跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/08/02 07:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉得兆
研究生(外文):Te-Chao Liu
論文名稱:以電混凝及電芬頓技術處理水楊酸溶液
論文名稱(外文):Electrochemical treatment of salicylic acid solution using electrocoagulation and electro- Fenton technology
指導教授:周偉龍周偉龍引用關係
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:職業安全與防災研究所
學門:環境保護學門
學類:環境防災學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:127
中文關鍵詞:水楊酸電混凝電芬頓等電能消耗吸附動力學溫吸附
外文關鍵詞:Salicylic acid,SAElectrocoagulation,ECElectro-Fenton,EFSpecific energy consumptionAdsorption KineticsAdsorption isotherms
相關次數:
  • 被引用被引用:5
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係使用電混凝及電芬頓兩種電化學技術來分別處理水溶液中之水楊酸。首先,電混凝研究中選擇各種操作條件,如電流密度及溫度等參數對於溶液中水楊酸去除效率之影響,並以去除每公斤廢水中之水楊酸所需的電能消耗作為實驗操作條件最適化之依據;同時探討電混凝過程所產生金屬氫氧化物對溶液中污染物之吸附特性。實驗結果顯示,其最適當之電流密度及溫度分別為1.2mA/cm2及298 K,在此操作條件下,其水楊酸之去除率皆可達90 %以上;在吸附特性部份,可由實驗數據分別求出吸附熱力學參數、吸附動力學和等溫吸附模式;由吸附熱力學之參數結果得知,利用電混凝技術處理溶液中之水楊酸為一自發性吸熱反應;並藉由實驗數據求得電混凝程序吸附溶液中水楊酸之吸附動力模式等參數,得知此電混凝程序對於水楊酸之處理較適合以二級反應來描述;而在等溫吸附模式中,以Langmuir之吸附模式較適合描述整個電混凝系統吸附去除溶液中水楊酸之過程。其次,電芬頓研究中使用陰極產生過氧化氫之電芬頓系統進行實驗,實驗中選擇各種操作條件,如不同陰極極板、電流密度、溶液pH值及氧氣流速等參數對於溶液中過氧化氫產生效率之影響;不同亞鐵離子濃度與溫度等參數對於溶液中水楊酸之去除效率之影響。實驗結果顯示,在過氧化氫產生量之影響,陰極使用活性碳纖維布、其最適當之電流密度、pH值與氧氣流速分別為3.2mA/cm2、pH = 3與500cm3/min;在水楊酸去除率之影響,其最適當之亞鐵離子濃度與溫度分別為0.5mM與298K,在此操作條件下,其水楊酸去除率皆可達90 %以上。
The main purpose of this study is to develop a novel electrochemical system containing electrocoagulation and electro-Fenton. In the first part, we have developed the electrocoagulation system on treatment of salicylic acid wastewater.
For treatment of salicylic acid, several parameters were evaluated to characterize the salicylic removal efficiency, such as various current densities and temperatures.
The effects of the current density and temperature on the electrical energy consumption were also investigated. The optimum current density and temperature
were found to be 1.2 mA/cm2 and 298 K. Under these conditions, the salicylic acid concentration of aqueous salicylic acid solutions decreased by more than 90 %.
The thermodynamic parameters such as Gibbs free energy, the enthalpy, and the entropy indicated that the adsorption of salicylic acid on metal hydroxides was feasible, spontaneous, and endothermic. The experimental data were also compared to different adsorption isotherm models in order to describe the EC process. The adsorption of salicylic acid was best fitted by the Langmuir
adsorption isotherm model.
In the second part, the development of the Electro-Fenton system have designed to treat salicylic acid wastewater. Cathodically generated hydrogen
peroxide by Electro-Fenton, several parameters were evaluated to characterize the
generated hydrogen peroxide efficiency , such as different cathod, current
densities, pH and oxygen flowing rate. The optimum cathodically, current
density, and oxygen flowing rate were found to be activated carbon fiber, 3.2mA/cm2, pH=3 and 500cm3/min, respectively. In addition, for treatment of salicylic acid by Electro-Fenton , the optimum in Fe2+ and temperature were found to be 0.5mM, and 298K, respectively.
