( 您好!臺灣時間:2021/07/31 15:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Yao Yin Chen
論文名稱:利用奈米雙金屬活性碳 (BM-GAC/O3/H2O2)複合程序處理掩埋滲 出水中藥物殘留物(PPCPs)可行性研究
論文名稱(外文):Using nano binary metal oxides coated activated carbon (BM-GAC/O3/H2O2) processes for the treatment of PPCPs in landfill leachates
外文關鍵詞:landfill leachatepharmaceuticalBM-GAC/O3/H2O2diclofenacibuprofen
  • 被引用被引用:1
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討台灣中部掩埋場垃圾滲出水中藥物殘留物濃度分佈,並探討利用BM-GAC/O3/H2O2 程序去除水中藥物殘留物可行性研究。未使用完的藥物可能棄置垃圾桶,而進入垃圾掩埋場,最後造成地下水的污染問題。本研究除了對掩埋場滲出水進行藥物殘留物濃度分佈調查外,也探討現有滲出水處理廠對於藥物殘留物的去除效果,分析藥物殘留物包括clofibric acid、ibuprofen、diclofenac、gemfibrozil、acetaminophen、caffeine、carbamazepine、sulfamethoxazole與atenolol。滲出水處理廠對ibuprofen有相當好的去除效果(去除率95%),但對carbamazepine去除效果則不理想。
本研究也探討以BM-GAC/O3/H2O2 程序去除水中diclofenac與 ibuprofen可行性研究。實驗結果顯示BM-GAC/O3/H2O2程序對diclofenac與ibuprofen去除效果比單獨使用O3 程序更佳,可有效降低廢水的毒性,最佳處理條件為中性(pH 6)與O3/H2O2 莫耳比為2:1。反應動力模擬結果以Intra-particle diffusion model為最佳。BM-GAC/O3/H2O2程序對藥物殘留物有不錯的去除效果,值得持續研究。

This study investigated using BM-GAC/O3/H2O2 process for the removal of pharmaceutical residues in the landfill leachates. Distribution and concentrations of pharmaceutical residues at three landfill leachates at central Taiwan are investigated as well.
Expired and unused pharmaceuticals might be disposed at the landfills in Taiwan. These landfill leachates might contain these pharmaceuticals. Groundwater might be contaminated as a result. Therefore, this study investigated distributions of pharmaceutical residues in municipal landfill leachates including clofibric acid, ibuprofen, diclofenac, gemfibrozil, acetaminophen, caffeine, carbamazepine, sulfamethoxazole and atenolol. In addition, current landfill leachate treatment plants can treat ibuprofen effectively (95% removal), but removal efficiency for carbamazepine is limited.
BM-GAC/O3/H2O2 process was applied in this study to remove diclofenac and ibuprofen. Experimental results indicated that the BM-GAC/O3/H2O2 process is significant better than that of ozone process alone and toxicity of the wastewater is reduced significantly by the process. The optimum operation conditions of the process are pH 6 and O3/H2O2 2:1. Intra-particle diffusion model can be used to simulate the oxidation process.

