跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/14 05:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉宏洲
論文名稱:以離子交換樹脂承載奈米金屬 薄膜對水中2,4-二氯酚脫氯之研究
指導教授:蘇弘毅蘇弘毅引用關係
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:128
中文關鍵詞:24-二氯酚離子交換樹脂奈米雙金屬管柱試驗
外文關鍵詞:24-dichlorophenolion exchange resinnano bimetalliccolumn test
相關次數:
  • 被引用被引用:3
  • 點閱點閱:258
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
在這項研究中,以陽離子交換樹脂作為合成奈米零價鐵(奈米鐵)之承載體,合成為奈米鐵樹脂對2,4-二氯酚(2,4-DCP)進行脫氯程序,考慮到反應時間、鐵和鎳組成、2,4-二氯酚初始濃度、pH值、攪拌速度和反應溫度。
以進一步研究調查固定式反應器的可行性。從結果的觀察,批次反應器中使用奈米雙金屬鐵樹脂對2,4-DCP溶液可完全脫氯,而產生酚和氯離子。觀察中最佳攪拌速度在200 rpm。2,4-DCP溶液的pH值影響脫氯效率顯著;於pH 6 在20分時高脫氯效率可以達到91%。提高反應溫度到60℃可以提高脫氯效率。最好鐵鎳比例為42.5 mgFe 9.8mgNi/g-resin。動力學研究顯示脫氯反應,此偽一級反應。在批次反應器中2-氯酚,2,4-二氯酚和2,4,6-三氯酚與奈米雙金屬鐵樹脂進行了混合測試,在反應時間20分鐘,2,4,6-三氯酚脫氯效率可以達到70%以上。在於固定式管住實驗,反應流通量1.1mL/min-cm2為最佳;管柱溫度控制的最佳操作範圍為20到25℃。

In this study, a synthesized cation exchange resin supported nano zero valent iron (NZVI) complex forming NZVI-resin was proposed for the dechlorination of 2,4-dichlorophenol (2,4-DCP), taking into account reaction time, 2,4-DCP initial concentration, pH, mixing speed, reaction temperature and composition of nickel and iron. Further investigation on
feasibility study to the real case, the fixed column type reactor was introduced into this study. From results, the successful dechlorination of the 2,4-DCP solution to produce phenol and chloride ions was observed using a bimetallic NZVI-resin in batch reactor. The best mixing speed was observed at 200 rpm. Solution pH affects the 2,4-DCP dechlorination efficiency significantly. A high dechlorination efficiency of 91% can be reached in 20 min at pH 6, while only about 20% dechlorination at acidic pH 2. Increasing the reaction temperature up to 60℃ can enhance the dechlorination rate. The best iron to nickel ratio was 42.5 mgFe 9.8 mgNi/g-resin. The kinetic studies showed that the dechlorination reaction followed pseudo-first order reaction. A mixture of 2-chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol was tested in the batch IV
reactor with addition of bimetallic NZVI-resin. The 2,4,6-TCD dechlorination efficiency in 20 min can be reached 70%. For fixed bed column reactor with flow rate of 5 mL/min, breakthrough volume of 2100 mL was observed. Temperature regime from 20 to 25℃ was the best performance for this column operation.