Keywords: Salicylic acid、Electrocoagulation、Specific energy consumption、Adsorption Kinetics、Adsorption isotherms、Electro-Fenton
摘要…………………………………………………………………………...………I
英文摘要……………………………………………………………………………III
目錄………………………………………………………………………………IV
表目錄.……………………………………………………………………………VI
圖目錄……………………………………………………………………………VII
第一章 前言 1
1-1 研究緣起 1
1-2 研究動機與目的 3
第二章 文獻回顧 5
2-1 電混凝技術介紹與應用 5
2-1-1 混凝機制 5
2-1-2 電混凝理論與機制 7
2-1-3 影響電混凝處理效率之主要參數 13
2-1-4 電混凝技術之應用 17
2-2 電混凝過程中吸附特性之探討 27
2-2-1 吸附作用的種類 27
2-2-2 等溫吸附模式 28
2-2-3 動力學吸附模式 32
2-2-4 吸附熱力學的探討 33
2-3 高極氧化技術介紹與應用 37
2-3-1 高級氧化程序 37
2-3-2 芬頓技術簡介 39
2-3-3 芬頓反應機制 39
2-3-4 芬頓相關研究 42
2-3-5 電芬頓技術理論與機制 45
2-3-6 影響電芬頓處理效率之因素 49
2-4 實驗設技法-反應曲面法(RSM) 51
2-4-1 反應曲面法簡介 51
2-4-2 反應曲面法最適化之步驟 52
第三章 實驗方法與設備 67
3-1 研究方法 67
3-2 實驗藥品、儀器與設備 70
3-2-1 實驗藥品 70
3-2-2 實驗儀器與設備 71
3-3 實驗儀器分析原理與量測 72
3-3-1 分光光度計(UV/Vis spectrophotometer) 72
3-3-2 高效能液相層析儀 73
3-3-2 過氧化氫濃度分析 75
3-3-2 檢量線 75
第四章 結果與討論 81
4-1 以定電流之電混凝系統處理水楊酸溶液 81
4-1-1 電流密度之影響 81
4-1-2 溫度之影響 84
4-1-3 溫度對於吸附熱力學之影響 85
4-1-4 吸附動力學之探討 85
4-1-5 等溫吸附模式之探討 86
4-2 以電芬頓系統處理水楊酸溶液 87
4-2-1 不同陰極對於過氧化氫產生之影響 87
4-2-2 電流密度對於過氧化氫產生之影響 88
4-2-3 不同pH對於過氧化氫產生之影響 89
4-2-4 氧氣流速對於過氧化氫產生之影響 90
4-2-5 亞鐵離子對於水楊酸去除率之影響 91
4-2-6 溫度對於水楊酸去除率之影響 92
4-3以實驗計畫法對於轉化效率和去除效率之反應曲面 93
4-3-1去除效率在反應曲面之實驗設計 93
4-3-2去除效率的反應曲面實驗數據相關性結果 93
第五章 結論 114
5-1 研究總結 114
5-2 定電流之電混凝系統對水楊酸溶液之探討 114
5-2-1 定電流系統對水溶液中水楊酸濃度之去除 114
5-3電芬頓系統對水楊酸溶液之探討 115
5-3-1 電芬頓系統過氧化氫產生量之影響 115
5-3-2 電芬頓系統水楊酸去除率之影響 116
5-3-3反應曲面法對於水楊酸去除效率之實驗設計與探討 116
5-1未來研究方向 117
參考文獻 118

Ali O¨ z, Yu¨cel S¸, Savas¸ Koparal A, Mehmet A O, Degradation of picloram by the electro-Fenton process, Journal of Hazardous Materials, 2008, 153, 718-727.
Allen R.L.M.,“Colour Chemisry”,Appleton Century-Craft, New York, (1971).
Balasubramanian, N., Kojima, T., Basha, C.A., Srinivasakannan, C., Removal of arsenic from aqueous solution using electrocoagulation, Journal of Hazardous Materials, 2009, 167, 966-969.
