跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/21 02:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳育達
研究生(外文):Wu, Yuda
論文名稱:牙周膜韌帶於齒顎矯正之生物力學探討
論文名稱(外文):Biomechanical Investigation Of Periodontal Ligament In Orthodontics
指導教授:劉保興
指導教授(外文):Liu, Paohsin
口試委員:劉保興劉乃上葉南銘
口試委員(外文):Liu, PaohsinLiou, NaishangYeh,Nanming
口試日期:2012-07-18
學位類別:碩士
校院名稱:義守大學
系所名稱:生物醫學工程學系
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:73
中文關鍵詞:牙周膜韌帶齒顎矯正有限元素分析應變
外文關鍵詞:Periodontal LigamentOrthodonticsFinite Element AnalysisStrain
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1819
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
牙周膜韌帶在齒列矯正中扮演著很重要的角色,本研究使用三維有限元素法分別探討局部齒列矯正與全口牙齒咀嚼食物的基礎生物力學分析,以瞭解矯正力與齒列咀嚼食物之牙周膜韌帶的變形與應變情形。局部齒列模型共分三牙、五牙與七牙之三個分析樣本,以探討犬齒外突的矯正治療,矯正力2牛頓施於矯正線兩斷面,局部齒列矯正的邊界條件固定在下顎骨髁狀突。至於全口齒列咬合食團的模型分為缺牙與沒缺牙兩種情形進行探討,咬合負載則在下顎骨給予閉口肌群拉力,而咬合之邊界條件固定在顱骨上緣。比較三組局部齒列矯正模型結果顯示牙齒的數量會影響矯正齒所受到的矯正力,發現局部矯正之三牙組的牙齒承受了最大的變形與應變。在上下顎全口齒列咬合的分析中,缺牙區域的牙周膜韌帶有較大的主應變與主應力分布。分析結果的確發現缺牙模型的牙周膜韌帶會受到較大的矯正力進而產生較明顯的變形與應變,其中主應力的趨勢可以得知其壓與張應力在牙周膜與齒槽骨的分佈情形,以瞭解骨重塑的發生部位,可進一步了解牙周膜韌帶在矯正治療中的角色。此外全口齒列咬合食團時缺牙區域周遭的牙周膜韌帶主應力與主應變分布較明顯,有可能會造成鄰近牙齒的傾斜,此分析結果間接顯示缺牙患者必須進行牙橋修補或是人工植牙的原因。
Periodontal ligaments (PDL) have been considered as an important role in orthodontic treatment to influence tooth movement. This study investigate a basic PDL biomechanics in two cases of regional orthodontic treatment and chewing food particles in complete dentition using three-dimensional finite element (FE) analysis in order to understand the changes and distributions of stress and strain in the PDL under orthodontic and biting forces. The regional orthodontic FE models of the three-teeth, five-teeth, and seven-teeth simulations were used to investigate a treated effect of canine labial protrusion. A 2N orthodontic force was applied at the cross-sections of orthodontic wire to simulate metal elastic effect and condylar processes was fixed as boundary condition. The FE models of complete dentition in the maxilla and mandible with and without missing tooth were investigate to understand effects of the PDL, loading condition was applied by the muscular forces of jaw closing and boundary condition was fixed at cranial base and other skull regions. The result showed that tooth quantity could directly influence the deformation and strain distribution of the PDL, further comparing three FE models of orthodontics to obtain the PDL of the three-teeth FE model possessed the biggest strain and deformation. For investigating chewing food particles in the complete dentition, the principle stress and strain of the PDL in the missing tooth FE model was detected larger than that of non-missing one. The PDL of neighbor teeth due to missing tooth were obviously detected the higher strain and stress intensity, the tendency of principle stress could provide detail location of distribution of tensile and compressive stress within the PDL and alveolar bone around neighbor teeth. The relationship between bone remodeling and strain distribution in the PDL is an important factor to influence tooth movement of orthodontic treatment. Furthermore, The PDL in mesial and distal side around neighbor teeth were significantly detected higher strain and stress concentration for the missing tooth FE model of chewing food particle, this may be explained why neighbor teeth has a trend toward mesial-distal tipping and repair in teeth bridge and dental implant is needed.
