跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/03 21:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭億清
論文名稱:以溶膠凝膠乳化技術製備 新式物理化學複合防曬劑
論文名稱(外文):A Novel Combined Physical-Chemical UV Filter Prepared by Sol-gel/Emulsion Technique
指導教授:徐照程徐照程引用關係
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:化妝品科技研究所
學門:民生學門
學類:美容學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:116
中文關鍵詞:溶膠凝膠乳化技術四乙基矽氧烷微膠囊防曬劑紫外線防護能力
外文關鍵詞:sol-gel/emulsion techniqueTetraethyl orthosilicatemicrocapsuleUV filterUV protection
相關次數:
  • 被引用被引用:4
  • 點閱點閱:478
  • 評分評分:
  • 下載下載:78
  • 收藏至我的研究室書目清單書目收藏:0
本研究以溶膠凝膠乳化技術合成二氧化矽微膠囊(Silicone Dioxide Microcapsule, SMC),採用四乙基矽氧烷(Tetraethoxysilane, TEOS)為矽的來源、Span 80為乳化劑以及礦物油作為油相。水相組成為TEOS、乙醇與水以1:3:4的比例混合,酸催化水解並加熱縮合得到TEOS凝膠後混合油相(Span 80:礦物油為10:38.7)成為乳化態,完成縮合反應得到中空二氧化矽微膠囊粉體。
綜合各參數影響,最適製備條件為pH值1.5、縮合反應1400 rpm攪拌90 min、乳化時間1400 rpm攪拌90 min。重複製作二氧化矽微膠囊三次,之平均產率為82.8±0.4 %;平均粒徑為1058.00±106.93 nm。紫外線防護能力方面,發現含10%空心二氧化矽微膠囊防曬乳之SPF值為11.27±0.08與含10%二氧化鈦防曬乳SPF值11.57±0.22接近。而在UVA/UVB Ratio二氧化矽微膠囊(0.347)明顯優於二氧化鈦(0.234)達48%。
分別甲氧基肉桂酸辛酯(Octyl Methoxycinnamate, OMC)及丁基甲氧基二苯甲醯基甲烷 (Avobenzone)與TEOS為1:1為最佳條件,來合成一個物理複合化學的新式防曬劑。平均粒徑為1183.22±33.53 nm及1374.00±14.19 nm,平均產率為57.92±0.27 %及54.97±0.28 %。包覆率分別為32.64±0.55 %及28.17±0.34 %,而載率分別為29.94±0.57 %及27.23±0.38 %。
防曬效果方面,添加OMC二氧化矽微膠囊(O-SMC)的防曬乳(SPF值20.21),皆優於優於對照組SMC+OMC防曬乳、二氧化鈦+OMC防曬乳以及OMC防曬乳。Avobenzone二氧化矽微膠囊(A-SMC)防曬乳(UVA/UVB Ratio為0.80±0.02)明顯優於SMC+Avobenzone防曬乳、TiO2+Avobenzone防曬乳。
在安定性方面,經過紫外線315 J/cm2照射後,O-SMC防曬乳紫外線防護能力下降16.54%明顯優於對照組SMC+OMC防曬乳、二氧化鈦+OMC防曬乳以及OMC防曬乳。A-SMC防曬乳紫外線防護能力下降32.94 %明顯優於對照組SMC+Avobenzone防曬乳、TiO2+Avobenzone防曬乳以及Avobenzone防曬乳。
在包覆複方防曬劑結果顯示,UVB及UVA防曬能力方面OAB-SMC防曬乳(SPF值為25.82±0.67、UVA/UVB Ratio為0.70±0.03)以及OATD-SMC防曬乳(SPF值為30.03±0.97、UVA/UVB Ratio為0.75±0.03) 皆優於對照組(SMC+OAB防曬乳、TiO2+OAB防曬乳;SMC+OATD防曬乳及TiO2+OATD防曬乳)。也證實添加二氧化矽微膠囊可以輔助防曬能力。
包覆複方防曬劑安定性結果表示,包覆過後的OAB-SMC防曬乳 (SPF下降 26.72%、Abs360下降29.98%)以及OATD-SMC防曬乳(SPF下降 20.64%、Abs360下降28.41%)下降的程度明顯的優於對照組。尤其沒有加入物理性防曬劑的對照組OAB防曬乳以及OATD防曬乳雖然一開始有很好的防曬效果,但是因為化學性防曬劑的不安定性,在紫外光曝曬後下降幅度最大(67.91%)。
我們所合成包覆防曬劑的二氧化矽微膠囊可以說是一個成功而且新式的物理化學複合防曬劑,應用於化妝品將可減少防曬成分被光破壞、避免配方成分衝突引起的降解及貢獻物理性防曬的效能。

This research is using sol-gel emulsion technology to synthesis Silicone Dioxide Microcapsule (SMC). We used Tetraethoxysilane (TEOS) as the origin of Silicone, Span 80 as the emulsifier, and Mineral Oil as the oil phase. The water phase was composed by TEOS, ethanol, and water mixing by the percentage of 1:3:4. Using acid-catalyzed hydrolysis and thermal condensation, we got the oil phase mixture of TEOS gel (Span 80: Mineral Oil = 10: 38.7) as the emulsion state. After condensation, we syntheses the hollow SMC Powder.
