跳到主要內容

臺灣博碩士論文加值系統

(3.235.174.99) 您好!臺灣時間:2021/07/24 19:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪政新
論文名稱:應用缺氧/好氧薄膜生物反應槽 處理高科技產業廢水
指導教授:王建明
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:102
中文關鍵詞:薄膜生物反應槽缺氧/好氧程序高科技產業廢水氨氮減量
外文關鍵詞:membrane bioreactor (MBR)Anoxic-Oxic ProcessHigh-tech wastewatersreduction of NH3-N
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在光電和半導體等高科技產業的製程中,會需要用到大量的純水及化學藥劑,進而產生大量的廢水。不論是從處理或回收的角度,目前薄膜生物反應槽(membrane bioreactor, MBR)技術已逐漸發展成熟,並廣泛應用於處理生活污水、畜牧廢水和各類工業廢水中。本研究係採用缺氧-好氧程序(A/O)結合MBR系統,處理科學園區污水處理廠之進流廢水。研究主要目的為:(1)測試A/O-MBR技術對此類低碳高氮類高科技產業廢水的處理效果,(2)測試A/O-MBR系統對科技產業廢水的最適化操作參數。
本研究分別測試A/O-MBR系統在不同水力停留時間(HRT)-7 hrs和15 hrs,不同污泥停留時間(SRT)-10天、20天和30天和額外添加碳源(甲醇)情況下的處理效率。測試結果顯示,出流水中的COD以及BOD5在各不同條件下之去除效率分別可達到60%和70%以上;當SRT為30天、添加甲醇(外加碳源)的情況下,COD及BOD5的去除率更可高達88%及90%,且均可達放流水標準。至於氨氮的去除效率,在7 hrs和15 hrs的HRT下,去除率分別為29%和28%。這顯示增加水力停留時間,對氨氮的去除並無顯著的效果。但是,若提高污泥停留時間至20天或30天之後,因污泥濃度增高,去除效率分別提升為69%及56%。換言之,若以氨氮去除的觀點而言,20天的污泥停留時間較30天為佳。然而,額外碳源添加與否,對氨氮去除的影響並不顯著。SS濃度雖然在缺氧槽、好氧槽和MBR槽體中,皆有明顯上升趨勢,但經MBR處理後,去除率不僅可達80%以上且可達到放流水標準。這證明測試的薄膜可有效攔截水中的懸浮固體顆粒。反應過程中,槽體中的pH值有明顯下降及硝酸鹽氮濃度增加的現象,這是因微生物硝化作用所致。因此,在測試過程中,需添加鹼劑補充。整個測試過程中,導電度並無明顯的變化,去除率約在5%。另外,監測絲膜之TMP變化情形可發現,增加SRT雖可使活性污泥濃度上升,但是TMP也隨之上升,導致通水量降低。

In the optoelectronic and semi-conductor industries, a large amount of pure water and chemicals is required in the manufacture processes. Therefore, a significant amount of wastewater will be generated. No matter from the view of treatment or reuse, membrane bioreactor (MBR)
technique has been developed maturely and applied to the sanitary sewage, livestock wastewater, and different industrial wastewaters. In this study, an anoxic procedure combined MBR system is used to treat the high-tech
wastewater from a wastewater treatment plant of a science industrial park.
The purposes of this study are: (1) to examine the effect of A/O-MBR technique on the treatment of high-tech wastewater with low C and high N contents; (2) to test the optimal operation parameters of the A/O-MBR for this particular high-tech wastewater. In this study, different hydraulic retention time (HRT - 7 and 15 hrs),different sludge retention time (SRT – 10, 20, and 30 days), and addition of
extra carbon source (methanol) were examined for the treatment efficiency of A/O-MBR system. The results showed that the removal efficiencies of COD and BOD5 in effluents were above 60% and 70%, respectively, at different conditions. The removal efficiencies of COD and BOD5 in effluents can reach to 88% and 90% at the conditions of SRT 30 days and the addition of methanol (extra C source). For NH3-N, the removal efficiencies were 29% and 28% at HRT 7 hrs and 15 hrs, respectively. It means the increase of HRT has no obvious effect on the removal of NH3-N.
