跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/29 23:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳光裕
研究生(外文):Wu, Kuangyu
論文名稱:掺雜鎵之氧化鋅薄膜特性之研究
論文名稱(外文):Study On The Characterization Of Ga-doped Zinc Oxide Thin Film By Spin-coating
指導教授:洪博彥施永輝
指導教授(外文):Houng, BoenShih, Yunghui
口試委員:洪博彥施永輝廖芳俊陳俊良
口試委員(外文):Houng, BoenShih, YunghuiLiao, FangchunChen, Chunliang
口試日期:2012-07-30
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:113
中文關鍵詞:氧化鋅溶膠-凝膠法旋轉塗佈
外文關鍵詞:ZnOSol-gelSpin-coating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1437
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技的技術進步和成熟,更加上使用人口的需求,產品朝著質輕、短薄、小而精緻、省電省力的方向發展,此類的新型材料已經成為當今的科技發展重點項目。由於氧化鋅薄膜的研究很多,而光學穿透度與電性的部份與ITO薄膜性質相距甚小,所以現在普遍都利用氧化鋅作為透明導電薄膜的研究主體。
本實驗中將利用溶膠-凝膠(Sol-gel)法中的旋轉塗佈(spin-coating)方式於玻璃基板(corning 1373)上製備薄膜,並希望透過鎵的掺雜和pH值的不同來改善氧化鋅薄膜的導電率,藉此找到最佳參數和透光率…等薄膜相關特性。
實驗結果發現在室溫下的掺雜鎵之氧化鋅薄膜的最佳參數為:鎵之掺雜量在3.0at%且pH值為7.0的情況下透過650℃的熱處理,GZO薄膜的載子濃度為 5.53 ×1020cm-3,載子遷移率為3.18 cm2 V-1 s-1,電阻率為3.55× 10-3 Ω-cm。在可見光範圍下的穿透度平均約70%左右。
With the technological progress and mature, and more on the needs of the population, the product toward the light, short, thin, small and exquisite, the direction of the power-saving effort, such new materials has become the technological development of key projects. Because zinc oxide thin film references a lot of research, but very small difference in the optical transmittance and electrical part of the ITO film properties, so the general use of zinc oxide as the transparent conductive films has been as research subjects.
In this study, through the use of sol-gel method of spin-coating and prepared on glass substrates (corning 1373) to improve the conductivity of ZnO thin films by doping of gallium. By adjusting pH values, the electrical property of GZO films are improved in term of better crystallization.
The experimental results showed that the best parameters of the doped gallium zinc oxide thin films at room temperature: the amount of Ga doping in 3.0at% and the pH value of 7.0, and heat treatment at 650℃, GZO film has the carrier concentration of 5.53 ×1020cm-3, the carrier mobility of 3.18 cm2 V-1 s-1, and a resistivity of 3.55× 10-3 Ω-cm. The average transmittance in the visible range is about 70%.
