跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/20 08:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林玥妦
研究生(外文):Lin, Jueh Feng
論文名稱:γ-胺基丁酸對生理機能應用之回顧
論文名稱(外文):Physiology Functional Application of γ-Amino Butyric Acid - A Review
指導教授:呂英震
指導教授(外文):Lu, Ying Chen
口試委員:謝淑玲吳志忠
口試委員(外文):Hsieh, Shu LingWU, Chih Chung
口試日期:2012-06-26
學位類別:碩士
校院名稱:中華醫事科技大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:85
中文關鍵詞:γ-胺基丁酸乳酸菌
外文關鍵詞:GABAGama-aminobutyric acidlactobacillus
相關次數:
  • 被引用被引用:1
  • 點閱點閱:2539
  • 評分評分:
  • 下載下載:98
  • 收藏至我的研究室書目清單書目收藏:0
γ-胺基丁酸(Gama-aminobutyric acid,簡稱GABA)是一種非蛋白胺基酸,主要存在人體的腦部,是目前所發現最主要的抑制性神經傳導物質。GABA具有許多生理功效,從相關文獻證實:(1)降血壓:藉由活化GABA的受體導致血管擴張及抑制ACE的活性達到降低血壓的作用;(2)幫助睡眠:活化GABAA受體會增加慢波睡眠及抑制奇異睡眠;(3)抗焦慮:在GABAA的存在下,benzodiazepines使氯離子通道開啟的頻率增加,因而增強GABA的抑制作用;(4)抗衰老:GABA與GABAA受體的促效劑能減少V1細胞老化;(5)生殖作用:GABA藉由使膜電位改變進而影響鈣離子的通透性,造成細胞內鈣離子濃度的上升引發精子的頂體反應;(6)皮膚癒合:有效抑制發炎反應,刺激表皮細胞再生;(7)胃腸運動:GABA可透過其受體來調控胃腸運動;(8)其他功能:作為飼料添加使禽畜提高存活率,維持穩定生長。
在許多相關研究乳酸菌的文獻中發現,乳酸菌的功能除了菌體本身外,還包括代謝產物例如乳酸、抗菌素、多醣等,有些乳酸菌還能產出GABA。
本文整理目前已發表之期刊論文,綜合上述之特殊功效,更加確信GABA是值得開發且廣泛應用的保健素材。

GABA is the chief inhibitory neurotransmitter in the mammalian central nervous system. It plays a role in regulating neuronal excitability throughout the nervous system. Many studies have showed that GABA was involved in many physiological functions. (1) Activated GABA receptor induces vasodilation and angiotensin converting enzyme (ACE) inhibition. The blood vessel relaxation leads to decrease blood pressure. (2) It is well established that activation of GABAA receptors favors sleep. The GABAA receptor-mediated inhibitory processes decrease waking and increase slow-wave sleep and the paradoxical sleep is decreased by agonistic modulators of GABAA receptors. (3) Benzodiazepine-induced conformational changes increase GABA's receptor affinity, and thus increase the frequency of ion channel openings. Chloride ion influx hyperpolarizes GABA neurons and produces GABA's inhibitory interneuronal effects. (4) Adding GABA and GABA agonists improve the function of cells in the visual cortex (area V1) and facilitate visual function in old animals. (5) The activation of GABAA receptor leading to Ca2+ channels opening are involved in progesterone-induced acrosomal exocytosis in mouse spermatozoa. (6)To inhibit the inflammatory response and stimulate the epidermal revive. (7)GABA receptors control gastrointestinal motility. (8) Be supplement feed to make domestic birds and animail health.
Many Lactic acid bacterium (LAB) studies found, these beneficial effects not only came from bacterium itself but also metabolism products, including lactic acid, bacteriocin, polysaccharide and GABA.
The thesis review and summarize these publications and according to these studies, we believed that GABA is worthy to develop and apply in functional food.

