第六章 參考文獻
Balasubramanian, R., & Lee, S. S. (2007). Characteristics of indoor aerosols in residential homes in urban locations: A case study in singapore. Journal of the Air & Waste Management Association, 57(8), 981-990.
Cao, J., Lee, S., Chow, J., Cheng, Y., Ho, K., Fung, K., et al. (2005). Indoor/outdoor relationships for PM2.5 and associated carbonaceous pollutants at residential homes in hong Kong–case study. Indoor Air, 15(3), 197-204.
Chan TL, L. M. (1980). Experimental measurements and empirical modelling of the regional deposition of inhaled particles in humans. US National Library of Medicine National Institutes of Health, , 399-409.
Chao, C. Y., & Wong, K. K. (2002). Residential indoor PM10 and PM2.5 in hong kong and the elemental composition. Atmospheric Environment, 36(2), 265-277.
Diapouli, E., Chaloulakou, A., Mihalopoulos, N., & Spyrellis, N. (2008). Indoor and outdoor PM mass and number concentrations at schools in the athens area. Environmental Monitoring and Assessment, 136(1), 13-20.
Diapouli, E., Chaloulakou, A., & Spyrellis, N. (2007). Levels of ultrafine particles in different microenvironments-implications to children exposure. Science of the Total Environment, 388(1-3), 128-136.
Eisner, A. D., Richmond-Bryant, J., Hahn, I., Drake-Richman, Z. E., Brixey, L. A., Wiener, R. W., et al. (2009). Analysis of indoor air pollution trends and characterization of infiltration delay time using a cross-correlation method. J.Environ.Monit., 11(12), 2201-2206.
Englert, N. (2004). Fine particles and human health - a review of epidemiological studies. Toxicology Letters, 149(1), 235-242.
Franck, U., Odeh, S., Wiedensohler, A., Wehner, B., & Herbarth, O. (2011). The effect of particle size on cardiovascular disorders - the smaller the worse. Science of the Total Environment, 409, 4217-4221.
Fromme, H., Twardella, D., Dietrich, S., Heitmann, D., Schierl, R., Liebl, B., et al. (2007). Particulate matter in the indoor air of classrooms—exploratory results from munich and surrounding area. Atmospheric Environment, 41(4), 854-866.
Hahn, I., Brixey, L. A., Wiener, R. W., & Henkle, S. W. (2009). Parameterization of meteorological variables in the process of infiltration of outdoor ultrafine particles into a residential building. J.Environ.Monit., 11(12), 2192-2200.
Harrison, R. M., & Yin, J. (2000). Particulate matter in the atmosphere: Which particle properties are important for its effects on health? The Science of the Total Environment, 249(1-3), 85-101.
Heinrich, J., & Slama, R. (2007). Fine particles, a major threat to children. International Journal of Hygiene and Environmental Health, 210(5), 617-622.
Hoppel, W., Fitzgerald, J., Frick, G., Larson, R., & Mack, E. (1990). Aerosol size distributions and optical properties found in the marine boundary layer over the atlantic ocean. Journal of Geophysical Research, 95(D4), 3659-3686.
Kang, Y., Zhong, K., & Lee, S. C. (2006). Relative levels of indoor and outdoor particle number concentrations in a residential building in xi'an. China Particuology, 4(6), 342-345.
Li, X. L., Wang, J. S., Tu, X., Liu, W., & Huang, Z. (2007). Vertical variations of particle number concentration and size distribution in a street canyon in shanghai, china. Science of the Total Environment, 378(3), 306-316.
McMurry, P. H., Shepherd, M. F., & Vickery, J. S. (2004). Particulate matter science for policy makers: A NARSTO assessment Cambridge Univ Pr.
Mendell, M. J. (2007). Indoor residential chemical emissions as risk factors for respiratory and allergic effects in children: A review. Indoor Air, 17(4), 259-277.
Monn, C., Fuchs, A., Högger, D., Junker, M., Kogelschatz, D., Roth, N., et al. (1997). Particulate matter less than 10 [um] m (PM10) and fine particles less than 2.5 [um] m (PM2. 5): Relationships between indoor, outdoor and personal concentrations. Science of the Total Environment, 208(1-2), 15-21.
Parker, J., Larson, R., Eskelson, E., Wood, E., & Veranth, J. (2008). Particle size distribution and composition in a mechanically ventilated school building during air pollution episodes. Indoor Air, 18(5), 386-393.