中文摘要I
英文摘要II
誌謝III
總目錄V
表目錄VII
圖目錄VIII
第一章 緒論1
1-1 前言1
1-2 研究目的3
第二章 基礎理論與文獻回顧4
2-1 透明導電薄膜的簡介與應用4
2-1-1 透明導電薄膜的簡介4
2-1-2 透明導電薄膜的應用5
2-2 透明導電薄膜的特性10
2-2-1 ITO薄膜的光學與電性性質10
2-2-2 ZnO薄膜的光學與電性性質18
2-2-3 薄膜的光學能隙之計算23
2-3 透明導電薄膜的成長理論與製程26
2-3-1 透明導電薄膜的成長機制26
2-3-2 透明導電薄膜的製程27
2-3-3 溶膠凝膠法29
2-3-4 退火處理31
第三章 實驗方法與步驟32
3-1 實驗流程32
3-2 實驗藥品33
3-3 鍍膜流程33
3-3-1 前驅溶液的配製33
3-3-2 基板的準備34
3-3-3 旋轉塗佈法的成膜35
3-3-4 成膜後的熱處理37
3-4 薄膜試片的分析38
3-4-1 X光繞射分析儀38
3-4-2 電性分析41
3-4-3 光學分析44
3-4-4 表面形貌及膜厚分析44
第四章 結果與討論 47
4-1 氧化鎵 ( Ga ) 的添加量對薄膜性質的影響47
4-1-1 結晶結構分析47
4-1-2 表面顯微結構特性分析55
4-1-3 電性分析65
4-1-4 光學分析69
4-2 不同pH值對薄膜性質的影響72
4-2-1 結晶結構分析72
4-2-2 表面顯微結構特性分析77
4-2-3 電性分析87
4-2-4 光學分析90
第五章 結論93
參考文獻95
作者簡介101
表目錄
表2-1 透明導電薄膜的日常應用5
表2-2 離子半徑與配位數表10
表2-3 ITO、SnO2、ATO的薄膜性質列表13
表3-1 實驗用之藥品列表33
表4-1 不同熱處理溫度下之純ZnO薄膜的電阻率、載子濃度及遷移率66
表4-2 在不同溫度、不同的Ga掺雜量下之GZO薄膜的電阻率67
表4-3 在熱處理650℃下之GZO薄膜的電阻率、載子濃度及遷移率67
表4-4 在pH=7.0且不同溫度下GZO薄膜的電阻率、載子濃度及遷移率88
表4-5 在pH=7.0且為650℃下GZO薄膜的電阻率、載子濃度及遷移率88
圖目錄
圖2-1 太陽能電池的原理簡圖7
圖2-2 常見的In2O3之晶體結構11
圖2-3 ZnO之晶體結構圖18
圖2-4 Burstein - Moss shift示意圖25
圖2-5 薄膜沉積過程之示意圖27
圖2-6 溶膠凝膠法下常見的鍍膜方式30
圖3-1 實驗流程圖32
圖3-2 實驗用基板洗淨流程圖35
圖3-3 旋轉塗佈機36
圖3-4 高溫管狀爐37
圖3-5 低掠角X光繞射儀39
圖3-6 X光繞射原理示意圖40
圖3-7 布拉格( Bragg )定律之幾何關係圖40
圖3-8 霍爾效應量測之儀器42
圖3-9 霍爾效應量測之界面42
圖3-10 霍爾效應之示意圖43
圖3-11 可見光分光光譜儀45
圖3-12 場發射式電子顯微鏡46
圖4-1 不同熱處理溫度下之純ZnO薄膜的XRD繞射圖50
圖4-2 在350℃熱處理溫度下之GZO薄膜的XRD繞射圖51
圖4-3 在450℃熱處理溫度下之GZO薄膜的XRD繞射圖52
圖4-4 在550℃熱處理溫度下之GZO薄膜的XRD繞射圖53
圖4-5 在650℃熱處理溫度下之GZO薄膜的XRD繞射圖54
圖4-6 在100kX倍下350℃熱處理的GZO薄膜之SEM表面結晶形貌圖(a)1.0 at%,(b)2.0 at%,(c)3.0 at%,(d)4.0 at%,(e)5.0 at% 57
圖4-7 在100kX倍下450℃熱處理的GZO薄膜之SEM表面結晶形貌圖(a)1.0 at%,(b)2.0 at%,(c)3.0 at%,(d)4.0 at%,(e)5.0 at% 58
圖4-8 在100kX倍下550℃熱處理的GZO薄膜之SEM表面結晶形貌圖(a)1.0 at%,(b)2.0 at%,(c)3.0 at%,(d)4.0 at%,(e)5.0 at% 59
圖4-9 在100kX倍下650℃熱處理的GZO薄膜之SEM表面結晶形貌圖(a)1.0 at%,(b)2.0 at%,(c)3.0 at%,(d)4.0 at%,(e)5.0 at% 60