However, the increase of SRT to 20 or 30 days, the removal efficiencies of NH3-N can increase to 69% and 56%, respectively. In other words, 20-days SRT is better than the 30-days SRT for the removal of NH3-N.
目錄
摘要 I
Abstract III
目錄 V
圖目錄 IX
表目錄 XI
第一章 前言 1
1-1 研究動機 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 高科技產業園區廢水特性 3
2-1-1 高科技產業類型及園區污水處理現況 3
2-1-2 高科技產業廢水特性 6
2-1-3 高科技產業廢水氮管制標準 8
2-2 氮循環 10
2-2-1 硝化作用 12
2-2-2 脫硝作用 17
2-2-3 厭氧氨氧化作用 20
2-3 無氧/好氧生物程序(AO Process) 21
2-4 生物薄膜反應槽(MBR) 23
2-4-1 生物薄膜反應槽系統介紹 23
2-4-2 生物薄膜反應槽系統分類 23
2-4-3 生物薄膜反應槽系統特點 26
2-4-4 薄膜分類及材質特性 26
2-5 積體電路與光電產業廢水整治技術 31
第三章 實驗材料與方法 36
3-1 實驗設計 36
3-2 A/O-MBR設備 38
3-2-1 A/O-MBR設備槽體說明 38
3-2-2 MBR絲膜特性及維護 42
3-3 A/O-MBR操作內容及條件 46
3-3-1 進流水性質 46
3-3-2 污泥來源及馴養 48
3-3-3 A/O-MBR操作參數 48
3-3-4 A/O-MBR 碳源添加 50
3-4 實驗分析項目及方法 52
3-4-1 水中懸浮固體物濃度 53
3-4-2 化學需氧量測定 54
3-4-3 生化需氧量測定 55
3-4-4 氨氮測定 56
3-4-5 凱氏氮測定 56
3-4-6 硝酸鹽氮與亞硝酸鹽氮分析 57
3-4-7 總氮分析 57
3-5 實驗分析設備 58
3-5-1 離子層析儀(IC)原理 59
第四章 結果與討論 60
4-1 水質處理效果討論 60
4-1-1 系統中酸鹼值監測 61
4-1-2 系統中氧化還原電位監測 63
4-1-3 系統中SS、MLSS濃度 65
4-1-4 系統中導電度監測 68
4-1-5 系統中COD去除特性 70
4-1-6 系統中BOD5去除特性 73
4-1-7 系統中氮化物去除特性 75
4-1-8 系統中碳氮比及食微比變化 80
4-1-9 進、出流水質處理結果 82
4-2 MBR生物絲膜TMP變化情形 84
4-3 A/O-MBR處理水回收評估 86
第五章 結論與建議 87
5-1 結論 87
5-2 建議 89
參考文獻 90
附錄 97


Benefield, L. D. and Randall, C. W. (1980). Biological process design for waste-water treatment.
Berlin, Lai. and Wen, K. Shieh. (1996).〝Batch Monoethylamine degradation via nitrate perspiration“ , Water.Resh, Vol 30.No 10.pp2530-2534.
Bitton, G., Dutka, B. J. and Hendricks, C. W. (1989). “Microbial toxicity tests”, Ecological Assessment of Hazardous Waste Sites, W. Warren-Hicks, B. R. Parkhurst and S. S. Baker, Jr., Eds. EPA 600/3-89/013. U. S. EPA, Corvallis.
Cho, D., Fane, A. G., Ghayeni, S. B., Kim, K. J., and Parameshwaran. K., (1999). “Biological Waste Water Treatment and Membranes,” Proceedings of International Specialized Conference on Membrane Technology in Environmental Management, Tokyo.
Christensen, M. H. and Harremoes, P., (1978). “Nitrification and denitrification in wastewater treatment”, Water Pollution Microbiology, Vol. 2, R. Mitchell, Ed. Wiley, New York, pp. 391-414
Fan, A. and S. Chang. (2002). “Membrane Bioreactors: Design and Operation Options,”Filtration and Separation, 39, pp. 26-29
Hitdlebaugh, J. A. and Miller, R. D., (1981). Operational problems with rotating biological contactors. Journal of the Water Pollution Control Federation, 53(8), 1283-1293.