致謝......................................................I
中文摘要.................................................II
Abstract..................................................IV
目錄.....................................................VI
表目錄...................................................IX
圖目錄................................................... X
第一章前言................................................1
1-1 研究緣起.............................................1
1-2 研究目的.............................................2
第二章文獻回顧............................................4
2-1 氯酚類有機污染物.....................................4
2-1-1 氯酚之來源及基本性質..............................4
2-1-2 氯酚毒性及水質標準................................8
2-1-3 氯酚類有機物處理方法.............................11
2-2 奈米零價金屬處理技術及簡介..........................13
2-2-1 奈米材料與奈米科技之發展緣起.....................13
2-2-2 奈米金屬材料製備方法.............................14
2-2-3 奈米鐵之還原機制與影響因子.......................14
2-2-4 奈米鐵之應用與複合金屬(bimetallic)之相關研究.....25
2-3 離子交換樹脂........................................27
2-3-1 離子交換樹脂種類.................................27
2-3-2 離子交換原理與吸附平衡理論.......................29
2-3-3 管柱離子交換.....................................33
2-3-4 離子交換樹脂之應用與相關研究.....................35第三章實驗材料設備與方法.................................37
3-1 實驗材料與設備......................................37
3-1-1 實驗藥品與材料...................................37
3-1-2 實驗設備.........................................39
3-1-3 分析儀器.........................................39
3-2 實驗流程與方法......................................43
3-2-1 實驗流程架構.....................................43
3-2-2 實驗裝置........................................ 46
3-2-3 實驗方法.........................................47
第四章結果與討論.........................................57
4-1 樹脂承載奈米零價金屬薄膜特性分析....................57
4-2 樹脂承載奈米零價金屬薄膜還原反應....................63
4-2-1 2,4-二氯酚之轉換.................................63
4-2-2 不同金屬比例之影響...............................67
4-2-3 改變2,4-二氯酚初濃度之影響.......................71
4-2-4 2,4-二氯酚溶液初始酸鹼值之影響...................77
4-2-5 改變攪拌速率對反應之影響.........................82
4-2-6 改變溫度對反應之影響.............................90
4-3 樹脂承載奈米零價金屬對2,4,6-三氯酚之脫氯影響........95
4-4 樹脂承載奈米零價金屬薄膜固定床管柱試驗..............98
4-4-1 2,4-二氯酚對管柱之影響...........................98
4-4-2 2,4-二氯酚初始酸鹼值對管柱之影響................102
4-4-3 改變2,4-二氯酚溫度對管柱之影響..................106
4-4-4 改變2,4-二氯酚流量對管柱之影響..................111
4-5 樹脂承載奈米零價金屬薄膜還原反應整合TiO2/UV反應.... 114
第五章結論與建議........................................116
5-1 結論...............................................116
5-2 未來方向與建議.....................................119
參考文獻.....................................................120

參考文獻
Achaerandio, I., Güell, C. and López, F. (2002). Continuous vinegar decolorization with exchange resins. Journal of Food Engineering, 51(4), 311-317.
Adamson, A.W. (1990), Physical Chemistry of Surfaces, John Wiely and Sons, New York.
Atia, A. A., Donia, A. M. and Shahin, A. E. (2005). Studies on the uptake behavior of a magnetic Co3O4-containing resin for Ni(II), Cu(II) and Hg(II) from their aqueous solutions. Separation and Purification Technology, 46(3), 208-213.
Chen, C., Liu, P. and Lu, C. (2008). Synthesis and characterization of nano-sized ZnO powders by direct precipitation method. Chemical Engineering Journal, 144(3), 509-513.
Chen, J. -., Al-Abed, S. R., Ryan, J. A. and Li, Z. (2001). Effects of pH on dechlorination of trichloroethylene by zero-valent iron. Journal of Hazardous Materials, 83(3), 243-254.
Cheng, I. F., Muftikian, R., Fernando, Q. and Korte, N. (1997). Reduction of nitrate to ammonia by zero-valent iron. Chemosphere, 35(11), 2689-2695.
Doong, R. -., Chen, K. -. and Tsai, H. -. (2003). Reductive dechlorination of carbon tetrachloride and tetrachloroethylene by zerovalent silicon - iron reductants. Environmental Science and Technology, 37(11), 2575-2581.
Feng, J., Hu, X. and Yue, P. L. (2004). Degradation of salicylic acid by photo-assisted fenton reaction using Fe ions on strongly acidic ion exchange resin as catalyst. Chemical Engineering Journal, 100(1-3), 159-165.