Concluding all the parameter, the best production condition is under pH value at 1.5, condensation condition is mixing for 90 min at 1400 rpm, and emulsion condition was stirring for 90 min at 1400 rpm. Repeated produce Silicone Dioxide Microcapsule three times. Its average production rate is 82.8±0.4 % and average particle size is 1058.00±106.93 nm. On the aspect of UV protection, we had figured out the SPF value (11.27±0.08) of sunscreen contains 10% hollow SMC is close to the sunscreen contains 10% Titanium Dioxide (11.57±0.22) . In UVA/UVB ratio, SMC (0.347) is obviously 48% better than Titanium Dioxide (0.234) .
We composed an unique UV-filters by combining physical and chemical UV-filters. As 1:1 ratio as the best condition, we combined OMC with TEOS or Avobenzone with TEOS. The average particle size is 1183.22±33.53 nm and 1374.00±14.19 nm. The average production rate is 57.92±0.27 % and 54.97±0.28 %. The cladding rate is 32.64±0.55 % and 28.17±0.34 %, and the loading rate is 29.94±0.57 % and 27.23±0.38 %.
On the aspect of UV protection, we had discovered that the SPF value of O-SMC’s sunscreen (SPF value = 20.21) is better than SMC+OMC, TiO2+OMC, and OMC sunscreen. For UVA/UVB ratio, A-SMC sunscreen (UVA/UVB ratio = 0.80±0.02) is obviously better than SMC+ Avobenzone and TiO2+Avobenzone sunscreen.
When discussing for stability, by UV radiation at 315 J/cm2, O-SMC sunscreen UV protection ability down to 16.54%. It is clearly better than SMC+OMC, TiO2+OMC, and OMC sunscreen. A-SMC sunscreen UV protection ability down to 32.94%, and is visibly better than SMC+Avobenzone, TiO2+Avobenzone, and Avobenzone sunscreen.
From the result of encapsulating multiple UV filters, UVB and UVA protection of OAB-SMC sunscreen (SPF value is 25.82±0.67, UVA/UVB ratio is 0.70±0.03) and OATD-SMC sunscreen (SPF value 30.03±0.97, UVA/UVB Ratio is 0.75±0.03) is better than controlled sunscreen (SMC+OAB, TiO2+OAB, SMC+OATD, and TiO2+OATD sunscreen). Also we had proved that SMC addition can help to increase UV-protection and decrease the dosage of chemical UV filters.
From the stabilty of encapsulating multiple UV filters, the OAB-SMC sunscreen (SPF value 26.72% decreased, Abs360 Value 29.98% decreased) and OATD-SMC sunscreen (SPF Value 20.64% decreased, Abs360 Value 28.41% decreased). Their result is better than compared sunscreens. Especially better than OAB sunscreen and OATD sunscreen which we did not add chemical UV filters. Although they had good sun protection effect at first, but due to the instability of chemical UV filters, they had largest decay after UV-ray exposure.
The UV filters SMC is a successful and outstanding combo UV filters which combined physical and chemical UV filters. We can apply in cosmetics area to prevent UV filters damaged by light, the damage caused by formulation conflict, and also contributed the efficacy for physical UV filters.