Hockenbury, M. R. and Grady Jr, C. P. L., (1977). Inhibition of nitrification: Effects of selected organic compounds. Journal of the Water Pollution Control Federation, 49(5), 768-777.
Ip, S.Y., Bridges, J. S. and Mills, N. F., (1987). Effect of Alternating Aerobic and Anaerobic Conditions on the Economics of the Activated Sludge Systems. Wat. Sci. and Tech., 19, pp.911-918.
Jetten M. S., Wagner M., Fuerst J., van Loosdrecht M. C., Kuenen J. G., and Strous M., (2001). Microbiology and application of the anaerobic ammonium oxidation(anammox) process.Current Opinion in Biotechnology. 12, 283-288.
Judd, S., (2002). Submerged membrane bioreactors: Flat plate or hollow fibre? Filtration and Separation, 39(5), 30-31.
Klemedtsson, L., Svensson, B. H., Lindberg, T. and Rosswall, T., (1977). The use of acetylene inhibition of nitrous oxide reductase in quantifying denitrification in soils. Swed. J. Agric. Res. 7:179-185.
Knowles, R., (1982). Denitrification. Microbiological Reviews, 46(1), 43-70.
Körner, H. and Zumft, W. G., (1989). Expression of denitrification enzymes in response to the dissolved oxygen levels and respiratory substrate in continuous culture of pseudomonas stutzeri. Applied and Environmental Microbiology, 55(7), 1670-1676.
Kowalchuk G. A., and Stephen J. R., (2001). Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu. Rev. Microbiol. 55, 485-529.
Kurt, M., Dunn, I. J. and Bourne, J. R., (1987). Biological denitrification of drinking water using autotrophic organisms with H2 in a fluidized-bed biofilm reactor. Biotechnology and Bioengineering. 29(4): 493-501.
Lewandowski, Z., Bakke, R. and Characklis, W. G., (1987). Nitrification and autotrophic denitrification in calcium alginate beads. Water Science and Technology, 19(1-2), 175-182.
Ludzack, F. L. and Ettinger, M. B., (1962). Controlling Operation to Minimize Activated Sludge Effluent Nitrogen. J. Wat. Pol. Con. Fed., 34, pp. 920.
Mateju, V., Cizinska, S., Krejci, J. and Janoch, T., (1992). Biological water denitrification - A review. Enzyme and Microbial Technology, 14(3), 170-183.
McClintock, S., Sherrard, J. S., Novak, J. T., and Randall, C. W., (1988). Nitrate versus Oxygen Respiration in the Activated Sludge Process. J. Wat. Pol. Con. Fed., 60(3), pp. 342-350.
Metcalf and Eddy, Inc. (1991). Wastewater Engineering: Treatment and Reuse. 3rd ed. New York: McGraw-Hill.
Mulder, A., Vandegraaf, A.A., Robertson, L.A., Kuenen, J.G., (1995). Anaerobic ammonium oxidation discovered in a dentrifying fludized-bed reactor. FEMS Microbiology Ecology 16, 177-183.
Nömmik, H., (1956). Investigations on denitrification in soil. Acta Agric. Scand. 6:195-228.
Painter, H. A., (1970). A review of literature on inorganic nitrogen metabolism in microorganisms. Water Research, 4(6), 393-450.
Painter, H. A. and Loveless, J. E., (1983). Effect of temperature and pH value on the growth-rate constants of nitrifying bacteria in the activated-sludge process. Water Research, 17(3), 237-248.
Plaza, E., Bosander, J. and Trela, J., (1991). Factors affecting biological nitrogen removal efficiency in a large wastewater treatment plant. Water Science and Technology, 24(7), 121-131.