Fennelly, J. P. and Roberts, A. L. (1998). Reaction of 1,1,1-trichloroethane with zero-valent metals and bimetallic reductants. Environmental Science and Technology, 32(13), 1980-1988.
Gillham, R. W. and Ohannesin, S. F. (1994). Enhanced degradation of halogenated aliphatics by zero valent iron. Ground Water, 32(6), 958-967.
Grittini, C., Malcomson, M., Fernando, Q. and Korte, N. (1995). Rapid dechlorination of polychlorinated biphenyls on the surface of a Pd/Fe bimetallic system. Environmental Science and Technology, 29(11), 2898-2900.
Guo, S. and Wang, E. (2007). Synthesis and electrochemical applications of gold nanoparticles.Analytica Chimica Acta, 598(2), 181-192.
Johnson, T. L., Scherer, M. M. and Tratnyek, P. G. (1996). Kinetics of halogenated organic compound degradation by iron metal. Environmental Science and Technology, 30(8), 2634-2640.
Juang, R. -., Kao, H. -. and Liu, F. -. (2006). Ion exchange recovery of Ni(II) from simulated electroplating waste solutions containing anionic ligands. Journal of Hazardous Materials, 128(1), 53-59.
Kim, S. -., Terashi, Y., Purwanto, A. and Okuyama, K. (2009). Synthesis and film deposition of ni nanoparticles for base metal electrode applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 337(1-3), 96-101.
Lien, H. L. and Zhang, W.X. (1999), "Dechlorination of chlorinated methanes in aqueous solutions using nanoscale bimetallic particles", Journal of Environmental Engineering, vol. 125, pp. 1042-1047.
Lin, C. J., Lo, S. -. and Liou, Y. H. (2005). Degradation of aqueous carbon tetrachloride by nanoscale zerovalent copper on a cation resin. Chemosphere, 59(9), 1299-1307.
Liou, R. -., Chen, S. -., Hung, M. -. and Hsu, C. -. (2004). Catalytic oxidation of pentachlorophenol in contaminated soil suspensions by Fe+3-resin/H2O2. Chemosphere, 55(9), 1271-1280.
Lodge Jr., J.P. (1980), "Handbook of environmental data on organic chemicals: by KarelVerschueren, Van Nostrand Reinhold, 135 W. 50th St., New York, N.Y. 10020, 1977, vi +659pp. Price $37.50", Atmospheric Environment (1967), vol. 14, no. 11, pp. 1344-1344.
Liu, Y., Yang, F., Yue, P. L. and Chen, G. (2001). Catalytic dechlorination of chlorophenols in water by palladium/iron. Water Research, 35(8), 1887-1890.
Lowry, G. V. and Reinhard, M. (2000). Pd-catalyzed TCE dechlorination in groundwater: Solute effects, biological control, and oxidative catalyst regeneration. Environmental Science and Technology, 34(15), 3217-3223.
Lv, X., Xu, Y., Lv, K. and Zhang, G. (2005). Photo-assisted degradation of anionic and cationic dyes over iron(III)-loaded resin in the presence of hydrogen peroxide. Journal of Photochemistry and Photobiology A: Chemistry, 173(2), 121-127.
Mahoney, W. and Andres, R. P. (1995). Aerosol synthesis of nanoscale clusters using atmospheric arc evaporation. Materials Science and Engineering A, 204(1-2), 160-164.
Matheson, L. J. and Tratnyek, P. G. (1994). Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science and Technology, 28(12), 2045-2053.
Morales, J., Hutcheson, R. and Cheng, I. F. (2002). Dechlorination of chlorinated phenols by catalyzed and uncatalyzed fe(0) and mg(0) particles. Journal of Hazardous Materials, 90(1), 97-108.
Mott, D., Luo, J., Njoki, P. N., Lin, Y., Wang, L. and Zhong, C. -. (2007). Synergistic activity of gold-platinum alloy nanoparticle catalysts. Catalysis Today, 122(3-4), 378-385.