圖4-10 在高倍率下350℃熱處理的GZO薄膜之SEM橫截面形貌圖(a)1.0 at%,(b)2.0 at%,(c)3.0 at%,(d)4.0 at%,(e)5.0 at% 61
圖4-11 在高倍率下450℃熱處理的GZO薄膜之SEM橫截面形貌圖(a)1.0 at%,(b)2.0 at%,(c)3.0 at%,(d)4.0 at%,(e)5.0 at% 62
圖4-12 在高倍率下550℃熱處理的GZO薄膜之SEM橫截面形貌圖(a)1.0 at%,(b)2.0 at%,(c)3.0 at%,(d)4.0 at%,(e)5.0 at% 63
圖4-13 在高倍率下650℃熱處理的GZO薄膜之SEM橫截面形貌圖(a)1.0 at%,(b)2.0 at%,(c)3.0 at%,(d)4.0 at%,(e)5.0 at% 64
圖4-14 在350℃下之不同氧化鎵添加量的GZO薄膜透光率圖70
圖4-15 在450℃下之不同氧化鎵添加量的GZO薄膜透光率圖70
圖4-16 在550℃下之不同氧化鎵添加量的GZO薄膜透光率圖71
圖4-17 在650℃下之不同氧化鎵添加量的GZO薄膜透光率圖71
圖4-18 在pH=7.0且熱處理350℃下之GZO薄膜的XRD繞射圖73
圖4-19 在pH=7.0且熱處理450℃下之GZO薄膜的XRD繞射圖74
圖4-20 在pH=7.0且熱處理550℃下之GZO薄膜的XRD繞射圖75
圖4-21 在pH=7.0且熱處理650℃下之GZO薄膜的XRD繞射圖76
圖4-22 在100kX倍pH=7.0下350℃熱處理的GZO薄膜之SEM表面結晶形貌圖(a)1.0 at%,(b)2.0 at%,(c)3.0 at%,(d)4.0 at%,(e)5.0 at% 79
圖4-23 在100kX倍pH=7.0下450℃熱處理的GZO薄膜之SEM表面結晶形貌圖(a)1.0 at%,(b)2.0 at%,(c)3.0 at%,(d)4.0 at%,(e)5.0 at% 80
圖4-24 在100kX倍pH=7.0下550℃熱處理的GZO薄膜之SEM表面結晶形貌圖(a)1.0 at%,(b)2.0 at%,(c)3.0 at%,(d)4.0 at%,(e)5.0 at% 81
圖4-25 在高倍率之pH=7.0下650℃熱處理的GZO薄膜之SEM表面結晶形貌圖(a)1.0 at%,(b)2.0 at%,(c)3.0 at%,(d)4.0 at%,(e)5.0 at% 82
圖4-26 在高倍率且pH=7.0下350℃熱處理的GZO薄膜之SEM橫截面形貌圖(a)1.0 at%,(b)2.0 at%,(c)3.0 at%,(d)4.0 at%,(e)5.0 at% 83
圖4-27 在高倍率且pH=7.0下450℃熱處理的GZO薄膜之SEM橫截面形貌圖(a)1.0 at%,(b)2.0 at%,(c)3.0 at%,(d)4.0 at%,(e)5.0 at% 84
圖4-28 在高倍率且pH=7.0下550℃熱處理的GZO薄膜之SEM橫截面形貌圖(a)1.0 at%,(b)2.0 at%,(c)3.0 at%,(d)4.0 at%,(e)5.0 at% 85
圖4-29 在高倍率且pH=7.0下650℃熱處理的GZO薄膜之SEM橫截面形貌圖(a)1.0 at%,(b)2.0 at%,(c)3.0 at%,(d)4.0 at%,(e)5.0 at% 86
圖4-30 在pH=7.0且熱處理350℃下之GZO薄膜的薄膜透光率圖91
圖4-31 在pH=7.0且熱處理450℃下之GZO薄膜的薄膜透光率圖91
圖4-32 在pH=7.0且熱處理550℃下之GZO薄膜的薄膜透光率圖92
圖4-33 在pH=7.0且熱處理650℃下之GZO薄膜的薄膜透光率圖92
中文部份
[1]侯秉宜,掺雜鋁、釕之濺鍍 ZnO 透明導電薄膜性質之研究,義守大學材料科學與工程學系碩士論文,2006年7月。
[2]染料敏化太陽能電池原理(DSSC),http://homepage.ntu.edu.tw/~d00524025/EOM-Lab/
[3]洪文進、許登貴、萬明安、郭書瑋、蘇昭瑾,“ITO 透明導電薄膜:從發展與應用到製備與分析”,CHEMISTRY(THE CHINESE CHEM. SOC., TAIPEI),第63卷,第3期,2005年9月,第409-418頁。
[4]陳思瑋,IO/ITO 透明導電多層膜性質之研究,義守大學材料科學與工程學系碩士論文,2008年7月。
[5]楊明輝,透明導電膜,藝軒圖書出版社,2006年10月第一版。
英文部份
[1]A. Kurz and M. A. Aegerter, “Novel transparent conducting sol-gel oxide coatings”, Thin Solid Films, vol.516, 2008, pp.4513-4518.
