跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/03 20:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:童靜雯
研究生(外文):Jing-Wen Tung
論文名稱:硫化鎘量子點製備及其於化妝品分析之應用
指導教授:徐照程徐照程引用關係
指導教授(外文):Jaw-Cheng Hsu
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:化妝品科技研究所
學門:民生學門
學類:美容學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:78
中文關鍵詞:量子點螢光硫化鎘硫化鋅玻尿酸表面修飾劑流動注射分析硫醇化合物
外文關鍵詞:Quantum dotsfluorescentCadmium SulfideZinc Sulfidehyaluronic acidsurface modifiersflow injection analysisthiol compounds
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1800
  • 評分評分:
  • 下載下載:67
  • 收藏至我的研究室書目清單書目收藏:0
本研究採用玻尿酸(Hyaluronic acid,簡稱HA)作為表面修飾劑(Surface modifier),開發安全且快速之硫化鎘(CdS)量子點(Quantum Dot,簡稱QD)水溶性製備法。鎘離子溶液在特定pH值,添加有助微粒分散之表面修飾劑;以每分鐘0.2mL硫離子溶液相同莫耳濃度,持續攪拌加入溶液中,再輔以超音波震盪持續30分鐘,使晶格穩定可得QD產物。

研究探討鎘鹽及含硫試劑種類、表面修飾劑濃度、pH值等製備參數,對QD之影響。在三種鎘鹽種類與兩種硫試劑合成QD之結果比較下,發現以氯化鎘製備之QD具有最大螢光亮度,推論對應離子與QD表面鎘之配位,將影響螢光亮度。本研究亦嘗試改變HA濃度(0%~0.02%),添加0.01%有最大螢光亮度,而0.02%以上螢光亮度不增反遞減,推測可能因表面修飾劑過量而遮閉螢光。改變pH值(1~11),結果發現pH5螢光亮度最大與表面修飾劑特性有關。 在第24小時,達平衡並具有最大螢光強度;螢光產率可高達60%,持續觀察30天後仍具有在原始之90%螢光亮度。以FIA對CdS QD定量分析,在0.1mM ~2.0mM範圍內,具良好線性關係R2=0.9973、良好再現性RSD<0.1(n=5)。本研究製備之CdS QD具有優異之螢光特性,而不同硫醇化合物錯合而改變螢光強度之現象。利用此特性來分析化妝品中常見五種硫醇活性成分。

開發FIA-量子點螢光分析法,建立預混合模式與線上反應模式,並將分析系統與中華藥典之碘滴定法評估冷燙液中主成分TGA含量,其結果無顯著差異,證實為有效應用。標準曲線範圍為0.1 ppm~20 ppm,LOD:0.02 ppm、LOQ:0.06 ppm。FIA-量子點螢光分析法分析TGA的相對標準偏差 < 2 %,再現性良好。該方法分析市售之冷燙液中TGA含量並做回收率試驗,其範圍在98.0%-102.0 %之間優於碘滴定法。

本研究之預混合分析方法測定冷燙液TGA含量,經T-test統計證實等同於碘滴定法分析。FIA-量子點螢光分析法優點:簡單而快速、可助於實驗室大批量作為連續式檢測,達到降低實驗成本之目的。

Hyaluronic acid(HA)surface modifier for the preparation of water-soluble cadmium sulfide (CdS) quantum dot(QD) was developed in this study, this novel process is safer and quick. Under certain pH value, the addition of surface modifier helps to disperse the microparticles of Cd2+, the S2- are added at a rate of 0.2 mL/min to the solution with stirring and sonicating for 30mins, finally get a stable QD product.