Muftikian, R., Fernando, Q. and Korte, N. (1995). A method for the rapid dechlorination of low molecular weight chlorinated hydrocarbons in water. Water Research, 29(10), 2434-2439.
Nalwa, H.S. (2000), "Index for Volume 1" in Handbook of Nanostructured Materials and Nanotechnology, eds. Hari Singh Nalwa, M.Sc. and Ph.D., Academic Press, Burlington, pp.631-639.
Odziemkowski, M. S., Gui, L. and Gillham, R. W. (2000). Reduction of N-nitrosodimethylamine with granular iron and nickel-enhanced iron. 1. pathways and kinetics. Environmental Science and Technology, 34(16), 3489-3494.
Oldenhuis, R., Kuijk, L., Lammers, A., Janssen, D. B. and Witholt, B. (1989). Degradation of chlorinated and non-chlorinated aromatic solvents in soil suspensions by pure bacterial cultures. Applied Microbiology and Biotechnology, 30(2), 211-217.
Orth, W. S. and Gillham, R. W. (1996). Dechlorination of trichloroethene in aqueous solution using Fe0. Environmental Science and Technology, 30(1), 66-71.
Patel, U. D. and Suresh, S. (2007). Dechlorination of chlorophenols using magnesium-palladium bimetallic system. Journal of Hazardous Materials, 147(1-2), 431-438.
Pehlivan, E. and Altun, T. (2006). The study of various parameters affecting the ion exchange of Cu2+, Zn2+, Ni2+, Cd2+, and Pb2+ from aqueous solution on dowex 50W synthetic resin. Journal of Hazardous Materials, 134(1-3), 149-156.
Ruoff, R.S. (2006), "Special issue on nanocomposites", Composites Science and Technology,vol. 66, no. 9, pp. 1099-1101.
Ruthven, D.M. (1984), ''Principles of Adsorption and Adsorption Processes'', John Wiely and Sons, New York.
Scherer, M. M., Richter, S., Valentine, R. L. and Alvarez, P. J. J. (2000). Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up. Critical Reviews in Microbiology, 26(4), 221-264.
Schrick, B., Blough, J. L., Jones, A. D. and Mallouk, T. E. (2002). Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chemistry of Materials, 14(12), 5140-5147.
Shu, H. -., Chang, M. -., Yu, H. -. and Chen, W. -. (2007). Reduction of an azo dye acid black 24 solution using synthesized nanoscale zerovalent iron particles. Journal of Colloid and Interface Science, 314(1), 89-97.
Sismanoglu, T. and Pura, S. (2001). Adsorption of aqueous nitrophenols on clinoptilolite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 180(1-2), 1-6.
Song, H. and Carraway, E. R. (2005). Reduction of chlorinated ethanes by nanosized zero-valent iron: Kinetics, pathways, and effects of reaction conditions. Environmental Science and Technology, 39(16), 6237-6245.
Su, C. and Puls, R. W. (1999). Kinetics of trichloroethene reduction by zerovalent iron and tin: Pretreatment effect, apparent activation energy, and intermediate products. Environmental Science and Technology, 33(1), 163-168.
Sun, Y. -., Li, X. -., Cao, J., Zhang, W. -. and Wang, H. P. (2006). Characterization of zero-valent iron nanoparticles. Advances in Colloid and Interface Science, 120(1-3), 47-56.
Tang, Y. H., Zhang, Y. F., Peng, H. Y., Wang, N., Lee, C. S. and Lee, S. T. (1999). Si nanowires synthesized by laser ablation of mixed SiC and SiO2 powders.Chemical Physics Letters, 314(1-2), 16-20.
Wei, J., Xu, X., Liu, Y. and Wang, D. (2006). Catalytic hydrodechlorination of 2,4-dichlorophenol over nanoscale Pd/Fe: Reaction pathway and some experimental parameters. Water Research, 40(2), 348-354.