Behera, S.K., Kim, J.H., Guo, X, Park, H.S., Adsorption equilibrium and kinetics of polyvinyl alcohol from aqueous solution on powdered activated carbon, Journal of Hazardous Materials, 2008, 153, 1207-1214.
Belongia, B.M., Haworth, P.D., Baygents, J.C., Raghavan, S., Treatment of Alumina and Slica Chemical Mechanical Polishing Waste by Electro decantation and Electrocoagulation, Journal of the Electrochemical Society , 1999, 146, 4124-4130.
Burczak, K., Gamian, E., Kochman, A., Long-term in vivo performance and biocompatibility of poly( vinyl alcohol ) hydrogel macrocapsules for hybrid-type artificial pancreas, Biomaterials, 1996, 17, 2351-2356.
Chantaraporn, P., Pisut, S., Chinnarat, M., Hydrogen recovery from the electrocoagulation treatment of dye-containing wastewater, international journal of hydrogen energy, 2010, 35, 10934-10943
Chen, G., Electrochemical technologies in wastewater treatment, Separation and Purification Technology , 2004, 38, 11-41
Chen, X.M., Silva, D.R., C.A. Martinez-Huitle, Chin. Chem. Lett.,2010, 21, 101–104.
Chen, X., Chen, G., Yue, P.L., Separation of pollutants from restaurant wastewater by electrocoagulation, Separation and Purification Technology , 2000, 19, 65-76.
Chou, W.L., Wang, C.T., Huang, K.Y., Effect of operating parameters on indium (III) ion removal by iron electrocoagulation and evaluation of specific energy consumption, Journal of Hazardous Materials, 2009, 167, 467-474.
Daneshvar. N, Aber. S, Vatanpour. V, Rasoulifard. MH., Electro-Fenton treatment of dye solution containing Orange II: influence of operational parameters. Journal of Electroanalytical Chemistry , 2008, 615 (2): 165-174.
Den, W., Huang, C., Electrocoagulation for removal of silica nano-particles from chemical-mechanical-planarization wastewater. Colloids and Surface A, 2005, 254, 81-89.
Donini, J. C., Kan, J., Szynkarczuk, J., Hassan, T. A., Kar, K. L., The Operating Cost of Electrocoagulation, The Canadian Journal of Chemical Engineering, 1994, 72, 1007-1012.
Foley R.T., Pitting Corrosion of Aluminium Single Crystal in NaCl Solutions, Corrosion, 1986, 42, 277-288.
Giroto, J.A., Guardani, R., Teixeira, A.C.S.C., Nascimento, C.A.O., Study on the photo-fenton degradation of polyvinyl alcohol in aqueous solution, Chemical Engineering and Processing , 2006, 45, 523-532.
Golder, A.K., Samanta, A.N., Ray, S., Removal of phosphate from aqueous solutions using calcined metal hydroxides sludge waste generated from electrocoagulation. Separation and Purification Technology, 2006, 52, 102-109.
Hengyi, L., Hualiang, L., Zhong, L., Zhaoxu, Li., Kai, C., Xinghong, Z., Huiqin, W., Electro-Fenton degradation of cationic red X-GRL using an activated carbon fiber cathode, Process Safety and Environmental Protection, 2010, 88, 431-438.
Hirkawa, T., Yawata, K., Nosaka, Y,. Photocatalytic reactivity for O2 andOH.radical formation in anatase and rutile TiO2 suspension sa the effect oh H2O2 addition. Applied Catalysis A: General. 2007, 325, 105-111.
Holt, P.K., Barton, G.W., Mitchell, C.A., Electroagulation as a wastewater treatment, The Third Australian Environmental Engineering Research Event, 1999, 23-26.
Huang, M.H., Shih, Y.P., Liu, S.M., Biodegradation of polyvinyl alcohol by phanerochaete chrysosporium after pretreatment with fenton’s reagent, Journal of Environment Science and Health, Part A Environmental Science Heal. A, 2002, 37, 29-41.
Hu, C.Y., Lo, S.L., Kuan, W.H., Effects of co-existing anions on fluoride removal in electrocoagulation (EC) process using aluminum electrodes, Water Research , 2003, 37, 4513-4523.