目 錄
授權................................................................................................................ii
誌謝...............................................................................................................iii
目錄...............................................................................................................iv
中文摘要.....................................................................................................viii
英文摘要.......................................................................................................ix
一、γ-胺基丁酸(Gama-aminobutyric acid,GABA)簡介..........................1
1-1中樞神經系統...................................................................................2
1-2周邊系統...........................................................................................3
二、GABA的代謝.......................................................................................4
2-1生物合成...........................................................................................4
2-2分解...................................................................................................6
三、GABA受體的分類...............................................................................7
3-1 GABA受體介紹...............................................................................7
3-2 GABAA受體....................................................................................8
3-3 GABAB受體....................................................................................11
3-4 GABAC受體....................................................................................14
四、GABA的生理功能................................................................................16
4-1降低血壓...........................................................................................16
4-2幫助睡眠...........................................................................................18
4-3抗焦慮...............................................................................................22
4-4抗衰老.............................................................................................24
4-5生殖作用.........................................................................................26
4-6皮膚癒合.........................................................................................28
4-7胃腸運動.........................................................................................29
4-8其他功能..........................................................................................31
五、乳酸菌之代謝產物..............................................................................32
5-1乳酸菌產GABA研究....................................................................33
六、結論......................................................................................................34
七、參考文獻..............................................................................................37


表目錄
表一、藥物應用影響V1細胞的反應………………………......................70
表二、藥物應用對老彌猴V1區域之方位和方向選擇性細胞的百分比...71
表三、微生物產出GABA之含量................................................................72
表四、從乳酪篩選出的可產出GABA的乳酸菌........................................73
表五、各種乳酪之GABA含量....................................................................74
表六、各種乳酪的發醱菌酛之GABA含量................................................75
表七、GABA影響生理功能........................................................................76

圖目錄
圖一、γ-胺基丁酸分子結構圖...................................................................77
圖二、GABA生物合成途徑......................................................................78
圖三、乳酸菌代謝途徑.............................................................................79
圖四、GABAA受體之架構.........................................................................80
圖五、GABAA受體上不同藥物之結合位.................................................81
圖六、GABAA受體促效劑及拮抗劑.........................................................82
圖七、GABAB受體之結構圖.....................................................................83
圖八、比較EGF與GABA對皮膚創傷的控制........................................84
圖九、GABA信號分子涵蓋人體各個器官...............................................85



七、參考文獻
林智、大森正司。(2001) 氨基丁酸茶(Gabaron Tea)降血壓肌理的研究。茶葉科學。21(2): 153-156
林智、大森正司。(2002) γ-氨基丁酸茶成分對大鼠血管緊張素I 轉換酶(ACE)活性的影響。茶葉科學。22: 43-46
韋習會,漆興桂,夏東,蔣金湖。(2004) 日糧增加γ-氨基丁酸對育肥豬生長和飼料利用的影響。家畜生態,25(2): 10-12