Prescott, Harley, Klein., (1999). Microbiology (4th ed), McGraw-Hill Inc., New York
Randall, C. W. and Ubay Cokgor, E., (2001). Modification and expansion of a pure oxygen WWTP for biological nutrient removal (BNR)
“Reverse Osmosis and Nanofiltration,” American Water Works Association, Denver (1999).
Richard, W. B., (2004). “Membrane technology and applications,” John Wiley and Sons, New York.
Ripperger, S., (1992). Mikrofiltration mit membranen: Grundlagen, Verfaheren, Anwendungen, VCH-Verlagsgesellschaft, Weinheim.
Schalk J., Vries S., Kuenen J. G. and Jetten M. S., (2000). Involvement of a novel hydroxylamine oxidoreductase in anaerobic ammonium oxidation. Biochemistry. 39, 5405-5412.
Staude, E., (1992). Membrane und membranprozesse. VCH Verlagsgesellschaft, Weinheim.
Stephenson, T., Judd, S., Jefferson, B. and Brindle, K., (2000). Membrane bioreactors for wastewater treatment. IWA Publishing.
Strous, M., Heijnen, J. J., Kuenen, J. G., and Jetten, M. S. M., (1998). The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Applied Microbiology and Biotechnology, Vol. 50, No. 5, pp. 589-596.
U.S. EPA., (1977). Wastewater Treatment Facilities for Skewered Small Communities.
Villaverde, S., Garcia-Encina, P. A. and Fdz-Polanco, F., (1997). Influence of pH Overnitrifying Biofilm Activity in Submerged Biofilters. Wat. Res., 31(5), pp. 1180-1186.
Visvanathan, C., Ben Aim, R., and Parameshwaran, K., (2000). Membrane separation bioreactors for wastewater treatment. Critical Reviews in Environmental Science and Technology, 30(1), 1-48.
Yamamoto, K., (1994). Membrane Filtration in Rapid Filtration, Biological Filtration and Membrane Filtration. Gihodo Shuppan, Tokyo. pp. 255.
台灣科學工業園區科學工業同業公會網頁 ,2010 園區統計資料,http://www.asip.org.tw/index.php ,(瀏覽日期:2011.12.11)。
行政院環境保護署網頁,「水污染相關法規」, http://ivy5.epa.gov.tw/epalaw/search/LnameTypeList.aspx?ltype=06&lkind=12,(瀏覽日期:2012.01.14)。
於維芬,(2010),「污泥停留時間對薄膜生物反應槽中胞外聚合物形成與積垢速率之影響」,碩士論文,國立交通大學環境工程研究所,新竹。
吳漢松、阮國棟 ,(1988),「廢水生物硝化脫氮法之發展趨勢」,工業污染防治,第25 期,第143-153頁。
徐亞同,(1994),「不同碳源對生物反硝化的影響」,環境科學,第2期,第29-32頁。
張仲玲,(2010),「反硝化脫氮外加碳源的選擇」,碩士論文,哈爾濱工業大學,中國。
黃淑君,(2006),「不織布薄膜反應槽好氧生物分解TFT-LCD製程有機廢水程序功能及生態變化之研究」,碩士論文,國立成功大學環境工程研究所,臺南。
鄒文源,(2004),「不織布MBR處理發酵食品廢水之放大應用案例」,2004 產業環保工程實務技術研討會,臺北。
萬欽維,(2011),「應用無氧/好氧生物程序處理TFT-LCD之含氮有機廢水」,碩士論文,弘光科技大學環境工程研究所,臺中。
鄭成輝,(2005),「利用高級氧化程序(AOP)處理半導體工業放流水中COD之研究」,碩士論文,淡江大學水資源及環境工程研究所,臺北。
蘇倚暄,(2012),「應用三種不同生物技術處理高科技產業廢水之研究」,碩士論文,弘光科技大學環境工程研究所,臺中。
歐陽嶠暉、莊順興、曾淳錚,(2008),「科學園區污水處理之展望」,中華技術,第78期,第42-49頁。
吳俊哲、林樹榮,(2005),「高科技產業含低濃度有機溶劑廢水之高級處理設備研發」,環境保護署科技研究類專案 NoEPA-94-U1U1-04-014。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top