誌謝 I
中文摘要 II
英文摘要 V
圖目錄 XI
表目錄 XIII
壹、前言 1
一、化學性防曬劑(Chemical sunscreens) 1
二、物理性防曬劑(Physical sunscreens) 8
三、溶膠凝膠法(Sol-gel) 9
(一) 溶膠-凝膠法簡介 9
(二)溶膠-凝膠法反應機制 10
(三)溶膠凝膠法的影響因素 13
四、溶膠凝膠/乳化法 17
五、研究目的 19
貳、材料與方法 21
一、研究流程 21
二、二氧化矽微膠囊(SMC)的製備 22
(一)製程探討 22
(二)粒徑分析 25
(三) 二氧化矽微膠囊(SMC)之產率 26
(四)防曬乳的製備 26
(五)體外紫外線防護能力測定 29
三、包覆單方化學性防曬劑之二氧化矽微膠囊(SMC-c) 30
(一)單方化學性防曬劑二氧化矽微膠囊製程探討 30
(二)二氧化矽微膠囊之產率、包覆率及載率 32
(四)體外經皮傳輸分析(In vitro Transdermal Delivery Analysis) 33
(五)防曬乳之製備 37
(六)安定性光破壞加速試驗 39
四、包覆複方化學性防曬劑之二氧化矽微膠囊(SMC-cs) 40
(一)防曬劑複配比例 40
(二)複方化學性防曬劑二氧化矽微膠囊製程探討 42
(三)防曬乳之製備 43
叁、結果與討論 46
一、二氧化矽微膠囊(SMC)的製備 46
(一)製備條件對空心二氧化矽微膠囊產率以及粒徑分布之影響 46
(二)防曬乳體外紫外線防護能力測定 55
二、包覆單方化學性防曬劑之二氧化矽微膠囊(SMC-c) 59
(一)OMC二氧化矽微膠囊(O-SMC) 59
(二)Avobenzone二氧化矽微膠囊(A-SMC) 71
三、包覆複方化學性防曬劑之二氧化矽微膠囊(SMC-cs) 82
(一)複方OMC、Avobenzone及BP-3二氧化矽微膠囊(OAB-SMC) 82
(二)複方OMC、Avobenzone、 Tinosorb M及DHHB二氧化矽微膠囊(OATD-SMC) 89
肆、結論 97
伍、參考文獻 101
陸、附錄 108

1. Gies P.H., Roy C.R., Toomey S., McLennan A, Protection against solar ultraviolet radiation, Mutation Research, 422(1998), 15-22.
2. Wang S.P., Lee W.T., Determination of Benzophenones in a Cosmetic Matrix by Supercritical Fluid Extraction and CapillaryElectrophoresis, Jouranl of Chromatography A, 987(2003), 269-275.
3. Cristian W.K., Tanja L., Quantitative Determination of UV Filters in Sunscreen Lotions Using Microemulsion Electrokinetic Chromatography, Journal of Separation Science, 26 (2003), 1259-1262.
4. Sylvia A.W., Rainer H. M., Cosmetic Applications for Solid Lipid Nanoparticles (SLN), International Journal of Pharmaceutics, 254(2003), 65-68.
5. Nadim A., S.P., The Chemistry of Sunscreens. Cosmetics & Toiletries, 101(1986), 55-58.
6. 蔡季真, ”油脂與乳化劑型對防曬產品的SPF值之影響”, 靜宜大學碩士論文, 2005。
7. 光井武夫, ”新化妝品學”, 株式會社南山堂, 2005。
8. 嚴嘉蕙, 化妝品概論, 新文京開發股份有限公司, 2006。
9. Wong T., Orton D., Sunscreen allergy and its investigation, Clinics in Dermatology, 29(2011), 306-310.
10. Waters A.J., Sandhu D.R., Lowe G., Photocontact allergy to PABA in sunscreens: the need for continued vigilance, Contact Dermatitis, 60(2009), 172-173.
11. Perioli L., Ambrogi V., Bertini B., Ricci M., Nocchetti M., Latterini L., Rossi C., Anionic clays for sunscreen agent safe use: Photoprotection, photostability and prevention of their skin penetration, European Journal of Pharmaceutics and Biopharmaceutics, 62(2006), 185-193.
12. Kimura K., Katon T.,Photoallergic contact dermatitis from the sunscreen ethylhexyl-p-methoxycinnamate, Contact Dermatitis, 32(1995), 304-305.
13. Wissing S.A., Muller R.H., The Development of An Improved Carrier System for Sunscreen Formulations Based on Crystalline Lipid Nanoparticles, International Journal of Pharmaceutics, 242(2002), 373-375.
14. Singh M., Beck M.H., Octyl salicylate: a new contact sensitivity, Contact Dermatitis, 56(2007), 48-52.
15. Floesser H. ,Mueller H., Zastrow L., Ferrero L., Diethylamino hydroxybenzoyl hexyl benzoate (DHHB) — high performance protection against UV-induced free radicals in skin, Cosmetics & Toiletries, 9(2007), 31-37.