In our study, we investigate the effect of parameter on the formation of QD, including three kinds of Cd salts, two kinds of sulfur–containing reagents, the concentration of surface modifier and pH value. Comparison the synthesis of QD with different kinds of Cd salts and different kinds of sulfur-containing reagents, we found that the preparation of QD with CdCl2 and Na2S yielded the strongest fluorescence intensity. We also tried to investigate the concentration of HA (0 % ~ 0.02 %) on QD fluorescence intensity, and found out that the addition of 0.015 % HA yielded the strongest fluorescence intensity. If HA with concentration more than 0.02%, on the contrary, yielded all the weaker fluorescence intensity was observed. It is postulated that the excess of surface modifier may have the potential to shield fluorescence. Besides the pH value of 5 yielded the strongest fluorescence intensity and the result showed that the fluorescence intensity is relevant to the properties of surface modifier. Based on the optimum conditions, our CdS QD had the properties as follows, λEx: 360nm, λEm: 700nm, the reaction was completed at 24th hour and yielded the stable fluorescence intensity, the fluorescence yield reached 60 %, 90 % of fluorescence intensity remained after 30 day. On the other hand, the quantity analysis of CdS QD with FIA at a range of 0.01 mM~2.0 mM revealed good linear relation (R2 = 0.9973) and good reproducibility (RSD < 0.1, n=7). Different thiol compounds malocclusion changes the fluorescence intensity of the phenomenon. Use this feature to analyze the five kinds of thiol actives in cosmetics.


The development of FIA-quantum dot fluorescence analysis, involves pre-mixed mode and online mixing mode. TGA analysis results of commercial permanent wave products were compared with the iodine titration method, which reveal in the Republic of China Pharmacopoeia. Results showed no significant difference and be confirmed as an alternative method. The dynamic range of the calibration graph was 0.1ppm~ 20.0ppm, and LOD was equal to 0.02ppm, LOQ was equal to 0.06ppm. Good reproducibility was also observed in this method (RSD< 2.0, n=7). The method was applied successfully to the determination of TGA in several commercial permanent wave products with acceptable recoveries, which ranged between 98.0% and 102.0%, all better than the iodine titration.

Pre-mixed mode FIA-QD technique in this study has proven to be an effective alternative to traditional iodine titration by T-Test, there are no significant difference between both results of methods. The advantages of this FIA-QD technique, including higher efficiency, suitable for routine work, lower costs.

目錄
誌謝 I
中文摘要 III
英文摘要IIIV
目錄VIII
圖目錄XII
表目錄XII


壹. 前言1
1.1 量子點介紹 3
1.2 硫化鎘量子點(CdS QD) 4
1.3 能隙與粒子半徑 8
1.4 QD之合成法 10
1.4.1 微乳化法(Microemulsion Method) 10
1.5 表面修飾劑 12
1.6 QD檢驗分析之應用 13
1.7 含硫醇基之化妝品原料 14
1.7.1 苯基苯丙咪唑磺酸 14
1.7.2 榖胱甘肽 15
1.7.3 半胱氨酸 15
1.7.4 硫辛酸 16
1.7.5 硫代甘醇酸硫辛酸 16
1.8 TGA限量之管制 17
1.9 TGA含量之分析方法 19
1.10 研究動機及未來發展 20

貳. 材料與方法 22
2.1 研究流程 22
2.2 水溶性量子點之製備 23
2.2.1 試劑與材料 23
2.2.2 儀器設備 24
2.2.3 實驗方法 25
2.2.4 鑑別試驗 25
2.2.5 儀器確校 26
2.2.6 QD製備條件之參數最佳化 27
2.2.7 定量分析及校正曲線建立 27
2.3 FIA-QD 分析硫醇基化合物 30
2.3.1 實驗材料 30
2.3.2 儀器設備 30
2.3.3 實驗方法 30
2.4 2.4ZnS QD分析試片 34
2.4.1 實驗材料 34
2.4.2 儀器設備 34
2.4.3 實驗方法 35
2.5 預反應與FIA-QD系統之探討 36
2.5.1 儀器 36
A. 單幫浦FIA-QD系統 36
B. 超聲波處理器 36
2.5.2 實驗方法 37
2.6 碘滴定法檢測TGA 38
2.6.1 試藥 38
2.6.2 儀器 38
2.6.3 碘滴定法TGA含量測定 38
2.7 分析真實樣品與回收率探討 39
2.7.1 真實產品 39
2.7.2 FIA-QD系統 40
2.7.3 實驗方法 40

