴貞、連秀鸞(1995)。<詮釋學方法在質性研究中之探究>,《輔導季刊》,
12. 管貴貞、連秀鸞(1995)。<詮釋學方法在質性研究中之探究>,《輔導季刊》,
13. 楊意菁(1998)。<犯罪新聞與閱聽人多元意義的建構與詮釋>,《空大學訊》,
14. 楊意菁(1998)。<犯罪新聞與閱聽人多元意義的建構與詮釋>,《空大學訊》,
15. 楊意菁(1998)。<犯罪新聞與閱聽人多元意義的建構與詮釋>,《空大學訊》,