郭曉娜,朱永義。(2003) 回應面法在發芽糙米研究中的應用。糧食與飼料工業,11: 11-12
陳忠,王婷,黃麗明,方代南。(2002) γ-氨基丁酸對熱應激仔雞生產性能影響的研究。海南師範學院學報(自然科學版),15(1): 82-83
楊勝遠,陸兆新,呂鳳霞,別小妹 (2005) γ-氨基丁酸的生理功能和研究開發進展。食品科學9(26): 546-551

Andrew WG, Meena N, Scott WW, Mark G, Gerald LK, Lori LD, and Frederick P (1996) Plasma levels of gamma-aminobutyric acid and panic disorder. Psychiatry Research. 63(2-3): 223-225
Andrews PL, Bingham S, and Wood KL (1987) Modulation of the vagal drive to the intramural cholinergic and non-cholinergic neurones in the ferret stomach by baclofen. J. Physiol., 388, 25-39
Audie GL, Yongchang W, Mingliang P, Yifeng Z, and Yuanye M (2003) GABA and Its Agonists Improved Visual Cortical Function in Senescent Monkeys. Science 300,812-815
Balazs R, Dahl D, and Harwood JR (1966) Subcellular distribution of enzymes of glutamate metabolism in rat brain.J. Neurochem., 13: 897–905
Behar TN, Li YX, Tran HT, Ma W, Dunlap V, Scott C, and Barker JL (1996) GABA stimulates chemotaxis and chemokinesis of embryonic cortical neurons via calcium-dependent mechanisms. J Neurosci. 16(5): 1808-1818
Behar TN, Li YX, Tran HT, Ma W, Dunlap V, Scott C, and Barker JL (1996) GABA stimulates chemotaxis and chemokinesis of embryonic cortical neurons via calcium-dependent mechanisms. J. Neurosci., 16(5): 1808-1818
Belhage B, Hansen GH, Elster E and Schousboe A (1998) Effects of γ-aminobutyric acid (GABA) on synaptogenesis and synaptic function. Perspec. Devel. Neurobiol., 5:235–246
Belmin J, Lévy BI, and Michel JB (1994) Changes in the renin-angiotensin-aldosterone axis in later life. Drugs Aging. 5: 391-400
Berl S and Waelsch HJ (1958) Determination of glutamate, glutamine, glutathione and γ-amino butyric acid and their distribution in brain tissue. Neurochem. 3, 161–169
Blackmore PF, Beebe SJ, Danforth DR, and Alexander N (1990) Progesterone and 17a-hydroxyprogesterone. Novel stimulators of calcium influx in human sperm. J Biol Chem. 265:1376-1380
Bloch-Tardy M, Rolland B and Gonnard P (1974) Pig brain 4-aminobutyrate 2-ketoglutarate transaminase. Purification, kinetics and physical properties. Biochimie., 56: 823–832
Bloom FE and Iversen LL (1971) Localizing 3H-GABA in nerve terminals of rat cerebral cortex by electron microscopic autoradiography. Nature 229:628-630
Boissard R, Fort P, Gervasoni D, Barbagli B, and Luppi PH (2003) Localization of the GABAergic and non-GABAergic neurons projecting to the sublaterodorsal nucleus and potentially gating paradoxical sleep onset. Eur J Neurosci 18:1627–1639
Borbely AA, Mattmann P, Loepfe M, Strauch I, and Lehman D (1985) Effect of benzodiazepine hypnotics on all-night sleep. EEG spectra. Hum. Neurobiol. 4, 189-194
Bormann J and Feigenspan A (1995) GABAC receptors. Trends Neurosci., 18, 515-519
Bormann J, Hamill OP, and Sakmann B (1987) Mechanism of anion permeation through channels gated by glycine and γ-aminobutyric acid in mouse cultured spinal neurones. J. Physiol., 385: 243-286
Bowery N (1989) GABAB receptors and their significance in mammalian pharmacology. Trends Pharmacol. Sci., 10: 401-407
Bowery NG and Enna SJ (2000) γ-aminobutyric acid B receptors: first of the functional metabotropic heterodimers. J. Pharmacol. Exp. Ther., 292: 2-7
Bowery NG, Hill DR, Hudson AL, Doble A, Middlemiss DN, Shaw J, and Turnbull M (1980) (-)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature, 283: 92-94
Bray C, Son JH, Kumar P, Harris JD, and Meizel S (2002) A role for the human sperm glycine receptor/Cl channel in theacrosome reaction initiated by recombinant ZP3. Biol Reprod 66:91-97
Brunner DP, Dijk DJ, Münch M, and Borbély AA (1991) Effect of zolpidem on sleep and sleep EEG spectra in healthy young men. Psychopharmacology 104(1): 1-5
Calogero AE, Burrello N, Ferrara E, Hall J, Fishel S, and D’Agata R (1999) γ-Aminobutyric acid (GABA) A and B receptors mediate the stimulatory effects of GABA on the human sperm acrosome reaction: interaction with progesterone. Fertil Steril 71: 930-936
Cash C, Maitre M, Ciesielski L and Mandel P (1974) Purification and partial characterisatiohn of 4-aminobutyrate 2-ketoglutarate transaminase from human brain. FEBS Lett., 47: 199–203
Castellano C, Cestari V, Cabib S, and Puglisi-Allegra S(1993) Strain-dependent effects of post-training GABA receptor agonists and antagonists on memory storage in mice. Psychopharmacology (Berl) 11: 134-138