致謝I
中文摘要II
英文摘要III
章節目錄V
圖目錄VIII
表目錄XI
第一章 緒論1
1.1 研究背景1
1.3 研究動機與目的6
1.4 牙齒和牙周組織的構造介紹7
1.5 牙齒的排列8
第二章 材料與方法10
2.1 研究流程10
2.2 模型的建構11
2.2.1 下顎模型建構11
2.2.2 牙齒模型建構13
2.2.3 牙周膜韌帶建構14
2.2.4 矯正器與矯正線建構14
2.2.5 上顎模型建構15
2.3 有限元素模型對位16
2.3.1 牙齒對位16
2.3.2 上下顎對位17
2.4.1 材料參數18
2.4.2 模型接觸關係19
2.4.3 邊界條件與負載19
2.4.4 有限元素模型網格化21
第三章 結果25
3.1 犬齒(ManL3)前突之牙周膜韌帶探討27
3.1.1 變形量(Deformation)與應變(von-Mises Strain)之探討27
3.1.2 犬齒與鄰近齒牙之周膜韌帶應變(von-Mises Strain)探討30
3.2.1 變形量探討36
3.2.3 最大主應力探討39
第四章 討論48
4.1 犬齒(ManL3)前突之牙周膜韌帶探討48
4.1.1 變形量(Deformation)與應變(von-Mises)探討48
4.1.2 犬齒與鄰近齒牙之周膜韌帶應變(von-Mises Strain)探討49
4.1.3 主應力探討50
4.2 全口齒列與缺牙齒列進行食團咬合時之探討51
4.2.1 變形量探討51
4.2.2 主應變探討51
4.3 完整齒列與缺牙齒列食團接觸區域之牙周膜探討52
4.3.1 變形量探討53
4.3.2 主應變探討53
4.3.3 主應力探討54
結論56
參考文獻57
圖目錄
圖1.1 牙齒構造【23】7
圖1.2 完整牙弓的排列情形【24】9
圖2.1 本研究之有限元素實驗流程10
圖2.2 下顎模型12
圖2.3 牙齒之牙釉質與牙本質(左半邊)13
圖2.4 牙周膜韌帶14
圖2.5 矯正線與矯正器之簡化體積模型14
圖2.6 顱顏骨之上顎模型15
圖2.7 牙齒在顎骨上的對位情形16
圖2.8 頭顱對位17
圖2.9 下顎矯正器線與牙齒之對位17
圖2.10 齒列矯正之矯正力負載與邊界條件20
圖2.11 全口齒列咬合模擬之閉口肌群負載與邊界條件21
圖2.12 有限元素網格模型23
圖2.13 收斂測試24
圖3.1 頭顱位置區塊25
圖3.2 上顎牙齒命名26
圖3.3 下顎牙齒命名26
圖3.4 牙周膜韌帶之應變分布28
圖3.5 牙周膜韌帶之變形量分布28
圖3.6 牙周膜韌帶應變分布28
圖3.7 牙周膜韌帶之變形量分布29
圖3.8 牙周膜韌帶之應變分布29
圖3.9 牙周膜韌帶之變形分布29
圖3.10 俯視與前視之牙周膜應變分布31
圖3.11 俯視與前視之牙周膜應變分布32
圖3.12 牙周膜應變分布33
圖3.13 矯正力作用後牙周膜主應力分布35
圖3.18 缺牙齒牙周膜變形量37
圖3.19 完整齒列牙周膜變形量37
圖3.20 缺牙齒列牙周膜最大主應變分布39
圖3.21 完整齒列牙周膜最大主應變分布39
圖3.22 缺牙齒列咀嚼之牙周膜最大主應力分布40
圖3.23 完整齒列咀嚼之牙周膜最大主應力分布40
圖3.24 食團接觸區域上顎牙周膜韌帶變形量42
圖3.25 食團接觸區域下顎牙周膜變形量43
圖3.26 食團接觸區域上顎牙周膜最大主應變44
圖3.27 食團接觸區域下顎牙周膜最大主應變45
圖3.28 食團接觸區域上顎牙周膜最大主應力46
圖3.29 食團接觸區域下顎牙周膜最大主應力47
表目錄
表一、材料參數表【4-8】18
表二、收斂測試24
中文部份
[1]中華民國齒顎矯正醫學會”齒顎矯正”第17 頁,台視文化,2004 年。
[2]梁文雄,Grant’s 解剖學,合記圖書出版社,台北市,575-578、641-647 頁,民國七十九年。
[3]傅宇輝 ,骨科學-原理及應用(上冊) ,大中國圖書公司,台北市,275-281,1987年06月。
[4]湯尼大夫牙醫網http://www.dr-tony.com.tw/index/health_sub01-101.htm
[5]劉紹東、黃怡仁、黃友和、何宛怡、劉燦勳、蕭廷鑫、王紹絹合譯,醫用解剖學 Clinically oriented Anatomy,力大圖書有限公司, 台北市,16-27、834-840、918-929,西元2003年9月。
[6]鄭鍾褔,”牙齒矯正學”,第28-35 頁, 第56-69 頁, 第157-159 頁,合記圖書出版社,1972 年。
英文部份
[1]Bourauel C, Vollmer D, Jager A. Application of bone remodeling theories in the simulation of orthodontic tooth movements.J Orofac Orthop 2000;61:266-79.