參. 結果與討論 42
3.1 CdS QD之製備參數探討 42
3.1.1 鎘鹽試劑與硫試劑種類對CdS QD 製備之影響 42
3.1.2 表面修飾劑之濃度對CdS QD 製備之影響 44
3.1.3 超音波震盪時間對CdS QD 製程之條件 44
3.1.4 pH值對CdS QD 製備之影響 46
3.1.5 CdS QD合成反應動力學 47
3.1.6 自製CdS QD之螢光安定性 48
3.1.7 CdS QD 螢光確效之特性 49
3.1.8 粒徑之計算 50
3.1.9 利用FIA系統之CdS QD定量分析 50
3.2 含硫醇基的活性成分之QD定量分析 50
3.2.1 冷燙液還原劑之TGA標準溶液 51
3.2.2 抗氧化劑之L -半胱胺酸(L-Cys)標準溶液 52
3.2.3 水溶性化學防曬劑之Ensulizole標準溶液 53
3.2.4 抗氧化劑之硫辛酸(ALA)標準溶液 54
3.2.5 抗氧化劑之GSH標準溶液 55
3.2.6 定量分析比較 56
3.3 ZnS QD分析試片分析結果 57
3.4 TGA之FIA-QD分析法建立 59
3.4.1 CdS QD 與TGA濃度變化之關係 59
3.4.2 檢品pH值之影響 60
3.4.3 超聲波處理之影響 61
3.4.4 探討移動相最佳條件 61
3.4.5 管路清洗時間之影響 61
3.4.6 定量分析參數 63
3.5 真實樣品分析 64

肆. 結論 66
伍. 参考文獻 68
陸. 附錄 78


伍. 参考文獻
[1] Mehta, S.S., Reddy, B.S.N. Cosmetic dermatitis–current per- spectives. Inernational Journal of Dermatology, 2003. 42(7): p. 533-542.
[2] 行政院衛生署(2009/01/01彙整).化妝品中禁止使用成分總表. 2012/06/12取自行政院衛生署網站 .
[3] Pellegrini, M., Bossù, E., Rotolo, M.C., Pacifici, R., Pichini, S. Simple and rapid analysis of methyldibromo glutaronitrile in cosmetic products by gas chrom-atography mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2011. 56(5): p. 1112-1116.
[4] Lin, Y.H., Yang,Y.H., Wu, S.M. Experimental design and capillary electrophoresis for simultaneous analysis of arbutin, kojic acid and hydroquinone in cosmetics. Journal of Pharmaceutical and Biomedical Analysis, 2007. 44(1): p. 279-282.
[5] García-Jiménez, J.F., Valencia, M.C. Capitán-Vallvey, L.F. Simultaneous determination of antioxidants, preservatives and sweetener additives in food and cosmetics by flow injection analysis coupled to a monolithic column. Analytica Chimica Acta, 2007. 594(2): p. 226-233.
[6] Maia, A.M., Baby, A. R.,Yasaka, W. J.,Suenaga, E.,Kaneko, T. M., Velasco, M. V. R. Validation of HPLC stability-indicating method for Vitamin C in semisolid pharmaceutical/cosmetic preparations with glutathione and sodium metabisulfite, as antioxidants. Talanta, 2007. 71(2): p. 639-643.
[7] Lee, M.R., Lin, C.Y.,Li, Z. G.,Tsai, T.F. Simultaneous analysis of antioxidants and preservatives in cosmetics by supercritical fluid extraction combined with liquid chromatography–mass spectrometry. Journal of Chromatography A, 2006. 1120(1–2): p. 244-251.
[8] 林正輝, 線上微透析取樣結合高效液相層析法分析化妝品中親水性美白劑之研究, 高雄醫學大學2006.
[9] 林裕城, 楊智惠, 黃耿迷, 王英基, 量子點—奈米彩虹標籤, 科學發展2008.
[10] Snee, P.T., Somers, R.C., Nair, G., Zimmer, J.P., Bawendi, M.G., Nocera, D.G. A ratiometric CdSe/ZnS nanocrystal pH sensor. Journal of the American Chemical Society, 2006. 128(41): p. 13320-13321.
[11] Koeppel, F., Jaiswal, J.K., Simon, S.M. Quantum dot-based sensor for improved detection of apoptotic cells. Nanomedicine, 2007. 2(1): p. 71-78.
[12] Alivisatos, A.P. Perspectives on the Physical Chemistry of Semiconductor Nanocrystals. The Journal of Physical Chemistry, 1996. 100(31): p. 13226-13239.
[13] Babu, K.S., Vijayan, C., Haridoss, P. The influence of parameters of chemical synthesis on the optical properties of CdS nanocrystals. Materials Research Bulletin, 2007. 42(7): p. 1251-1261.
[14] Korgel, B.A., Monbouquette, H.G. Synthesis of Size-Monodisperse CdS Nanocrystals Using Phosphatidylcholine Vesicles as True Reaction Compartments. The Journal of Physical Chemistry, 1996. 100(1): p. 346-351.
[15] Steffes, H., Schleunitz, A.,Gernert, U.,Chabicovsky, R.,Obermeier, E. A novel optical gas sensor based on sputtered InxOyNz films with gold-nano-dots. Microelectronic Engineering, 2006. 83(4–9): p. 1197-1200.
[16] Ji, L.W., Fang,T.H., Meen,T.H. Effects of strain on the characteristics of InGaN–GaN multiple quantum-dot blue light emitting diodes. Physics Letters A, 2006. 355(2): p. 118-121.
[17] 林全雯, 微波法製備硫化鎘奈米微粒及電噴霧法製備硫化鎘薄膜及光電性質之研究. 2005.
[18] Ishibashi, A. II–VI blue-green light emitters. Journal of Crystal Growth, 1996. 159(1–4): p. 555-565.
[19] Thongtem, T., Phuruangrat, A., Thongtem, S. Characterization of nano-and micro-crystalline CdS synthesized using cyclic microwave radiation. Journal of Physics and Chemistry of Solids, 2008. 69(5-6): p. 1346-1349.
[20] Liu, J., Cao, J., Li, Z., Ji, G ., Deng, S., Zheng, M. Low-temperature solid-state synthesis and phase-controlling studies of CdS nanoparticles. Journal of Materials Science, 2007. 42(3): p. 1054-1059.
[21] Du, H., Xu, G.Q., Chin, W.S., Huang, L., Ji, W. Synthesis, characterization, and nonlinear optical properties of hybridized CdS-polystyrene nanocomposites. Chemistry of Materials, 2002. 14(10): p. 4473-4479.
[22] Fox, M. Optical properties of solids. Recherche, 2001. 67: p. 02.