Chebib M, Mewett KN, and Johnston GAR (1998) GABAC receptor antagonists differentiate between human rho1 and ρ2 receptors expressed in Xenopus oocytes. Eur. J. Pharmacol., 357, 227-234
Collingridge GL, Olsen RW, Peters J, and Spedding M (2009) A nomenclature for ligand-gated ion channels. Neuropharmacology 56, 2-5
Concas A, Serra M, Santoro G, Maciocco E, Cuccheddu T, and Biggio G (1994) The effect of cyclopyrrolones on GABAA receptor function is different from that of benzodiazepines. Naunyn Schmiedeberg’s Arch. Pharmacol. 350, 294-300
Cryan JF and Kaupmann K (2005) Don't worry 'B' happy! : a role for GABA (B) receptors in anxiety and depression. Trends Pharmacol. Sci., 26: 36-43
Datta S and Siwek DF (1997) Excitation of the brain stem pedunculopontine tegmentum cholinergic cells induces wakefulness and REM sleep.J. Neurophysiol. 77, 2975-2988
Declerck AC, Ruwe F, O’Hanlon JF, and Wauquier A (1992) Effects of Zolpidem and Flunitrazepam on nocturnal sleep of women subjectively complaining of insomnia. Psychopharmacology 106, 497-501
Depoortere H, Francon D, van Luijtelaar ELJM, Drinkenburg WHIM, and Coenen AML (1995) Diferential effects of midazolam and zolpidem on sleep wake states and epileptic activity in WAG/Rij rats. Pharmacol. Biochem. Behav. 51, 571-576
Depoortere H, Zivkovic B, Lloyd KG, Sanger DJ, Perrault G, Langer SZ, and Bartholini G (1986) Zolpidem, a novel nonbenzodiazepine hypnotic. I. Neuropharmacological and behavioral effects. J. Pharmacol. Exp. Ther. 237, 649-658
Dinesh P and Birendra NM (2004) GABA in pedunculo pontine tegmentum regulates spontaneous rapid eye movement sleep by acting on GABAA receptors in freely moving rats. Neuroscience Letters.365(3):200-204

Duncan GE, Breese GR, Criswell HE, Mccown TJ, Herbert JS, Devaud LL, amd Morrow AL (1995) Distribution of ( 3H) zolpidem binding sites in relation to messenger RNA encoding the K1, L2 and Q2 subunits of GABA A receptors in rat brain. Neuroscience 64, 1113-1128
Engeli S, Schling P, Gorzelniak K, Boschmann M, Janke J, Ailhaud G, Teboul M, Massiera F, and Sharma AM (2003) The adipose-tissue renin-angiotensin-aldosterone system: role in the metabolic syndrome? Int J Biochem Cell Biol.; 35:807-825
Fargeas MJ, Fioramonti J, and Bueno L (1988) Central and peripheral action of GABAA and GABAB agonists on small intestine motility in rats. Eur. J. Pharmacol., 150, 163-169
Feigenspan A and Bormann J (1998) GABA-gated Cl- channels in the rat retina. Prog. Retin. Eye Res., 17, 99-126
Fiszman ML and Schousboe A (2004) Role of calcium and kinases on the neurotrophic effect induced by g-aminobutyric acid. J. Neurosci. Res., 76: 435–441
Froestl W, Mickel SJ, von SG, Diel PJ, Hall RG, Maier L, Strub D, Melillo V, Baumann PA, and Bernasconi R (1995) Phosphinic acid analogues of GABA. 2. Selective, orally active GABAB antagonists. J. Med. Chem., 38, 3313-3331
Gaillard JM, Schultz P, and Tissot R (1973) Effects of three benzodiazepines (nitrazepam, flunitrazepam and bromazepam) on sleep of normal subjects, studied with an automatic scoring system. Pharmakopsychiatrie 6, 207-217
Gandolfo G, Scherschlicht R, amd Gottesmann C (1994) Benzodiazepines promote the intermediate stage at the expense of paradoxical sleep in the rat. Pharmacol. Biochem. Behav. 49, 921-927
Gauthier P, Arnaud C, and Gottesmann C (1997) Influence of a GABA B receptor antagonist on sleep-waking cycle in the rat. Brain Res. 773, 8-14
Gauthier P, Arnaud C, Stutzmann JM, and Gottesmann C (1997) Influence of zopiclone, a new generation hypnotic, on the intermediate stage and paradoxical sleep in the rat. Psychopharmacology 130, 139-143
Gibbs ME and Johnston GAR (2005) Opposing roles for GABA-A and GABA-C receptors in short-term memory formation in young chicks. Neuroscience, 131, 567-576
Glin L, Arnaud C, Berracochea D, Galey D, Jaffard R, and Gottesmann C (1991) The intermediate stage of sleep in mice. Physiol. Behav. 50: 951-953
Gottesmann C (1964) Données sur l’activité corticale au cours du sommeil profond chez le Rat. C.R. Soc. Biol. 158: 1829–1834

Gottesmann C (1996) The transition from slow wave sleep to paradoxical sleep: evolving facts and concepts of the neurophysiological processes underlying the intermediate stage of sleep. Neurosci. Biobehav. Rev. 20, 367-387