中文摘要 I
Abstract II
目錄 IV
表目錄 VIII
圖目錄 X
第一章 序論 1
1-1 研究背景介紹 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 藥物殘留物來源與污染途徑 3
2-1-1人體以及動植物排泄 7
2-1-2 醫院與製藥廢水 7
2-1-3 棄置與掩埋 8
2-2 各類藥物殘留物簡介 10
2-2-1 止痛類、抗發炎或消炎 10
2-2-2 精神用藥 11
2-2-3 心臟病用藥 12
2-2-4 降血壓、血脂藥品 13
2-2-5 抗生素 13
2-2-6 個人保建品 14
2-3 藥物殘留物分析 17
2-4 藥物殘留物對環境的影響 18
2-5 藥品處理現況 20
2-5-1 污水廠處理方法 20
2-5-2 生物處理程序 21
2-5-3 高級氧化處理 22
2-6 高級氧化法(AOPs) 23
2-7 臭氧特性 24
2-7-1 臭氧於水處理之反應機制 25
2-7-2 過氧化氫(H2O2)基本性質及應用 26
2-7-3 O3/H2O2莫耳比 27
2-8催化氧化法 29
2-8-1單金屬催化劑 29
2-8-2 雙金屬催化劑 30
2-9反應動力模式 33
2-9-1 Generalized first order equation 33
2-9-2 Pseudo second order equation 34
2-9-3 Intra-particle diffusion model 36
2-10 誤差平方和(Sum of error squares, SSE) 37
第三章 實驗材料與方法 38
3-1 研究方法 38
3-2實驗材料與設備 40
3-2-1掩埋場場址 40
3-2-2 實驗藥品 43
3-2-3催化劑製備 45
3-2-4 實驗儀器 47
3-3 採樣與分析方法 49
3-3-1採樣步驟與樣品保存 49
3-3-2儲備液配置 50
3-3-3固相萃取 52
3-4 BM-GAC去除藥物實驗 56
3-5 O3/H2O2 莫耳比計算 57
3-6微毒性試驗 59
3-7 LC-MS/MS 分析 60
4-1 不同掩埋場滲出水藥物殘留物含量 64
4-1-1掩埋場垃圾滲出水藥物殘留物濃度分佈 66
4-1-2掩埋場滲出水處理設備對藥物殘留物去除效率 76
4-1-3 藥品分類討論 81
4-2 BM-GAC/O3處理Diclofenac與Ibuprofen可行性研究 92
4-2-1 BM-GAC/O3/H2O2 95
4-2-2不同BM-GAC對diclofenac去除率影響 99
4-2-3 pH對BM-GAC處理程序影響 101
4-2-4 O3/H2O2莫耳比對diclofenac與ibuprofen去除影響 105
4-3 反應動力模式模擬 107
4-3-1 BM-GAC/O3/H2O2處理diclofenac動力模擬 107
4-3-2 不同pH條件動力模擬 112
4-4藥物殘留物毒性試驗 117
第五章 結果與建議 121
5-1 結論 121
5-2 建議 123
第六章 參考文獻 124

Alder, A.C., Schaffner, C., Majewsky, M., Klasmeier, J., Fenner, K., 2010. Fate of β-blocker human pharmaceuticals in surface water: Comparison of measured and simulated concentrations in the Glatt Valley Watershed, Switzerland. Water Res. 44, 936-948.
Ashton, D., Hilton, M., Thomas, K.V., 2004. Investigating the environmental transport of human pharmaceuticals to streams in the United Kingdom. Sci. Total Environ. 333, 167-184.
Barnes, K.K., Christenson, S.C., Kolpin, D.W., Focazio, M.J., Furlong, E.T., Zaugg, S.D., Meyer, M.T., Barber, L.B., 2004. Pharmaceuticals and other organic waste water contaminants within a leachate plume downgradient of a municipal landfill. Ground Water Monit. Rem. 24, 119-126.
Behera, S.K., Kim, H.W., Oh, J., Park, H., 2011. Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea. Sci. Total Environ. 409, 4351-4360.
Bound, J.P., Kitsou, K., Voulvoulis, N., 2006. Household disposal of pharmaceuticals and perception of risk to the environment. Environ. Toxicol. Pharmacol. 21, 301-307.
Buszka, P.M., Yeskis, D.J., Kolpin, D.W., Furlong, E.T., Zaugg, S.D., Meyer, M.T., 2009. Waste-indicator and pharmaceutical compounds in landfill-leachate-affected ground water near Elkhart, Indiana, 2000-2002. Bull. Environ. Contam. Toxicol. 82, 653-659.
Cao, S., Chen, G., Hu, X., Yue, P. L.,2003.Catalytic wet air oxidation of wastewater containing ammonia and phenol over activated carbon supported Pt catalysts. Catalysis Today, Vol. 88, pp. 37-47
Carballa, M., Manterola, G., Larrea, L., Ternes, T., Omil, F., Lema, J.M., 2007. Influence of ozone pre-treatment on sludge anaerobic digestion: Removal of pharmaceutical and personal care products. Chemosphere. 67, 1444-1452.