[2]A. Salehi, “The effects of deposition rate and substrate temperature of ITO thin films on electrical and optical properties”, Thin Solid Films, vol.324, 1988, pp.214-218.
[3]B. T. Lee, T. H. Kim and S. H. Jeong, “ Growth and characterization of single crystalline Ga-doped ZnO films using rf magnetron sputtering”, Journal of physics D : applied physics, vol.39, 2006, pp.957-961.
[4]C. M. Chen, Y. C. Hsu and S. J. Cherng, “Effects of annealing conditions on the properties of TiO2/ITO-based photoanode and the photovoltaic performance of dye-sensitized solar cells ”, Journal of Alloys and Compounds, vol.509, 2011, pp.872-877.
[5]D. K. Maurya, “Effects of post-thermal treatment on the properties of r.f. reactive sputtered ITO films”, Microelectronics Journal, vol.38, 2007, pp.76-79.
[6]D. Raoufi and T. Raoufi, “The effect of heat treatment on the physical properties of sol-gel derived ZnO thin films”, Applied Surface Science, vol.255, 2009, pp.5812-5817.
[7]F. K. Shan and Y. S. Yu, “Band gap energy of pure and Al-doped ZnO thin films”, Journal of the European Ceramic Society, vol.24, 2004, pp.1869-1872.
[8]F. O. Adurodija, H. Izumi, T. Ishihara, H. Yoshioka, M. Motoyama and K. Murai, “Effect of laser irradiation on the properties of indium tin oxide films deposited by pulsed laser deposition”, Applied Surface Science, vol.177, 2001, pp.114-121.
[9]G. Li, J. G. Lu and Z. H. Ye, “Transparent conductive Ga-doped ZnO/Cu multilayers prepared on polymer substrates at room temperature”, Solar Energy Materials & Solar Cells, vol.95, 2011, pp.1826-1830.
[10]In2O3的晶體結構,http://www.e-dyer.com/tech/40351_2.html
[11]J. A. Jeong and H. K. Kim, “Thickness effect of RF sputtered TiO2 passivating layer on the performance of dye-sensitized solar cells ”, Solar Energy Materials & Solar Cells, vol.95, 2011, pp.344-348.
[12]J. M. Lin, Y. Z. Zhang, Z. Z. Ye, X. Q. Gu, X. H. Pan, Y. F. Yang, J. G. Lu, H. P. He and B. H. Zhao, “Nb-doped ZnO transparent conducting films fabricated by pulsed laser deposition”, Applied Surface Science, vol.255, 2009, pp.6460-6463.
[13]J. S. Kima, J. W. Bae, H. J. Kim, N. E. Lee, G. Y. Yeom and K. H. Oh, “Effects of oxygen radical on the properties of indium tin oxide thin films deposited at room temperature by oxygen ion beam assisted evaporation”, Thin Solid Films, vol.377-378, 2000, pp.103-108.
[14]J. Strϋmpfel and C. May, “Low ohm large area ITO coating by reactive magnetron sputtering in DC and MF mode”, Vacuum, vol.59, 2000, pp.500-505.
[15]J. W. Bae, H. J. Kim, J. S. Kim, N. E. Lee and G. Y. Yeom, “Effects of oxygen ion beam plasma conditions on the properties of indium tin oxide thin films”, Vacuum, vol.56, 2000, pp.77-81.
[16]K. Fan, M. Liu, T. Peng, L. Ma and K. Dai, “Effects of paste components on the properties of screen-printed porous TiO2 film for dye-sensitized solar cells”, Renewable Energy, vol.35, 2010, pp.555-561.
[17]K. Li, Y. Wang, Y. Sun and C. Yuan, “Preparation of nanocrystalline TiO2 electrode by layer-by-layer screen printing and its application in dye-sensitized solar cell ”, Materials Science and Engineering B, vol.175, 2010, pp.44-47.
[18]K. T. Ramakrishna Reddy, T. B. S. Reddy, I. Forbes, R and W. Miles, “Highly oriented and conducting ZnO:Ga layers grown by chemical spray pyrolysis”, Surface and Coatings Technology, vol.151-152, March 2002, pp.110-113.
[19]K. Zhang, F. Zhu, C.H.A. Huan and A. T. S. Weea, “Indium tin oxide films prepared by radio frequency magneteon sputtering method at a low processing temperature” , Thin Solid Films, vol.376, 2000, pp.255-263.