Gottesmann C (2002) GABA mechanisms and sleep. Neuroscience. 111(2):231-239
Gottesmann C, Gandolfo G, and Zernicki B (1995) Sleep-waking cycle in chronic rat preparation with brain stem transected at the caudopontine level. Brain Res. Bull. 36, 573-580
Gottesmann C, Gandolfo G, Arnaud C, and Gauthier P (1998) The intermediate stage and paradoxical sleep in the rat: in£uence of three generations of hypnotics. Eur. J. Neurosci. 10, 409-414
Gottesmann C, Trefouret S, and Depoortere H (1994) Influence of Zolpidem, a novel hypnotic, on the intermediate stage and paradoxical sleep in the rat. Pharmacol. Biochem. Behav. 47, 359-362
Grimsley SR (1995) Anxiety disorders. In: Young LY and Koda-Kimble MA, (eds) Applied Therapeutics: The Clinical Use of Drugs. 6 th ed. Applied Therapeutics Inc, Vancouver, British Columbia, Canada, sect 73, pp 1-31
Gutierrez R (2003) The GABAergic phenotype of the glutamatergic granule cells of the dentate gyrus. Prog. Neurobiol.,71: 337–358
Han D, Kim HY, Lee HJ, Shim I, and Hahm DH (2007) Wound Healing Activity of Gamma-Aminobutyric Acid (GABA) in Rats. J. Microbiol Biotechnol. 17(10): 1661–1669
Hayakawa K, Kimura M, Kasaha K, Matsumoto K, Sansawa H, and Yamori Y (2004) Effect of a gamma-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar-Kyoto rats. British Journal of Nutrition, 92(3): 411-417
Hill DR and Bowery NG (1981) 3 H-baclofen and 3 H-GABA bind to bicuculline-insensitive GABA B sites in rat brain. Nature, 290, 149-152
Hokazono H, Omori T, and Ono K (2010) Effects of single and combined administration of fermented barley extract and gamma-aminobutyric acid on the development of atopic dermatitis in NC/Nga mice. Biosci Biotechnol Biochem. 74(1):135-139
Hussein AA, Mohammad FU, Mohammed AW, and Hildegard MS (2011) GABA (γ-aminobutyric acid), a non-protein amino acid counters the b-adrenergic cascade-activated oncogenic signaling in pancreatic cancer: A review of experimental evidence Mol. Nutr. Food Res. 55, 1–14
Endang SR (2010) International Seminar. Biotechnology for Enhancement the Tropical Biodiversity. Faculty of Agricultural Technology UGM. Bandung Indonesia. October 18-20
Jasmin L, Rabkin SD, Granato A, Boudah A, and Ohara PT (2003) Analgesia and hyperalgesia from GABA-mediated modulation of the cerebral cortex. Nature, 424, 316-320
Jessen KR, Hills JM, and Saffrey MJ (1986) Immunohistochemical demonstration of GABAergic neurons in the enteric nervous system. J. Neurosci., 6(6): 1628-1634
Jessen KR, Mirsky R, Dennison ME, and Burnstock G (1979) GABA may be a neurotransmitter in the vertebrate peripheral nervous system. Nature, 281, 71-74
John RA and Fowler LJ (1976) Kinetic and spectral properties of rabbit brain 4-aminobutyrate aminotransferase. Biochem. J., 155: 645–651
Johnston GAR, Curtis DR, Beart PM, Game CJ, McCulloch RM, and Twitchin B (1975) Cis- and trans-4-aminocrotonic acid as GABA analogues of restricted conformation. J Neurochem 24,157-160
Jouvet M, Buda C, and Sastre JP (1995) Existe-t-il un pacemaker bulbaire responsable du rythme ultradien du sommeil paradoxal? Arch. It. Biol.134, 39-56
Katz RJ and Liebler L (1987) GABA involvement in memory consolidation: Evidence from posttrial amino-oxyacetic acid. Psychopharmacology. 56(2):191-193
Kaupmann K, Huggel K, Heid J, Flor PJ, Bischoff S, Mickel SJ, McMaster G, Angst C, Bittiger H, Froestl W, and Bettler B (1997) Expression cloning of GABAB receptors uncovers similarity to metabotropic glutamate receptors. Nature 386, 239-246
Kaupmann K, Malitschek B, Schuler V, Heid J, Froestl W, Beck P, Mosbacher J, Bischoff S, Kulik A, Shigemoto R, Karschin A, and Bettler B (1998) GABAB-receptor subtypes assemble into functional heteromeric complexes. Nature 396, 683-687
Kerr DI and Krantis A (1983) Uptake and stimulus-evoked release of [3H]-γ-aminobutyric acid by myenteric nerves of guinea-pig intestine. Br. J. Pharmacol., 78, 271-276
Kerr DI and Ong J (1995) GABAB receptors. Pharmacol. Ther., 67: 187-246
Kline DW (1991) Light, ageing and visual performance. in The Susceptible Visual Apparatus, J.Marshall, ed., vol. 16 of Vision and Visual Dysfunction,J. E. Cronly-Dillion, ed., pp.150–161