Clara, M., Strenn, B., Kreuzinger, N., 2004. Carbamazepine as a possible anthropogenic marker in the aquatic environment: Investigations on the behaviour of Carbamazepine in wastewater treatment and during groundwater infiltration. Water Res. 38, 947-954.
Clara, M., Strenn, B., Gans, O., Martinez, E., Kreuzinger, N., Kroiss, H., 2005. Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Res. 39, 4797-4807.
Cleuvers, M., 2004. Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid. Ecotoxicol. Environ. Saf. 59, 309-315.
Chen, H., Sayari, A., Adnot, A., Larachi, F., 2001. Composition-activity effects of Mn-Ce-O composites on phenol catalytic wet oxidation. Applied Catalysis B: Environmental. 32, 195-204.
Chitra, S., Sekaran, G. and Chandrakasan, G., 1996. Adsorption of a mutant strain of Pseudomonas pictorum on rice bran based activated carbon. Journal of hazardous materials, vol. 48, no. 1-3, pp. 239-250.
Cornils, B., Herrmann, W.A., 2003. Concepts in homogeneous catalysis: the industrial view. Journal of Catalysis. 216, 23-31.
Daughton, C.G., Ruhoy, I.S., 2009. Environmental footprint of pharmaceuticals: The significance of factors beyond direct excretion to sewers. Environmental Toxicology and Chemistry. 28, 2495-2521.
Doll, T.E., Frimmel, F.H., 2005. Removal of selected persistent organic pollutants by heterogeneous photocatalysis in water. Catalysis Today. 101, 195-202.
Eggen, T., Moeder, M., Arukwe, A., 2010. Municipal landfill leachates: A significant source for new and emerging pollutants. Sci. Total Environ. 408, 5147-5157.
Fatta-Kassinos, D., Hapeshi, E., Achilleos, A., Meric, S., Gros, M., Petrovic, M., Barcelo, D., 2010. Existence of Pharmaceutical Compounds in Tertiary Treated Urban Wastewater that is Utilized for Reuse Applications. Water Resour. Manage. , 1-11.
Fan, H., Shu, H., Tajima, K., 2006. Decolorization of acid black 24 by the FeGAC/H2O2 process. J. Hazard. Mater. 128, 192-200
Feng, J., Hu, X., Yue, P.L., 2006. Effect of initial solution pH on the degradation of Orange II using clay-based Fe nanocomposites as heterogeneous photo-Fenton catalyst. Water Res. 40, 641-646.
Gao, M., Song, W., Sun, C., Zhang, J., Sun, W., 2011. Ecotoxicological risk of Residual Solvents in Pharmaceuticals on Daphnia Magna. Energy Procedia. 11, 4803-4807.
González Alonso, S., Catalá, M., Maroto, R.R., Gil, J.L.R., de Miguel, Á.G., Valcárcel, Y., 2010. Pollution by psychoactive pharmaceuticals in the Rivers of Madrid metropolitan area (Spain). Environ. Int. 36, 195-201.
Gros, M., Petrović, M., Ginebreda, A., Barceló, D., 2010. Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes. Environ. Int. 36, 15-26.
Gros, M., Petrović, M., Barceló, D., 2007. Wastewater treatment plants as a pathway for aquatic contamination by pharmaceuticals in the ebro river basin (northeast Spain). Environmental Toxicology and Chemistry. 26, 1553-1562.
Grung M, Kallqvist T, Sakshaug S, Skurtveit S, Thomas KV.,2008.Environmental assessment ofNorwegian priority pharmaceuticals based on the EMEA guideline. EcotoxicolEnviron Saf.71,328–40.
Gültekin, I., Ince, N.H., 2007. Synthetic endocrine disruptors in the environment and water remediation by advanced oxidation processes. J. Environ. Manage. 85, 816-832.