16. Stevenson C., Davies R.J.H., Photosensitization of guanine-specific DNA damage by 2-phenylbenzimidazole and the sunscreen agent 2- phenylbenzimidazole-5-sulphonic acid. Chemical Research in Toxicology, 12(1999), 38–45.
17. Simeoni S. , Scalia S., Benson H.A.E., Influence of cyclodextrins on in vitro human skin absorption of the sunscreen, butyl-methoxydibenzoylmethane, International Journal of Pharmaceutics, 280(2004), 163-171.
18. Tuchinda C., Lim H.W., Osterwalder U., Rougier A.. Novel emerging sunscreen technologies, Dermatol Clin, 24(2006), 105-117.
19. 李仰川, 化妝品學原理, 新文京開發出版有限公司, 2003。
20. 洪偉章 陳榮秀, 化妝品化學, 高立圖書, 2002。
21. Lee P., Inorganic Sunscreens.Radiation Protection Dosimetry, 1(2000), 271-273.
22. Gerd H., Dahms I.G., Germany,Formulating With A Physical Sun Block, Cosmetics & Toiletries, 107(1992), 87-92.
23. 林輝, 防晒化妆品中的二氧化鈦, 福建輕紡, 2002, 第1期。
24. Brinker, C. J., Scherer, G. W., “Sol-Gel Science: The physics and chemistry of sol-gel processing”, Academic Press, Inc., New York (1990).
25. Chen J. P., Lin W. S., Enzyme and Microbial, Technology, 32(2003), 801-811.
26. Kalaignan G.P., Seo D.J., Park S.B., Characterization of Srβ-alumina prepared by sol–gel and spray pyrolysis methods, Materials Chemistry and Physics, 85(2004), 286-293.
27. Zhou Q.F., Chan H.L., Choy C.L., Nanocrystalline powder and fibres of lead zirconate titanate prepared by the sol-gel process, Journal of Materials Processing Technology, 63(1997), 281-285.
28. Nagarale R.K., Shahi V.K., Rangarajan R., Preparation of polyvinyl alcohol-silica hybrid heterogeneous anion-exchange membranes by sol-gel method and their characterization, Journal of Membrane Science, 248(2005), 37-44.
29. Winkler B.H., Baltus R.E., Modification of the surface characteristics of anodic alumina membranes using sol–gel precursor chemistry, Journal of Membrane Science, 226(2003), 75-84.
30. Tian F., Zhu G., Sol–gel derived iridium composite glucose biosensor, Sensors and Actuators B: Chemical, 86(2002), 266-270.
31. Wang D.Y., Li K., Lee H., Chan W., High Frequency 1-3 Composite Transducer Fabricated Using Sol-Gel Derived Lead-Free BNBT Fibres, Sensors and Actuators A: Physical, 114(2004), 1-6.
32. Siouffi A.M., Silica gel-based monoliths prepared by the sol-gel method: facts and figures. Journal of Chromatography A, 1000(2003), 801-818.
33. Opallo M., Kukulka-Walkiewicz J., The electrochemical redox reactions in silica sol-gel glass monoliths and films with embedded organic electrolyte. Electrochimica Acta , 46(2001), 4235-4242.
34. Sato M., Slamovich E.B., Webster T.J., Enhanced osteoblast adhesion on hydrothermally treated hydroxyapatite/titania/poly (lactide-co-glycolide)sol–gel titanium coating, Biomaterials, 26(2005), 1349-1357.
35. Iler R.K., The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica, John Wiley & Sons, New York(1979).
36. Jirgensons B., Straumanis M.E., Colloid Chemistry, McMillan Co., New York(1962).
37. Ochi M., Takahashi R., Phase structure and thermomechanical properties of primary and tertiary amine-cured epoxy/silica hybrids. J. polymer Science Part B:Polymer Physics, 39(2001), 1071-1084.
38. Fitch R.M., renosil M.B., The mechanism of particle formation inpolymer hydrosols.Ⅰ:Kinetics of aqueous polymerization of methyl ethacrylate. Journal of Polymer Science, 27(1969), 95-118.
39. Himmel, B., Gerber T., Burger, H., X-ray diffraction investigations of silica gel structures. Journal of Non-Cryst. Solids, 91(1987), 122-136.
40. Lev O., Tsionsky M.; Rabinovich L., Glezer V., Sampath S., Pankratov, I., Gun J., Organically modified sol-gel sensors. Analytical Chemistry, 67(1995), 22-30.