Wo, J. -., Zhang, Z. and Xu, X. -. (2009). Dechlorination mechanism of 2,4-dichlorophenol by Ni/Fe nanoparticles in the presence of humic acid. Journal of Zhejiang University: Science A, 10(1), 121-126.
Xu, X. -. and Huang, S. -. (2007). Carbon dioxide as a carbon source for synthesis of carbon nanotubes by chemical vapor deposition. Materials Letters, 61(21), 4235-4237.
Yang, L., Lv, L., Zhang, S., Pan, B. and Zhang, W. (2011). Catalyticdechlorination of monochlorobenzene by Pd/Fe nanoparticlesimmobilized within a polymeric anion exchanger. Chemical Engineering Journal, 178, 161-167.
Yang, P. Y. and See, T. S. (1991). Packed entrapped mixed microbial cell process for removal of phenol and its compounds. Journal of Environmental Science and Health - Part A Environmental Science and Engineering, 26(8), 1491-1512.
Zhang, D. X., Xu, H., Liao, Y. Z., Li, H. S. and Yang, X. J. (2009). Synthesis and characterisation of nano-composite copper oxalate powders by a surfactant-free stripping-precipitation process. Powder Technology, 189(3), 404-408.
Zhang, W., Liu, G., Lv, W. and Li, Z. (2010). The dechlorination of 2,4-dichlorophenol by zero-valent iron. 2010 4th International Conference on Bioinformatics and Biomedical Engineering, iCBBE 2010,
Zhang, W., Quan, X., Wang, J., Zhang, Z. and Chen, S. (2006). Rapid and complete dechlorination ofPCP in aqueous solution using ni-fe nanoparticles under assistance of ultrasound. Chemosphere, 65(1), 58-64.
ZHANG, W. -., QUAN, X. and ZHANG, Z. -. (2007). Catalytic reductive dechlorination of p-chlorophenol in water using Ni/Fe nanoscale particles. Journal of Environmental Sciences, 19(3), 362-366.
Zhang, W. -., Wang, C. -. and Lien, H. -. (1998). Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catalysis Today, 40(4), 387-395.
Zhang, Z., Cissoko, N., Wo, J. and Xu, X. (2009). Factors influencing the dechlorination of 2,4-dichlorophenol by Ni-Fe nanoparticles in the presence of humic acid. Journal of Hazardous Materials, 165(1-3), 78-86.

Zhang, Z., Shen, Q., Cissoko, N., Wo, J.and Xu, X. (2010). Catalytic dechlorination of 2,4-dichlorophenol by Pd/Fe bimetallic nanoparticles in the presence of humic acid. Journal of Hazardous Materials, 182(1-3), 252-258.
Zhang, Z., Wo, J. -., Cissoko, N. and Xu, X. -. (2008). Kinetics of 2,4-dichlorophenol dechlorination by Pd-Fe bimetallic nanoparticles in the presence of humic acid. Journal of Zhejiang University: Science A, 9(1), 118-124.