Günder, B., Krauth, K., 1998. Replacement of secondary clarification by membrane separation — Results with plate and hollow fibre modules. Water Science and Technology. 38, 383-393.
Hamoudi, S., Larachi, F., Sayari, A., 1998. Wet oxidation of phenolic solutions over heterogeneous catalysts: Degradation profile and catalyst behavior. Journal of Catalysis. 177, 247-258.
Heberer, T., 2002. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: A review of recent research data. Toxicol. Lett. 131, 5-17.
Hernando, M.D., Mezcua, M., Fernández-Alba, A.R., Barceló, D., 2006. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta. 69, 334-342.
Hernando, MD, Aguera A, Fernandez-Alba AR. ,2007. LC-MS analysis and environmental risk oflipid regulators. Anal Bioanal Chem,387,1269–85.
Ho, Y.S., McKay, G., 2000. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 34, 735-742.
Hu, X., Lei, L., Chu, H.P., Yue, P.L., 1999. Copper/activated carbon as catalyst for organic wastewater treatment. Carbon. 37, 631-637.
Imamura, S., Shono, M., Okamoto, N., Hamada, A., Ishida, S., 1996. Effect of cerium on the mobility of oxygen on manganese oxides. Applied Catalysis A: General. 142, 279-288.
Jelic, A., Gros, M., Ginebreda, A., Cespedes-Sánchez, R., Ventura, F., Petrovic, M., Barcelo, D., 2011. Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Res. 45, 1165-1176.
Karthikeyan, K.G., Meyer, M.T., 2006. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Sci. Total Environ. 361, 196-207.
Kannan , N., and Sundaram M. M., 2001, "Kinetics and mechanisms of removal of methylene blue by adsorption on various carbons- a comparative study," Dyes Pigments, Vol.51, P25-40.
Kanzaki, H., Kitamura, T., Hamada, R., Nishiyama, S., Tsuruya, S., 2004. Activities for phenol formation using Cu catalysts supported on Al 2O3 in the liquid-phase oxidation of benzene in aqueous solvent with high acetic acid concentration. Journal of Molecular Catalysis A: Chemical. 208, 203-211.
Kim, S.D., Cho, J., Kim, I.S., Vanderford, B.J., Snyder, S.A., 2007a. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res. 41, 1013-1021.
Kim, Y., Choi, K., Jung, J., Park, S., Kim, P., Park, J., 2007b. Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea. Environ. Int. 33, 370-375.
Kimura, K., Iwase, T., Kita, S., Watanabe, Y., 2009. Influence of residual organic macromolecules produced in biological wastewater treatment processes on removal of pharmaceuticals by NF/RO membranes. Water Res. 43, 3751-3758.
Kumar, A., Xagoraraki, I., 2010. Pharmaceuticals, personal care products and endocrine-disrupting chemicals in U.S. surface and finished drinking waters: A proposed ranking system. Sci. Total Environ. 408, 5972-5989.

Lagergren, S., 1898. About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens. Handlingar. 24, 1-39.
Lambropoulou, D.A., Hernando, M.D., Konstantinou, I.K., Thurman, E.M., Ferrer, I., Albanis, T.A., Fernández-Alba, A.R., 2008. Identification of photocatalytic degradation products of bezafibrate in TiO2 aqueous suspensions by liquid and gas chromatography. Journal of Chromatography A. 1183, 38-48.
Li, H., Liu, X., Huang, L., 2007. Synthesis of lutetium aluminum garnet powders by nitrate-citrate sol-gel combustion process. Ceram. Int. 33, 1141-1143
Lin, A.Y., Lin, C., Chiou, J., Hong, P.K.A., 2009a. O3 and O3/H2O2 treatment of sulfonamide and macrolide antibiotics in wastewater. J. Hazard. Mater. 171, 452-458.