[2]Coolidge ED. The thickness of the human periodontal membrane.J Am Dent Assoc Dent Cosmos 1937;24:1260 70.
[3]Currey JD. The mechanical adaptations of bones. Princeton University Press, Princeton 1984.
[4]Hart, RT, Hennebel VV, Thongpreda, N, Van Buskirk, WC and Anderson, RC, “Modeling the biomechanics of the mandible – a three-dimensional finite element study”, Journal of Biomechanics, Vol. 25, pp.287-295, 1992.
[5]Kazuo Tanne, Mamoru Sakuda, Charles J. Burstone “Three-dimensional finite element analysis for stress in the periodontal tissue by orthodontic forces”. Am J Dentofac Orthop 1987;92:499-505.
[6]Kim L. Anderson, Erik H. Pederson, Birte Melsen “Material parameters and stress profiles within the periodontal ligament”. Am J Dentofac Orthod 1991;99 427-440.
[7]Kojima Y, Fukui H. A numerical analysis of tooth movement by orthodontic forces. J Jpn Soc Dent Mat Device 2002;21:40-8.
[8]Kojima Y, Fukui H. Numerical simulation of canine retraction by sliding mechanics. Am J Orthod Dentofacial Orthop 2005;127:542-51.
[9]Lanyon LE. Functional strain as a determinant for bone remodeling. Calcif Tissue Int 1984; 36: 56-61.
[10]Mercier P, Lafontant R. Residual alveolar ridge atrophy: classification and influence of facial morphology. J Prosthet Dent 1979; 41: 90-100.
[11]Mesnard M., et al. (2006), Numerical-experimental models to study the tem-poromandibular joint / 5th World Congress of Biomechan-ics & 15th Conference of the European Society of Biome-chanics / J of Biomec 39, Munich, De. - p.458.
[12]Mimaki, Kazuhide Kobayashi “Experimental evaluation of initial tooth displacement, center of resistance, and center of rotation under the influence of an orthodontic force”. Am J Orthod Dentofac Orthop 2001;120:190-197
[13]Misch CE, Bidez MW, Sharawy M. A bioengineered implant for a predetermined bone cellular response to loading forces. A literature review and case report. J Periodontol 2001; 72: 1276-1286.
[14]Piattelli A, Scarano A, Piattelli M. Histologic observations on 230 retrieved dental implants: 8 years' experience (1989-1996). J Periodontol 1998; 69:178-184.
[15]Quinn RS, Ken Yoshikawa D. A reassessment of forcemagnitude in orthodontics. American Journal of Orthodontics 1985;88:252–60.
[16]Ravindra Nanda ”Biomechanics in Clinical Orthodontics”. W. B. Saunders Company;2-9, 162-163, 253.
[17]Richard J. Smith, Charles J. Burstone “Mechnics of tooth movement”. Am J Orthod 1984;85:294-307.
[18]Sahin S, Cehreli MC, Yalcin E. The influence of functional forces on the biomechanics of implant-supported prostheses--a review. J Dent 2002; 30: 271-282.
[19]Schneider J, Geiger M, Sander FG.. Numerical experiments on long-time orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2002;121:257-65.
[20]Skalak R. Biomechanical considerations in osseointegrated prostheses. J Prosthet Dent 1983; 49: 843-848.
[21]Tallgren A. The continuing reduction of the residual alveolar ridges in complete denture wearers: a mixed-longitudinal study covering 25 years. 1972. J Prosthet Dent 2003; 89: 427-435.
[22]Tanne K, Sakuda M, Burstone CJ. Three dimensional finite element analysis for stress in the periodontal tissue by orthodontic forces. Am J Orthod Dentofacial Orthop 1987;92:499-505.
[23]Wolff J. Principles of bone transformation, translated by Hujust Hurschwald. Berlin 1892.
[24]Y. Kojima, H. Fukui, “A numerical simulation of tooth movement by wire bending”, American Journal of Orthodontics and Dentofacial Orthopedics, 130 (2006), pp. 452–459.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