Janzen, E.G., Kotake, Y., Hinto, R. D,. Stabilities of hydroxyl radical spin adducts of PBN-type spin traps. Free Radical Biology and Medicine, 1992, 12, 169-173.
Kabdas, I., Vardar, B., Arslan-Alaton, I., Tünay, O., Effect of dye auxiliaries on color and COD removal from simulated reactive dyebath effluent by electrocoagulation, Chemical Engineering Journal. 2009.148. 89-96.
Kang, S.F., Liao, C.H., Po, S.T., Decolorization of textile wastewater by photo-fenton oxidation technology, Chemosphere, 2000, 41, 1287-1294.
Kim, S., Kim, T.H., Park, C., Shin, E.B., Electrochemical oxidation of polyvinyl alcohol using a RuO2/Ti anode, Desalination, 2003, 155, 49-57.
Kobya, M., Can, O. T., Bayramoglu, M., Treatment of texile wastewaters by electrocoagulation using iron and aluminum electrodes, Journal of Hazardous Materials, 2003, 100, 163-178.
Koparal, A.S., Öğütveren, Ü.B., Removal of nitrate from water by electroreduction and electrocoagulation, Journal of Hazardous Materials, 2002, 89, 83-94.
Koparal, A.S., Yildiz, Y.Ş., Keskinler, B., Demircioglu, N., Effect of initial pH on the removal of humic substances from wastewater by electrocoagulation, Separation and Purification Technology, 2008, 59, 175-182.
Kumar, P.R., Chaudhari, S., Khilar, K.C., Mahajan, S.P., Removal of arsenic from water by electrocoagulation, Chemosphere, 2004, 55, 1245-1252.
Lai, C.L., Lin, S.H., Electrocoagulation of chemical mechanical polishing (CMP) wastewater from semiconductor, Chemical Engineering Journal , 2003, 95, 205-211.
Legrini, O., Oliveros, E,. Braum, A.M,. Photochemical processes for water treatment Chemical Reviews. 1993, 93(2), 671-698.
Lin, S.H., Lo, C.C., Fenton process for treatment of desizing wastewater, Water Research. 1997, 31, 2050-2056.
Marco, P., Giacomo, C., Electro-Fenton degradation of synthetic dyes, Water Research, 2009, 43, 339-344.
Mason, T.J., Lorimer, J. P,. Bates, D.M., Zhao, Y,. Dosimetry in sonochemistry: the use of aqueous terephthalate ion as a fluorescence monitor. Ultrasonics-Sonochemistry. 1994, 1, S91-S95.
Matteson, M.J., Dobson R.L., Glenn J.R.W., Kukunoor N.S., Waits III W.H., Clayfield, E., Electrocoagulation and separation of aqueous suspensions of ultrafine particles, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 104, 101-109.
Mollah, M.Y.A., Schennach, R., Parga, J., Cocke, D.L., Electrocoagulation (EC) – science and applications, Journal of Hazardous Materials, 2001, 84, 29-41.
Nakada N., T. Tanishima, H.Shinohara, K. Kiri, H. Takada,“Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment”, Water Research, 2006, 40, 3297-3303,
Noska ,Y., Kishimoto, M,. Nishino, J,. Factors governing the initial process of TiO2 photocatalysis studied by means of in-situ electron spin redonance measurements. Journal of Physical Chemistry B. 1998, 102, 10279-10283.
Paul, W., Sharma, C.P., Acetylsalicylic acid loaded poly( vinyl alcohol ) hemodialysis membrans:effect of drug release on blood compatibility and permeability, Journal of Biomaterials Science Polymer Edition , 1997, 8, 755-764.
Pazenko, T.Y., Khalturina, T.I., Kolova, A.F., Rubailo, I.S., Electrocoagulation treatment of oil-containing wastewaters, Russian Journal of Applied Chemistry, 1985, 60, 2383-2387.
Pouet, M.F., Grasmick, A., Urban wastewater treatment by electrocoagulation and flotation, Water Science and Technology, 1995, 31, 275-283.