Kline DW and Schieber FJ (1985) Vision and aging. In JE Birren & KW Schaie (Eds.), Handbook of the psychology and aging pp. 296-331
Komatsuzaki N, Nakamura T, Kimura T, and Shima J (2008) Characterization of Glutamate Decarboxylase from a High r-Aminobutyric. Biosci Biotechnol. Biochem., 72 (2): 278–285
Krantis A, Mattar K, and Glasgow I (1998) Rat gastroduodenal motility in vivo: interaction of GABA and VIP in control of spontaneous relaxations. Am. J. Physiol., 275, G897-903
Lai YY, Clements JR, and Siegel JM (1993) Glutamatergic and cholinergic projections to the pontine inhibitory area identified with horseradish peroxidase retrograde transport and immunohistochemistry. J Comp Neurol 336:321–330
Lancel M and Steiger A (1999) Sleep and its modulation by drugs that afect GABAA receptor function. Angew. Chem. Int. Ed. 38: 2852-2864
Lancel M, Grönlein TAM, and Faulhaber J (1996) Role of GABAA receptors in sleep regulation. Diferential effects of muscimol and midazolam on sleep in rats. Neuropsychopharmacology 15, 63-74
Larsson OM, Drejer J, Kvamme E, Svenneby G, Hertz L and Schousboe A (1985) Ontogenetic development of glutamate and GABA metabolizing enzymes in cultured cerebral cortex interneurons and in cerebral cortex in vivo. Int. J. Devl. Neurosci., 3: 177–185
Lavigne GJ, Kato T, Kolta A, and Sessle BJ (2003) Neurobiological mechanisms involved in sleep bruxism. Critical Reviews in Oral Biology & Medicine. 14(1):30-46
Lee SS, Hsu JT, Mantovani HC and Russell JB (2002) The effect of bovicin HC5, a bacteriocin from Streptococcus bovis HC5, on ruminal methane production in vitro. FEMS Microbiol Lett 217, 51–55
Luddens H and Korpi ER (1995) GABA antagonists differentiate between recombinant GABA A /benzodiazepine receptor subtypes. J Neurosci 15, 6957-6962
Luddens H, Korpi ER and Seeburg PH (1995) GABAA/benzodiazepine receptor heterogeneity: neuropharmacological implications. Neuropharmacology 34: 245-254
Lund R, Ruther E, Wober W, and Hippius H (1988) Effects of zolpidem (10 and 20 mg), lormetazepam, triazolam, and placebo on night sleep and residual effects during the day. Sauvanet JP, Langer SZ, Morselli P edn. Imidazopyridines in sleep disorders: a novel experimental and therapeutic approach. Raven Press, New York: 193-203
Macdonald RL and Olsen RW (1994) GABAA receptor channels. Annu Rev Neurosci 17, 569-602
Maitre M, Ciesielski L, Cash C and Mandel P (1975) Purification and studies on some properties of the 4-aminobutyrate: 2-oxoglutarate transaminase from rat brain. Eur.J. Biochem., 52: 157–169
Martin DL and Rimval K (1993) Regulation of γ-aminobutyric acid synthesis in the brain. J. Neurochem., 60(2): 395–407
Matsuo M, Kataoka Y, Mataki S, Kato Y and Oi K (1996) Conflict situation increases release in rat dorsal hippocampus: in vivo study with microdialysis and Vogel test. Neurosci Lett 215: 197-200
McLaughlin BJ, Wood JG, Saito K, Barber R, Vaughn JE, Roberts E and Wu JY (1974) The fine structural localization of glutamate decarboxylase in synaptic terminals of rodent cerebellum. Brain Res., 76: 377–391
Mendelson WB and Martin JV (1990) Effects of muscimol and flurazepam on the sleep EEG in the rat. Life Sciences Volume 47, Issue 19, Pages PL99–PL101
Mignot E, Taheri S, and Nishino S (2002) Sleeping with the hypothalamus: emerging therapeutic targets for sleep disorders. Nature Neuroscience. 5: 1071-1075
Möhler H (1992) GABAergic synaptic transmission. Regulation by drugs. Arzneim.-Forsch. Drug Res. 42, 211-214
Mohler H and Fritschy JM (1999) GABAB receptors make it to the top--as dimers. Trends Pharmacol. Sci., 20, 87-89
Monti JM and Altier H (1973) Flunitrazepam (Ro 5-4200) and sleep cycle in normal subjects. Psychopharmacologia 32, 343-349
Moruzzi G and Magoun HW (1949) Brain stem reticular formation and activation of the EEG. Electroencephalogr. Clin. Neurophysiol. 1,455-473
Nabeshima T, Noda Y, and Kameyama T (1988) GABAergic modulation of memory with regard to passive avoidance and conditioned suppression task in mice. Psychopharmacology. 94(1): 69-73
Nomura M, Kimoto H, Someya Y, Furukawa S, and Suzuki I (1998) Production of γ-Aminobutyric Acid By Cheese Starters During Cheese Ripening. Journal of Dairy Science. 81(6): 1486-1491