Lin, A.Y., Panchangam, S.C., Lo, C., 2009b. The impact of semiconductor, electronics and optoelectronic industries on downstream perfluorinated chemical contamination in Taiwanese rivers. Environmental Pollution. 157, 1365-1372.
Lin, A.Y., Tsai, Y., 2009. Occurrence of pharmaceuticals in Taiwan's surface waters: Impact of waste streams from hospitals and pharmaceutical production facilities. Sci. Total Environ. 407, 3793-3802.
Lin, A.Y., Yu, T., Lateef, S.K., 2009c. Removal of pharmaceuticals in secondary wastewater treatment processes in Taiwan. J. Hazard. Mater. 167, 1163-1169.
Lin, A.Y., Yu, T., Lin, C., 2008. Pharmaceutical contamination in residential, industrial, and agricultural waste streams: Risk to aqueous environments in Taiwan. Chemosphere. 74, 131-141.
Liu, A., Gonzalez, R.D., 1999. Adsorption/Desorption in a System Consisting of Humic Acid, Heavy Metals, and Clay Minerals. J. Colloid Interface Sci. 218, 225-232.
Liou, R.M., Chen, S.H., Hung, M.Y., Hsu, C.S., Lai, J.Y., 2005. Fe (III) supported on resin as effective catalyst for the heterogeneous oxidation of phenol in aqueous solution. Chemosphere. 59, 117-125.
Lishman, L., Smyth, S.A., Sarafin, K., Kleywegt, S., Toito, J., Peart, T., Lee, B., Servos, M., Beland, M., Seto, P., 2006. Occurrence and reductions of pharmaceuticals and personal care products and estrogens by municipal wastewater treatment plants in Ontario, Canada. Sci. Total Environ. 367, 544-558.
Lundström, E., Adolfsson-Erici, M., Alsberg, T., Björlenius, B., Eklund, B., Lavén, M., Breitholtz, M., 2010. Characterization of additional sewage treatment technologies: Ecotoxicological effects and levels of selected pharmaceuticals, hormones and endocrine disruptors. Ecotoxicol. Environ. Saf.

Maeng, S.K., Sharma, S.K., Lekkerkerker-Teunissen, K., Amy, G.L., 2011. Occurrence and fate of bulk organic matter and pharmaceutically active compounds in managed aquifer recharge: A review. Water Res. 45, 3015-3033.
Marsalek, J., Rochfort, Q., Mayer, T., Servos, M., Dutka, B., Brownlee, B., 1999. Toxicity testing for controlling urban wet-weather pollution: advantages and limitations. Urban Water. 1, 91-103.
Matin, A.A., Farajzadeh, M.A., Jouyban, A., 2005. A simple spectrophotometric method for determination of sodium diclofenac in pharmaceutical formulations. Il Farmaco. 60, 855-858.
Minet, J., Langlais, F., Naslain, R., 1991. Thermo-mechanical properties and oxidation resistance of zirconia CVI matrix composites: 2—Thermal properties and oxidation resistance. Journal of the European Ceramic Society. 7, 283-293.
Motoyama, M., Nakagawa, S., Tanoue, R., Sato, Y., Nomiyama, K., Shinohara, R., 2011. Residues of pharmaceutical products in recycled organic manure produced from sewage sludge and solid waste from livestock and relationship to their fermentation level. Chemosphere. 84, 432-438.
Molina, C. B., Casas, J. A., Zazo, J. A., and Rodríguez, J. J. (2006). A comparison of Al-Fe and Zr-Fe pillared clays for catalytic wet peroxide oxidation. Chemical Engineering Journal, 118(1-2), 29-35.
Musson, S.E., Townsend, T.G., 2009. Pharmaceutical compound content of municipal solid waste. J. Hazard. Mater. 162, 730-735.
Petryk, J., Kolakowska, E., 2000. Cobalt oxide catalysts for ammonia oxidation activated with cerium and lanthanum. Applied Catalysis B: Environmental. 24, 121-128.