王俊欽,(1994),「固定化微生物對 2,4-二氯酚及2,4,6-三氯酚之分解」,國立中興大學環境工程學系暑期參與專題研究計畫成果報告。
王桂仁,(2002),「以零價鐵技術處理地下水中三氯乙烯及四氯乙烯之研究」,碩士論文,逢甲大學環境工程與科學所。
行政院環保署,(2007),「放流水標準」。
呂宗昕,(2003),「圖解奈米科技與光觸媒」,商周出版社。
李炳楠,(2003),「以觸媒濕式氧化法處理鐵氰錯合物或2,4-二氯酚水溶液之研究」,博士論文,國立中山大學環境工程所。
李浩明,(1980),「抗生素SC4 之純化與化學結構分析」,碩士論文,文化大學。
阮國棟,(1984),「廢水中各種酚類去除之理論與實務」,工業污染防治工程實務,第三卷,第三期,頁數88~103。
胡焯淳,(1988),「配位基交換層析新固定相之合成及其應用之研究」,碩士論文,國立台灣大學。
徐釩,(2000),「製備銅與銀的奈米粒子」,碩士論文,國立中山大學。
馬振基,(2003),「奈米材料科技原理與應用」,全華科技圖書股份有限公司。
陳建良、蔡郁佳、蘇筱婷、連興隆,(2003),「奈米複合金屬之催化特性探討」,第28屆廢水處理技術研討會。
陳建志、白曛綾、陳姿名、簡弘民、張宗良、鄧宗禹,(2005),「以常壓電漿輔助程序製造均勻粒徑TiO2 奈米微粒研究」,第二屆環境保護與奈米科技學術研討會。
陳健民,(1993),「以Amberlite IRA-93 樹脂吸附水溶液中對-氯酚之動力學研究」,碩士論文,國立成功大學。
陳柏恩,(2010),「以離子交換樹脂承載奈米雙金屬薄膜對水中氯酚脫氯之研究」,碩士論文,弘光科技大學環境工程研究所。
陳筠樺,(2003),「以CVD法製備TiO2光觸媒反應器去除水溶液中雙氯酚反應行為之研究」,碩士論文,國立中興大學環境工程學系。
許嘉珍、張裕釧、林畢修平,(2005),「金奈米材料在抑制病菌生長之效能評估」,第二屆環境保護與奈米科技學術研討會。
曹茂盛、關長斌、徐甲強,(2002),「奈米材料導論」,學富文化事業公司。
張詠禎,(2010),「以固定式CCFL/TiO2程序光催化分解Orange G偶氮染料廢水之研究」,碩士論文,弘光科技大學環境工程研究所。
黄俊智,(2003),「化學沉澱與樹脂吸附法處理分衍生物廢水之研究」,碩士論文,私立元智大學化工研究所。
黃煌洲,(2004),「以離子交換樹脂法回收導線架氰系水洗廢水之研究」,碩士論文,朝陽科技大學。
黃種立,(1997),「結合生物與臭氧處理氯酚之研究」,碩士論文,國立台灣大學環境工程學系。
楊岳軍,(1989),「離子交換樹脂在重金屬廢水處理之應用」,重金屬廢水處理技術研討會,工研院化工所。
楊金鐘、涂秀娟、洪志雄,(2005),「奈米級鈀/鐵雙金屬對於水溶液中三氯乙烯之降解反應動力初步探討」,第三屆土壤地下水研討會。
楊茱芳,(2002),「五氯酚分解菌之分離與及其生理特性研究」,碩士論文,國立中興大學環境工程學系。
連興隆、張偉賢,(2004),「環境奈米技術在地下環境應用之回顧與展望」,環境工程會刊,第15 卷,第3 期,頁數22~29。
賴彥融、董瑞安、李俊錡,(2004),「金屬離子與腐植酸對零價鐵金屬去除四氯乙烯之影響」,第二屆土壤地下水研討會。
錢庭寶、劉維琳、李金和,(1990),「吸附樹脂及其應用」,化學工業出版社,第一版。
蔡朝淵,(2007),「奈米金在奈米生物技術與奈米醫學上的應用」,博士論文,國立成功大學。
魏明芬,(2002),「磁性金屬氧化物奈米粒的製備與鑑定」,碩士論文,國立中山大學。
鄭秀珍、楊磊,(2005),「以植物修復技術處理五氯酚污染土壤之研究」,第三屆土壤地下水研討會。
羅科顯,(2004),「電解和離子交換法回收含銅廢液及污泥中的銅金屬」,碩士論文,元智大學化學工程學系。
蘇弘毅、張明琴、陳麒鈞,(2008),「以離子交換樹脂承載奈米零價鐵薄膜處理染料廢水之研究」,第十二屆海峽兩岸環境保護研討會。
顧洋,(1993),「高級氧化程序在廢水處理上的應用」,工業防治污染手冊,經濟部工業局。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top