[23] Pattabi, M., Uchil, J. The effect of precursor concentration on the size of the CdS nanoparticles synthesized in a chicken egg membrane. Solar Energy Materials and Solar Cells, 2003. 76(3): p. 323-330.
[24] Goldstein, A., Echer, C. Alivisatos, A. Melting in semiconductor nanocrystals. Science, 1992. 256(5062): p. 1425-1427.
[25] Alivisatos, A.P. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996. 271(5251): p. 933.
[26] Brus, L.E. Electron–electron and electron‐hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. The Journal of Chemical Physics, 1984. 80: p. 4403.
[27] Rossetti, R., Ellison, J. L., Gibson, J.M., Brus, L. E. Size effects in the excited electronic states of small colloidal CdS crystallites. The Journal of Chemical Physics, 1984. 80: p. 4464.
[28] 洪炘燕, CdSe與CdSe/ZnSe 量子點製備分析及其光性質之研究. 2004.
[29] William Yu,W., Qu, L., Guo,W., Peng, X. Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals. American Chemical Society, 2003. chem(15): p. 2854-2860.
[30] Xu, W. , Akins, D.L. Reverse micellar synthesis of CdS nanoparticles and self-assembly into a superlattice. Materials Letters, 2004. 58(21): p. 2623-2626.
[31] Chen, J., Wang, X. Zhang, Z. In situ fabrication of mesoporous CdS nanoparticles in microemulsion by gamma ray irradiation. Materials Letters, 2008. 62(4–5): p. 787-790.
[32] Zhou, H.c., Xu, S., Peng, Q., Li, Y. d. Uniform Rice-like CdS Particles Prepared from Water-in-oil Microemulsions. Chemical Research in Chinese Universities, 2006. 22(1): p. 11-13.
[33] Caponetti, E., Martino, D. C., Leone, M., Pedone, L., Saladino, M. L., Vetri, V. Microwave-assisted synthesis of anhydrous CdS nanoparticles in a water–oil microemulsion. Journal of Colloid and Interface Science, 2006. 304(2): p. 413-418.
[34] Reisfeld, R. Nanosized semiconductor particles in glasses prepared by the sol–gel method: their optical properties and potential uses. Journal of Alloys and Compounds, 2002. 341(1–2): p. 56-61.
[35] Ma, G., Tang, S.H., Sun, W., Shen, Z., Huang, W., Shi, J. Size-dependent excited state properties of CdS nanocrystals. Physics Letters A, 2002. 299(5–6): p. 581-585.
[36] Liang, J., Huang, S., Zeng, D., He, Z., Ji, X., Ai, X., Yang, H. CdSe quantum dots as luminescent probes for spironolactone determination. Talanta, 2006. 69(1): p. 126-30.
[37] Paul, G.S., Gogoi, P., Agarwal, P. Structural and stability studies of CdS and SnS nanostructures synthesized by various routes. Journal of Non-Crystalline Solids, 2008. 354(19–25): p. 2195-2199.
[38] Wang, Z., Chen, J., Xue, X., Hu, Y. Synthesis of monodispersed CdS nanoballs through γ-irradiation route and building core–shell structure CdS@SiO2. Materials Research Bulletin, 2007. 42(12): p. 2211-2218.