Saquib, M., Vinckier, C., Van der Bruggen, B., 2010. The effect of UF on the efficiency of O3/H2O2 for the removal of organics from surface water. Desalination. 260, 39-42.
Schmidt, W., O’Rourke, K., Hernan, R., Quinn, B., 2011. Effects of the pharmaceuticals gemfibrozil and diclofenac on the marine mussel (Mytilus spp.) and their comparison with standardized toxicity tests. Mar. Pollut. Bull. 62, 1389-1395.
Slack, R.J., Gronow, J.R., Hall, D.H., Voulvoulis, N., 2007. Household hazardous waste disposal to landfill: Using LandSim to model leachate migration. Environmental Pollution. 146, 501-509
Sui, Q., Huang, J., Deng, S., Yu, G., Fan, Q., 2010. Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China. Water Res. 44, 417-426.
Ternes, T., 2001. Pharmaceuticals and metabolites as contaminants of the aquatic environment. ACS Symposium Series. 791, 39-54.
Ternes, T., Bonerz, M., Schmidt, T., 2001. Determination of neutral pharmaceuticals in wastewater and rivers by liquid chromatography–electrospray tandem mass spectrometry. Journal of Chromatography A. 938, 175-185.
Tseng, R., Wu, F. and Juang, R. 2003, "Liquid-phase adsorption of dyes and phenols using pinewood-based activated carbons", Carbon, vol. 41, no. 3, pp. 487-495.
Ventura, A., Jacquet, G., Bermond, A. and Camel, V. 2002, "Electrochemical generation of the Fenton's reagent: application to atrazine degradation", Water research, vol. 36, no. 14, pp. 3517-3522.
Vogna, D., Marotta, R., Andreozzi, R., Napolitano, A., d’Ischia, M., 2004a. Kinetic and chemical assessment of the UV/H2O2 treatment of antiepileptic drug carbamazepine. Chemosphere. 54, 497-505.
Vogna, D., Marotta, R., Napolitano, A., Andreozzi, R., d’Ischia, M., 2004b. Advanced oxidation of the pharmaceutical drug diclofenac with UV/H2O2 and ozone. Water Res. 38, 414-422.
Yu, J.T., Bouwer, E.J., Coelhan, M., 2006. Occurrence and biodegradability studies of selected pharmaceuticals and personal care products in sewage effluent. Agric. Water Manage. 86, 72-80.
Yu, T.-., Lin, A.Y., Lateef, S.K., Lin, C., Yang, P.-., 2009a. Removal of antibiotics and non-steroidal anti-inflammatory drugs by extended sludge age biological process. Chemosphere. 77, 175-181.
Yu, T.-., Lin, A.Y., Lateef, S.K., Lin, C., Yang, P., 2009b. Removal of antibiotics and non-steroidal anti-inflammatory drugs by extended sludge age biological process. Chemosphere. 77, 175-181.
Zheng, Z., Zhang, H., He, P., Shao, L., Chen, Y., Pang, L., 2009. Co-removal of phthalic acid esters with dissolved organic matter from landfill leachate by coagulation and flocculation process. Chemosphere. 75, 180-186.
Zhang, Z., Hibberd, A., Zhou, J.L., 2008. Analysis of emerging contaminants in sewage effluent and river water: Comparison between spot and passive sampling. Anal. Chim. Acta. 607, 37-44.
Zhou, J.L., Zhang, Z.L., Banks, E., Grover, D., Jiang, J.Q., 2009. Pharmaceutical residues in wastewater treatment works effluents and their impact on receiving river water. J. Hazard. Mater. 166, 655-661.
Zwiener, C., Frimmel, F.H., 2000. Oxidative treatment of pharmaceuticals in water. Water Res. 34, 1881-1885.
蘇弘毅、洪錫勳,UV/H2O2 技術在化工業上之應用,工業污染防治 14卷4 期,民國84 年10 月
曾迪華、莊連春、郭家倫、楊志堅,UV/H2O2 氧化程序於水處理,工業污染防治第56 期,1995 年10 月

註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top