41. Aelion R., Loebel A., Eirich F., Hydrolysis of Ethyl Silicate. Journal of Agronomy and Crop Science, 72(1950), 5705-5712
42. Satoh T., Akitaya M., Konno M., Saito S., Particles size distributionproduced by hydrolysis and condensation of tetraethylorthosilicate, Journal of Chemical Engineering of Japan, 30(1997), 759-762.
43. 王惠君, 以回應曲面法探討溶膠-凝膠法製備奈米二氧化矽之參數影響, 中原大學碩士論文, 2004。
44. Yang X., Chaki T.K., Hollow lead zirconate titanate microspheres prepared by sol-gel/emulsion technique. Materials Science and Engineering, 39(1996), 123-128.
45. Li W., Sha X., W. Dong, Wang Z., Synthesis of stable hollow silica microspheres with mesoporous shell in nonionic W/O emulsion, Chemistry Communications, 20(2002), 2434-2435.
46. Wu M., Wang G., Xu H., Long J., Shek F.L.Y., Lo S.M.F., Williams I.D., Feng S., Xu R., Hollow spheres based on mesostructured lead titanate with amorphous framework, Langmuir, 19(2003), 1362-1367.
47. Zhang Y.X., Li G.H., Wu Y.C., Xie T., Sol–gel synthesis of titania hollow spheres. Journal of Materials Research, 40(2005), 1993-1999.
48. Jiang Y., Ding X., Zhao J., Bala H., Zhao X., Tian Y., Yu K., Sheng Y., Guo Y., Wang Z., A facile route to synthesis of hollow SiO2/Al2O3 spheres with uniform mesopores in the shell wall, Journal of Materials Science Letters, 59(2005), 2893-2897.
49. Jiang Y., Zhao J., Bala H., Xu H., Tao N., Ding X., Wang Z., Synthesis of stable hollow spheres of Si/Al composite oxide with controlled pore size in the shell wall, Journal of Materials Science Letters, 58(2004), 2401-2405.
50. Gu S., Kondo T., Mine E., Nagao D., Kobayashi Y., Konno M., Fabrication of sub-micrometer-sized jingle bell-shaped hollow spheres from multilayered core–shell particles, Journal of ColloidInterface Science, 279(2004), 281-283.
51. Li G.C., Zhang Z.K., Synthesis of submicrometer-sized hollow titania spheres with controllable shells, Journal of Materials Science Letters, 58(2004), 2768-2771.
52. Park J.H., Kim Y.G., Oh C., Shin Seung-II., Kim Y.C., Oh S.G., Kong S.H., Fabrication of hollow silver spheres by MPTMS-functionalized hollow silica spheres as templates, Materials Research Bulletin, 40(2005), 271-280.
53. Yang L., Yang Z., Cao W., Stable thin films and hollow spheres composing chiral polyaniline composites, Journal of Colloid and Interface Science, 292(2005), 503-508.
54. Zhu Y., Shi J., Chen H., Shen W., Dong X., A facile method to synthesize novel hollow mesoporous silica spheres and advanced storage property, Microporous MesoporousMater, 84(2005), 218-222.
55. Dai Z., Meiser F., Mohwald H., Nanoengineering of iron oxide and iron oxide/silica hollow spheres by sequential layering combined with a sol–gel process, Journal of Colloid and Interface Science, 288(2005), 298-300.
56. Caruso F., Caruso R.A., Mohwald H., Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating, Science, 282(1998), 1111-1114.
57. Li C., Yang X., Yang B., Yan Y., Qian Y., A Template-Interface Co-Reduction Synthesis of Hollow Sphere-like Carbides. European Journal of Inorganic Chemistry, 19(2003), 3534-3537.
58. Luo P., Nieh T.G., Preparing hydroxyapatite powders with controlled morphology, Biomaterials, 17(1996), 1959-1964.
59. Okubo M., Konishi Y., Minami H., Production of hollow polymer particles by suspension polymerization, Colloid and Polymer Science, 276(1998), 638-642.
60. Park J.H., Oh C., Shin S.I., Moon S.K., Oh S.G., Preparation of hollow silica microspheres in W/O emulsions with polymers, Journal of Colloid and Interface Science, 266(2003), 107-114.
61. Singh R.K., Garg A., Bandyopadhyaya R., Mishra B.K., Density fractionated hollow silica microspheres with high-yield by non-polymeric sol–gel/emulsion route, Colloids and Surfaces A: Physicochem. Eng, 310(2007), 39-45.
62. Wang S.Q., Stanfield J.W., Osterwalder U., In vitro assessments of UVA protection by popular sunscreens available in the United States, Journal of the American Academy of Dermatology, 59(2008), 934-942.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top