[39] Xia, Q., Chen, X., Zhao, K., Liu, J. Synthesis and characteriz -ations of polycrystalline walnut-like CdS nanoparticle by solvo -thermal method with PVP as stabilizer. Materials Chemistry and Physics, 2008. 111(1): p. 98-105.
[40] Huang, Y., Sun, F., Wu, T.,Wu, Q.,Huang, Z.,Su, H.,Zhang, Z. Photochemical preparation of CdS hollow microspheres at room temperature and their use in visible-light photocatalysis. Journal of Solid State Chemistry, 2011. 184(3): p. 644-648.
[41] 陳凱民, 合成具螢光可調性之聚乙烯胺穩定硫化鎘量子點與其光學性質研究. 化學工程學系2007, 成功大學
[42] Menezes, F.D., Galembeck, A., Alves Junior, S. New methodology for obtaining CdTe quantum dots by using ultrasound. Ultrasonics Sonochemistry, 2011. 18(5): p. 1008-1011.
[43] Ehrlich, H., Shcherba, T., Zhilenko, M., Lisichkin, G. Peculiarities of formation and luminescence of ZnS nanoparticles modified with amino acids. Materials Letters, 2011. 65(1): p. 107-109.
[44] Huang, C.P. 水溶性發光量子點之製備與其在生化檢測系統之應用, 應用化學2005, 國立交通大學.
[45] Moore, V.C., Strano, M. S., Haroz, E. H., Hauge, R. H.,Smalley, R. E., Schmidt, J.,Talmon, Y. Individually Suspended Single-Walled Carbon Nanotubes in Various Surfactants. Nano Letters, 2003. 3(10): p. 1379-1382.
[46] Khiew, P.S., Radiman, S., Huang, N. M., Soot Ahmad, M., Nadarajah, K. Preparation and characterization of ZnS nanoparticles synthesized from chitosan laurate micellar solution. Materials Letters, 2005. 59(8-9): p. 989-993.
[47] Sun, J., Ren, C., Liu, L., Chen, X. CdTe quantum dots as fluorescence sensor for the determination of vitamin B6 in aqueous solution. Chinese Chemical Letters, 2008. 19(7): p. 855-859.
[48] 蔡筱嬪, 官能性硫化鋅量子點生物探針的研發:金屬離子偵測,腫瘤標靶以及生物顯影, 化學系2009, 國立中興大學.
[49] Tang, C.R., Su, Z.h., Lin, B.G., Huang, H.W., Zeng, Y.L., Li, S., Huang, H.,Wang, Y.J., Li, C.X., Shen, G.L.,Yu, R.Q. A novel method for iodate determination using cadmium sulfide quantum dots as fluorescence probes. Analytica Chimica Acta, 2010. 678(2): p. 203-207.
[50] Chen, Y., Rosenzweig, Z. Luminescent CdS Quantum Dots as Selective Ion Probes. Analytica Chimica Acta, 2002. Chem(74): p. 5132-5138.
[51] Koneswaran, M., Narayanaswamy, R. Mercaptoacetic acid capped CdS quantum dots as fluorescence single shot probe for mercury(II). Sensors and Actuators B: Chemical, 2009. 139(1): p. 91-96.
[52] Wickett, R. Permanent waving and straightening of hair. Cutis; cutaneous medicine for the practitioner, 1987. 39(6): p. 496.
[53] Cannell, D.W. Permanent waving and hair straightening. Clinics in dermatology, 1988. 6(3): p. 71-82.
[54] 劉春英, 簡俊生, 黃文鴻, 台灣地區化妝品之品質檢驗概況 (77~ 79 年度). 中華公共衛生雜誌, 1994. 13(5): p. 442-450.
[55] 張美惠, 黃春子, 蘇柳青, 鄭秋真, 市售冷燙髮劑化粧品之品質調查. 藥物食品檢驗局調查研究年報, 1995(13): p. 317-326.