Olsen RW, McCabe RT, and Wamsley JK (1990) GABAA receptor subtypes: autoradiographic comparison of GABA, benzodiazepine, and convulsant binding sites in the rat central nervous system. J. Chem. Neuroanat., 3, 59-76
Ong J and Kerr DI (1983) Interactions between GABA and 5-hydroxytryptamine in the guinea-pig ileum. Eur. J. Pharmacol., 94(3-4): 305-312
Ong J and Kerr DI (1990) GABA-receptors in peripheral tissues. Life Sci., 46(21): 1489-1501
Oswald I (1968) Drugs and sleep. Pharmacol. Rev. 20, 273-303
Porciatti V, Fiorentini A, Morrone MC, and Burr DC (1999) The effects of ageing on reactiontimes to motiononset.Vision Res. 39(12): 2157
Ragozzino D, Woodward RM, Murata Y, Eusebi F, Overman LE, and Miledi R (1996) Design and in vitro pharmacology of a selective γ-aminobutyric acid C receptor antagonist. Mol. Pharmacol., 50, 1024-1030
Rayevsky KS and Kharlamov AN (1983) GABA-ergic drugs: effects on conditioning, memory and learning. Pharmacological Research Communications. 15(1):85-96
Reubi JC, Van der Berg C, and Cue´nod M (1978) Glutamine as precursor for the GABA and glutamate transmitter pools. Neurosci. Lett., 10: 171–174
Ribak CE, Vaughn JE, Saito K, Barber R and Roberts E (1976) Immunocytochemical localization of glutamate decarboxylase in rat substantia nigra. Brain Res., 116: 287–298
Roberts E and Frankel S (1950) γ-Aminobutyric acid in brain: its formation from glutamic acid. J. Biol. Chem., 187: 55–63
Saito K, Barber R, Wu J, Matsuda T, Roberts E and Vaughn JE (1974) Immunohistochemical localization of glutamate decarboxylase in rat cerebellum. Proc. Natl. Acad. Sci. USA, 71: 269–273
Sakai K (1988) Executive mechanisms of paradoxical sleep. Arch. It. Biol. 126, 239-257
Sakai K, Crochet S, and Onoe H (2001) Pontine structures and mechanisms involved in the generation of paradoxical (REM) sleep. Arch Ital Biol 139:93–107
Schmolesky MT, Wang YC, Pu ML, and Leventhal AG (2000) Degradation of stimulus selectivity of visual cortical cells in senescent rhesus monkeys. Nature Neurosci. 3(4)384-390
Schofield PR, Darlison MG, Fujita N, Burt DR, Stephenson FA, Rodriguez H, Rhee LM, Ramachandran J, Reale V, and Glencorse TA (1987) Sequence and functional expression of the GABA A receptor shows a ligand-gated receptor super-family. Nature, 328, 221-227
Schousboe A and Waagepetersen HS (2007) GABA neurotransmission: An overview. In: Handbook of Neurochem. and Molec. Neurobiol., 3rd ed. (A. Lajtha et al., eds.). Springer Publ., NY in press.
Schousboe A, Svenneby G, and Hertz L (1977) Uptake and metabolism of glutamate in astrocytes cultured from dissociated mouse brain hemispheres. J. Neurochem., 29:999–1005
Schousboe A, Wu JY ,and Roberts E (1973) Purification and characterization of the 4-aminobutyrate-2-ketogluterate transaminase from mouse brain. Biochemistry, 12: 2868–2873
Schousboe A, Wu JY and Roberts E (1974) Subunit structure and kinetic properties of 4-aminobutyrate-2-ketoglutarate transaminase from mouse brain. J. Neurochem., 23: 1189–1195
Shi QX and Roldan ER (1995) Evidence that a GABAA-like receptor is involved in progesterone-induced acrosomal exocytosis in mouse spermatozoa. Biol Reprod. 52(2): 373-381
Sieghart W (1995) Structure and pharmacology of γ-aminobutyric acid A receptor subtypes. Pharmacol. Rev. 47: 181-234
Siragusa S, Angelis MD, Cagno RD, Rizzello CG, Coda R and Gobbetti M (2007) Synthesis of γ-Aminobutyric Acid by Lactic Acid Bacteria Isolated from a Variety of Italian CheesesGobbetti. Appl. Environ. Microbiol. 73(22): 7283–7290
Sloviter M, Dichter MA, Rachinsky TL, Dean E, Goodman JH, Sollas AL and Martin DL (1996) Basal expression and induction of glutamate decarboxylase and GABA in excitatory granule cells of the rat and monkey hippocampal dentate gyrus. J. Comp. Neurol., 373: 593–618
Soderpalm B and Engel JA (1989) Biphasic effects of clonidine on conflict behavior: involvement of different alpha-adrenoceptors. Pharmacol Biochem Be 30: 471-477
Soderpalm B and Engel JA (1989) Does the PCPA induced anticonflict effect involve activation of the GABAA/benzodiazepine chloride ionophore receptor complex? J. Neural Transm 76: 145-153
Soghomonian JJ and Martin DL (1998) Two isoforms of glutamate decarboxylase: why? Trends Pharmacol. Sci., 19: 500–505 (Review)