Pope III, C. A., Ezzati, M., & Dockery, D. W. (2009). Fine-particulate air pollution and life expectancy in the united states. New England Journal of Medicine, 360(4), 376-386.
Rodes, C. E., VanOsdell, D. W., Portzer, J. W., Seagraves, J., Hahn, I., Henkle, S. W., et al. (2009). Building characterization and aerosol infiltration into a naturally ventilated three-story apartment building. J.Environ.Monit., 11(12), 2180-2191.
Seinfeld, J. H. (1985). Atmospheric chemistry and physics of air pollution.
Spengler, J. D., & Sexton, K. (1983). Indoor air pollution: A public health perspective. Science, 221(4605), 9-17.
Spengler, J., Dockery, D., Turner, W., Wolfson, J., & Ferris, B. (1981). Long-term measurements of respirable sulfates and particles inside and outside homes. Atmospheric Environment (1967), 15(1), 23-30.
Thatcher, T. L., & Layton, D. W. (1995). Deposition, resuspension, and penetration of particles within a residence. Atmospheric Environment, 29(13), 1487-1497.
Thatcher, T. L., Lunden, M. M., Revzan, K. L., Sextro, R. G., & Brown, N. J. (2003). A concentration rebound method for measuring particle penetration and deposition in the indoor environment. Aerosol Science & Technology, 37(11), 847-864.
Tippayawong, N., Khuntong, P., Nitatwichit, C., Khunatorn, Y., & Tantakitti, C. (2009). Indoor/outdoor relationships of size-resolved particle concentrations in naturally ventilated school environments. Building and Environment, 44(1), 188-197.
Wallace, L. (1996). Indoor particles: A review. Journal of the Air & Waste Management Association, 46(2), 98-126.
Wang, Y., Hopke, P. K., Chalupa, D. C., & Utell, M. J. (2010). Long-term characterization of indoor and outdoor ultrafine particles at a commercial building. Environmental Science & Technology, 44(15), 5775-5780.
Weichenthal, S., Dufresne, A., & Infante‐Rivard, C. (2007). Indoor ultrafine particles and childhood asthma: Exploring a potential public health concern. Indoor Air, 17(2), 81-91.
Whitby, K., & Sverdrup, G. (1980). California aerosols-their physical and chemical characteristics. Adv.Environ.Sci.Technol.;(United States),9, 477-517.
Yoshizumi, K., & Hoshi, A. (1985). Size distributions of ammonium nitrate and sodium nitrate in atmospheric aerosols. Environmental Science & Technology, 19(3), 258-261.
于培倫. (2010). 中部空品區天氣型態與二次氣膠之探討分析. 東海大學. 碩士論文。張振平等.(2009). 奈米微粒呼吸道沉積影響與量測因素探討 No. IOSH97-H322). 台北: 行政院勞工委員會勞工安全衛生研究所.
張立鵬. (2009). 大氣超細微粒物化特性與環境因子關連性研究. 國立成功大學. 博士論文。潘耿輝. (2005). 垂直剖面之粒狀物特性分析及其與臭氧濃度之比較. 國立成功大學. 碩士論文。王秋森等. (2005). 氣膠技術學. 台北: 新文京開發.
美國環境保護署. US environmental protection agency. Retrieved 0131, 2012, from http://www.epa.gov/ord/ca/quick-finder/pm-research.htm
蔡燿州. (2011). 台南市大氣中懸浮微粒及鹽類特性分析研究. 國立高雄第一科技大學. 碩士論文。蘇奕綾. (2006). 稻草燃燒期間大氣中多環芳香烴化合物來源與粒徑分佈研究. 朝陽科技大學. 碩士論文。行政院環境保護署. 空氣品質標準. Retrieved 0921, 2011, from http://taqm.epa.gov.tw/taqm/zh-tw/b0206.aspx
郭育良等. (2004). 職業病概論 (二版) 台北: 華杏.
鐘文舜. (2008). 台中盆地懸浮微粒成份來源傳輸與貢獻量之研究. 逢甲大學. 碩士論文。陳富平. (2011). 大氣次微米微粒 (PM1) 多環芳香烴化合物 (PAHs) 之特性研究. 國立高雄第一科技大學. 碩士論文。陳春萬. (2002). 呼吸道粒狀物沈積之先驅研究 No. IOSH89-H310). 台北: 行政院勞工委員會勞工安全衛生研究所.
黃堯聖. (2006). 大氣懸浮微粒化學組成及來源推估. 輔英科技大學. 碩士論文。