[20]M. C. Kao, H. Z. Chen, S. L. Young, C. Y. Kung and C. C. Lin, “The effects of the thickness of TiO2 films on the performance of dye-sensitized solar cells”, Thin Solid Films, vol.517, 2009, pp.5096-5099.
[21]M. J. Alam and D. C. Cameron, “Optical and .electrical properties of transparent conductive ITO thin films deposited by sol-gel process”, Thin Solid Films, vol.324, 2000, pp.455-459.
[22]M. M. Gomez, J. Lu, E. Olsson, A. Hagfeldt and C.G. Granqvist, “High efficiency dye-sensitized nanocrystalline solar cells based on sputter deposited Ti oxide films”, Solar Energy Materials & Solar Cells, vol.64, 2000, pp.385-392.
[23]P. K. Nayak, J. Yang, J. W. Kim, S. J. Chung, J. W. Jeong, C. H. Lee and Y. Hong, “Spin-coated Ga-doped ZnO transparent conducting thin films for organic light-emitting diodes”, Journal of physics D : Applied Physics, vol.42, 2009, 035102.
[24]S. D. Shinde, A. V. Deshmukh, S. K. Date, V. G. Sathe and K. P. Adhi, “Effect of Ga doping on micro/structural, electrical and optical properties of pulsed laser deposited ZnO thin films”, Thin Solid Films, vol.520, 2011, pp.1212-1217.
[25]S. Fujihara, C. Sasaki and T. Kimura, “Effects of Li and Mg doping on microstructure and properties of sol-gel ZnO thin films”, Journal of the European Ceramic Society, vol.21, 2001, pp.2109-2112.
[26]S. H. Paeng, M. W. Park and Y. M. Sung, “Transparent conductive characteristics of Ti:ITO films deposited by RF magnetron sputtering at low substrate temperature”, Surface & Coatings Technology, vol.205, 2010, pp.210-215.
[27]S. H. Shin, J. H. Shin, K. J. Park, T. Ishida, O. Tabata and H. H. Kim, “Low resistivity indium tin oxide films deposited by unbalanced DC magnetron sputtering ”, Thin Solid Films, vol.341, 1999, pp.225-229.
[28]S. Laux, N. Kaiser, A. Z. Èller, R. G. Ètzelmann, H. Lauth and H. Bernitzki, “Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation”, Thin Solid Films, vol.335, 1988, pp.1-5.
[29]S. S. Lin, J. L. Huang and P. Šajgalik, “The properties of Ti-doped ZnO films deposited by simultaneous RF and DC magnetron sputtering”, Surface & Coatings Technology, vol.191, 2005, pp.286-292.
[30]T. Shibuya, M. Yoshinaka, Y. Shimane, F. Utsuno, K. Yano, K. Inoue, E. Ikenagab, J. J. Kim, S. Ueda, M. Obata and K. Kobayashi, “Electronic structural analysis of transparent In2O3-ZnO films by hard X-ray photoelectron spectroscopy”, Thin Solid Films, vol.518, 2010, pp.3008-3011.
[31]T. Yamada, A. Miyake, H. Makino, N. Yamamoto and T. Yamamoto, “Effect of thermal annealing on electrical properties of transparent conductive Ga-doped ZnO films prepared by ion-plating using direct-current arc discharge”, Thin Solid Films, vol.517, 2009, pp.3134-3137.
[32]XRD原理示意圖,聖約翰科技大學精密儀器中心,http://pic.sju.edu.tw
[33]Y. B. Lv, Y. Dai, K. Yang, Z. Zhang, W. Wei, M. Guo and B. Huang, “Density functional investigation of structural, electronic and optical properties of Ge-doped ZnO”, Physical B, vol.406, 2011, pp.3926-3930.
[34]Y. Shigesato, R. Koshi-ishi, T. Kawashima and J. Ohsako, “Early stages of ITO deposition on glass or polymer substrates”, Vacuum, vol.59, 2000, pp.614-621.
[35]Z. H. Li, Y. P. Ke and D. Y. Ren, “Effects of heat treatment on morphological, optical and electrical properties of ITO films by sol-gel technique”, Trans. Nonferrous Met. Soc. China, vol.18, 2008, pp.366-371.
[36]ZnO的晶體結構,http://staff.ustc.edu.cn/~bxlin/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top