[56] 連美華, 陳玉盆, 黃明權, 鄒玫君 市售燙髮劑化粧品品質及溴酸鉀成分調查. 藥物食品檢驗局調查研究年報第 26 號年報, 2008: p. 30-35.
[57] Voss, J. Skin Sensitization by Mercaptans of Low Molecular Weight. Journal of Investigative Dermatology, 1958. 31(5): p. 273-279.

[58] Hou, S., Zhang, L., Wu, K., Xia, L. Thioglycolic acid inhibits mouse oocyte maturation and affects chromosomal arrangement and spindle configuration. Toxicology and Industrial Health, 2008. 24(4): p. 227-234.
[59] Balsam, M. Cosmetics Science and Technology. Vol. 2. 1972: Wiley-India. p. 212.
[60] 鄭星泉、周淑玉、周世偉, 化妝品衛生檢驗手冊. 初版 2009: 新文京.
[61] 行政院衛生署編印, 中華藥典第六版附錄. 2006: p. 23.
[62] 行政院衛生署藥物食品檢驗局, 常用藥物化粧品檢驗方法專輯(四)2009.
[63] Kuśmierek, K., Bald, E. Determination of N-acetylcysteine and thioglycolic acid in human urine. Chromatographia, 2008. 67(1-2): p. 23-29.
[64] Mopper, K., Delmas, D. Trace determination of biological thiols by liquid chromatography and precolumn fluorometric labeling with o-phthalaldehyde. Analytical chemistry, 1984. 56(13): p. 2557-2560.


[65] Lankmayr, E., Budna, K.W., Müller, K., Nachtmann, F., Rainer, F. Determination of d-penicillamine in serum by fluorescence derivatization and liquid column chromatography. Journal of Chromatography B: Biomedical Sciences and Applications, 1981. 222(2): p. 249-255.
[66] Kuwata, K., Uebori, M.,Yamada, K.,Yamazaki, Y. Liquid chromatographic determination of alkylthiols via derivatization with 5, 5'-dithiobis (2-nitrobenzoic acid). Analytical Chemistry, 1982. 54(7): p. 1082-1087.
[67] Toyo'oka, T., Imai, K. High-performance liquid chromatography and fluorometric detection of biologically important thiols, derivatized with ammonium 7-fluorobenzo-2-oxa-1, 3-diazole-4-sulphonate (SBD-F). Journal of Chromatography A, 1983. 282: p. 495-500.
[68] Sierra-Rodero, M., Fernández-Romero, J.M. Gómez-Hens, A. Photometric determination of thioglycolic acid in cosmetics by using a stopped-flow reverse flow-injection system and the formation of gold nanoparticles. Microchemical Journal, 2011. 97(2): p. 243-248.
[69] Shabani, A.M.H., Ellis, P.S., McKelvie, I.D. Spectrophotometric determination of iodate in iodised salt by flow injection analysis. Food Chemistry, 2011. 129(2): p. 704-707.
[70] Murray, C., Norris, D., Bawendi, M.G. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society, 1993. 115(19): p. 8706-8715.

[71] Jian-Ge, Z., Williams, Q.L., Ruqian,W. Thioglycolic acid on the gold (111) surface and Raman vibrational spectra. Journal of Chemical Physics, 2010. 132(6): p. 064702.
[72] Kumar, C.S.S.R. Semiconductor Nanomaterials. nanomaterials of the sciences, 2010, USA.
[73] Zhang, H., Zhou, Z., Yang, B., Gao, M. The Influence of Carboxyl Groups on the Photoluminescence of Mercaptocarboxylic Acid-Stabilized CdTe Nanoparticles. The Journal of Physical Chemistry B, 2002. 107(1): p. 8-13.
[74] Zhang, H., Sun, P., Liu, C., Gao, H., Xu, L., Fang, J.,Wang, M., Liu, J., Xu, S. L‐Cysteine capped CdTe–CdS core–shell quantum dots: preparation, characterization and immuno‐labeling of HeLa cells. Luminescence, 2011. 26(2): p. 86-92.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top