Ramirez, E.R., Barber, L.K., Clemens, O.A., Physicochemical Treatment of Tannery Wastewater by Electroflotation, Proc. 32nd Ind. Waste Conference, Purdue University,1997, 183-188.
Ramirez, E.R., Comarative Physicochemical Study of Industrial Wastewater Treatment by Electrolytic Dispersed Air and Dissolved Air Flotation Technilogies, Proc. 34th Ind. Waste Conference, Purdue University., 1979, 699-709,.
Scott, K., Metal Recovery Using a Moving-bed Electrode, Journal of Applied Electrochemistry, 1981, 11, 339-346.
Şengil, Ì.A., Özacar, M., Treatment of dairy wastewaters by electrocoagulation using mild steel electrodes, Journal of Hazardous Materials, 2006, 137, 1197-1205.
Şengil, I.A., Özacar, M., Ömürlü, B., Decolorization of C.I. reactive red 124 using the electrocoagulation method, Chemical and Biochemical Engineering Quarterly, 2004, 18, 273–277.
Sun B. and P.G. Smirniots, Interaction of anatase and rutile TiO2 particles in aqueous photooxidation. Catalysis Today. 2003, 88, 49-59.
Szynkarczuk, J., Kan, J., Hassan, A.T.T., Donini, J.C., Electrochemical coagulation of clay suspensions, Clay Clay Miner., 1994, 42, 667-673.
Vasudevan, S., Lakshmi, J., Jayaraj, J., Sozhan, G., Remediation of phosphate-contaminated water by electrocoagulation with aluminium, aluminium alloy and mild steel anodes, Journal of Hazardous Materials, 2009, 164, 1490-1486.
Venceslau, M.C., Tom. S., Simon, J.J., Characterisation of Textile Wastewater- A Revies, Environ. Tech., 1994, 15, 917-929.
Walling, C., Kato, S., Oxidation of alcohols by Fenton’s reagent. Effect of copper ion, Journal of the American Chemical Society, 1971, 93, 4275-4281.
Wu, W., Giese, R.F.,Van oss C.J., Stability versus flocculation of particle suspensions in water-correlation with the extended DLVO approach for aqueous systems, compared with classical DLVOtheory, Colloids and surfaces B: Biointerfaces, 1999, 14, 47-55.
Young, T.H., Chuang, W.Y., Yao, N.K., Chen, L.W., Use of a diffusion model for assessing the performance of poly(vinyl alcohol) bioartificial pancrease, Journal of Biomedial Materials Research, 1998, 40, 385-391.
Yousuf, M., Mollah, A., Schennach, R., Parga, J.R., Cocke, D.L., Electrocoagulation (EC)-Science and Applications, Journal of Hazardous Materials, 2001, 84, 29-41.
Zhou, M., Yu, Q., Lei, L., Barton, G,. Electro-Fenton method for the removal of methyl red in an efficient electrochemical system. Separation and Purification Technology,2007, 57 (2): 380-387.
張志豐,2004,「深層培養松茸(Tricholoma matsutake) 之最適化培養液組成」,碩士論文,大同大學生物工程研究所。彰化。
蔡輔晃,2006,「反應曲面法與基底建構反應曲面法之研究」,碩士論文,國立高雄大學統計學研究所。高雄。
黃凱裕,2010,「以電化學技術去除溶液中聚乙烯醇之研究」,碩士論文,弘光科技大學職業安全與防災研究所。台中。
林立斌,2010,「厭氧汙泥分解TFT–LCD及EDTA製程廢水成份之研究」,碩士論文,崑山科技大學環境工程研究所。台南。
楊萬發,2002,「水及廢水處理化學」,茂昌圖書有限公司,臺北市。
施安琪,2001,「藻類存在對濁度混沉去除之影響」,碩士論文,國立交通大學環境工程研究所。新竹。
王文成,2005,「以電聚浮除法處理半導體業廢水中之砷」,碩士論文,國立中輿大學環境工程研究所。台中。
張淑薇,2002,「以反應曲面法研究酵素合成己醇酯類之最優化」,碩士論文,大葉大學食品工程學系。彰化。


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