Sonnewald U, Kortner TM, Qu H, Olstad E, Sunol C, Bak LK, Schousboe A and Waagepetersen HS (2006) Demonstration of extensive GABA synthesis in a small population of GAD positive neurons in cerebellar cultures by the use of pharmacological tools. Neurochem. Int., 48: 572–578
Sonnewald U, Olstad E, Qu H, Babot Z, Cristo`fol R, Sunol C, Schousboe A and Waagepetersen HS (2004) First direct demonstration of extensive GABA synthesis in mouse cerebellar neuronal cultures. J. Neurochem., 91:796–803
Spear PD (1993) Neural bases of visual deficits during aging. Vision Res. 33(18): 2589-2609
Sperk G, Furtinger S, Schwarzer C, and Pirker S (2004) GABA and its receptors in epilepsy. Adv. Exp. Med. Biol., 548: 92-103
Stephanie ZY and Angélique B (2009) GABA's Control of Stem and Cancer Cell Proliferation in Adult Neural and Peripheral Niches. Physiology (Bethesda). 24: 171–185
Steriade M (1996) Arousal: revisiting the reticular system. Science 272, 225-226
Stratford TR and Kelley AE (1997) GABA in the nucleus accumbens shell participates in the central regulation of feeding behavior. J. Neurosci., 17(11): 4434-4440
Stutzmann JM, Delahaye C, and Allain H (1993) Zopiclone. Data of experimental pharmacology and clinical use. Therapie 48(1): 33-42
Tanaka C (1985) γ-Aminobutyric acid in peripheral tissues. Life Sci., 37(24): 2221-2235
Tesarik J (1990) Biology of human fertilization: the general and the special. In: Evers JHL, Heineman MJ (eds.), Amsterdam: Elsevier; 263-282
Tillakaratne NJ, Medina-Kauwe L, and Gibson KM (1995) γ-Aminobutyric acid (GABA) metabolism in mammalian neural and nonneural tissues. Comp Biochem Physiol A Physiol., 112(2): 247-263
Tran DB, Silverman SE, Zimmerman K, and Feldon SE (1998) Age-related deterioration of motion perception and detection. Graefe’s Arch. Clin. Exp. Ophthalmol. 236(4): 269-273
Trulson ME, Preusler DW, Howell GK and Frederickson CJ (1982) Raphe unit activity in freely moving cats: effect of benzodiazepines. Neuropharmacology 21: 1050-1082
Tsai LH, Tsai W, and Wu JY (1993) Action of myenteric GABAergic neurons in the guinea pig stomach. Neurochem. Int., 23, 187-193
Vanini G, Torterolo P, McGregor R, Chase MH and Morales FR (2007) GABAergic processes in the mesencephalic tegmentum modulate the occurrence of active (rapid eye movement) sleep in guinea pigs. Neuroscience 145(3) : 1157–1167
Veterans Affairs Medical Center, and Dallas TX (1994) Plasma concentrations of gamma-aminobutyric acid (GABA) and mood disorders: a blood test for manic depressive. Clinical Chemistry. 40:296-302
Waagepetersen HS, Sonnewald U and Schousboe A (1999) The GABA paradox: Multiple roles as metabolite, neurotransmitter, and neurodifferentiative agent. J. Neurochem., 73: 1335–1342
Waagepetersen HS, Sonnewald U and Schousboe A (2003) Compartmentation of glutamine, glutamate and GABA metabolism in neurons and astrocytes: functional implications.Neuroscientist, 9: 398–403
Waagepetersen HS, Sonnewald U, Gegelashvili G, Larsson OM and Schousboe A (2001) Metabolic distinction between vesicular and cytosolic GABA in cultured GABAergic neurons using 13C MRS. J. Neurosci. Res., 63: 347–355
Ward CR and Kopf GS (1993) Molecular events mediating sperm activation. Dev Biol ;158(1): 9-34
Watanabe M, Maemura K, Kanbara K, Tamayama T, and Hayasaki H (2002) GABA and GABA receptors in the central nervous system and other organs. Int. Rev. Cytol., 213, 1-47
Westergaard N, Sonnewald U, Petersen SB and Schousboe A (1995) Glutamate and glutamine metabolism in cultured GABAergic neurons studied by 13C NMR spectroscopy: Evidence for compartmentation and mitochondrial heterogeneity. Neurosci. Lett., 185: 24–28
Wisden W, Laurie DJ, Monyer H and Seeburg PH (1992) The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J Neurosci 12, 1040-1062
Wolfgang F, CNS & Chemistry Expert, AC Immune SA, and PSE Building B - EPFL (2011) GABA receptors. BT Reviews No. 7, April 2011
Wu JY, Moss LG and Chude O (1978) Distribution and tissue specificity of 4-aminobutyrate-2-oxoglutarate aminotransferase. Neurochem. Res., 3: 207–219
Yanagimachi R. Mammalian fertilization. In: Knobil E, Neill JD, eds. (1994) The Physiology of Reproduction. New York, NY: Raven Press; 189-317
Yehezkel BA (2002) Excitatory actions of GABA during development: the nature of the nurture. Nat Rev Neurosci, Vol. 3, No. 9. pp. 728-739

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