跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/26 21:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邵冠雄
研究生(外文):Shao, Kuanhsiung
論文名稱:清醒紐西蘭大白兔磁振造影之輔具設計
論文名稱(外文):Design Of Assistive Device For Awake Rabbits’ MRI
指導教授:李境和陳博洲陳博洲引用關係
指導教授(外文):Li, ChinghoChen, Pochou
口試委員:李境和陳博洲朱唯勤黃詠暉
口試委員(外文):Li, ChinghoChen, PochouChu, WoeichynHuang, Yunghui
口試日期:2012-07-17
學位類別:碩士
校院名稱:義守大學
系所名稱:資訊工程學系碩士在職專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:90
中文關鍵詞:磁振造影清醒動物實驗模型固定輔具彈性繃帶
外文關鍵詞:Magnetic Resonance ImagingAwake Animal ModelAssistive DeviceElastic Bandage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1255
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
動物磁振造影(Magnetic Resonance Imaging, MRI)掃描檢查中通常使用麻醉藥物方式進行,主要係用來鎮靜並限制動物的行為能力,免除動物不安所產生的躁動,進而產生移動假影(Motion Artifact)。麻醉動物實驗模型使用麻醉藥物會影響腦功能反應,如何探討動物之腦部功能,如功能性磁振造影(functional Magnetic Resonance Imaging, fMRI)為一重要的議題,其解決方法為建立清醒動物之MRI實驗模型,即為本論文之研究動機。清醒動物實驗模型之建立可以被應用在感覺系統、學習與記憶、或藥物引發神經細胞活化等功能性研究。本研究旨在設計紐西蘭大白兔動物模型之固定輔具,在不使用麻醉藥物進行磁振造影掃描檢查。紐西蘭大白兔為常用的研究動物,因其溫馴之特質,對於固定擁有很高的耐受度,可在長時間維持固定下,獲得高空間/時間解析度的磁振造影影像。依據紐西蘭大白兔全身骨骼解剖構造、肌肉分布情形及觀察頭頸部與四肢的運動模式,完成非金屬材質固定輔具之設計與製作,並搭配彈性繃帶來固定紐西蘭大白兔,以有效抑制掃描中紐西蘭大白兔之移動。實驗使用1.5T GE Signa HDxt 全身磁振造影掃描儀,配以雙通道頭部線圈,在沒有使用麻醉藥物情況下進行掃描,以取得紐西蘭大白兔的腦部影像。磁振造影掃描波序為快速自旋回訊(Fast Spin Echo, FSE)、自旋回訊(Spin Echo, SE)、梯度回訊(Gradient Echo, GE)及快速擾相梯度回訊(Fast Spoiled Gradient Recalled Echo, FSPGR)波序,掃描方位皆為軸向切面掃描,總計實驗時間約30分鐘。藉由觀察掃描取得之影像是否存在移動假影、量測影像之訊雜比(Signal to Noise Ratio, SNR)及雙側定位假體位移距離,來評估輔具之效能。實驗結果發現,使用彈性繃帶與固定輔具固定之設計,能夠有效抑制紐西蘭大白兔肢體移動,大白兔可長時間維持在不動狀態,直至整個磁實驗取像完成。麻醉對照組與實驗組執行所有掃描波序所取得的切面影像均無明顯位移、雙側定位水假體與影像中心線間之位移偏差極小(小於1 mm),影像上也沒有因移動產生的移動假影且SNR並無顯著差異。本研究證實自製的固定輔具對於紐西蘭大白兔擁有良好的固定效能。
Anesthetic is necessary to calm the feeling and restrict the movement of the animal and avoid motion artifacts caused by the restless movements in animal MRI scan. Most cerebral function responses may be affected by anesthetic medicine in anesthetic animal models. How to investigate animal cerebral function, for example, functional MRI (fMRI), is a crucial issue. The solution is to set up an awake animal MRI model. The animal model without anesthetic can be applied to functional studies of sensory systems, learning and memory task, and drug-induced cerebral neurocyte activation. The purpose of this study is to design an assistive device for New Zealand Rabbits. New Zealand Rabbits are commonly used in scientific research, because of their gentle characteristic and high tolerance for constraint. High spatial and temporal resolution magnetic resonance images can be obtained with minimized motion artifacts during long periods of MRI experiments. A nonmetallic assistive device were designed and made according to the rabbits’ skeletal anatomy with muscle distribution, and movement styles of head, neck and extremities. In order to effectively inhibit rabbit’s movement, the assistive device with elastic bandage was used to restrict rabbit’s activity throughout the experiment. All of the studies were performed using a clinical 1.5 Tesla GE Signa HDxt whole body scanner with quadrature head coil. Pulse sequences used in this study includes T2 fast-spin echo (FSE), spin echo (SE), gradient echo (GE) and fast spoiled gradient echo (FSPGR). The scan time of the whole experiment was about thirty minutes. The constraint efficiency of the assistive device was assessed by observing the existence/absence of motion artifacts, measuring signal to noise ratio (SNR), and displacement between bi-lateral localized water phantoms on MR images. It is found that the use of the assistive device with elastic bandage to restrict rabbit’s activity is effective and the rabbit could remain stationary for a long period throughout MRI scans. The images of experimental and control groups obtained from all pulse sequences showed no motion artifacts and no obvious displacements. The displacements between those two localized water phantoms and center line were nearly identical (less than 1 mm). There were comparable SNR between two groups on all images as well. In conclusion, the home-made assistive device with elastic bandage has been proven to have good constraint efficiency for New Zealand Rabbits.
目錄I
圖目錄III
表目錄VIII
謝誌IX
中文摘要X
英文摘要XII
第一章 緒論1
1-1 研究背景及文獻回顧1
1-2 研究動機及目的5
1-3 論文架構7
第二章 磁振造影的原理與應用8
2-1 磁振造影的原理與演進8
2-2 CSE T1W和CSE T2W原理15
2-3 FSE T2W原理18
2-4 FSPGR原理20
2-4-1 動態掃描(Dynamic scan)應用27
第三章 兔子解剖構造與運動模式29
3-1 兔子頭頸部運動模式29
3-2 兔子前肢運動模式31
3-3 兔子後肢運動模式32
第四章 實驗材料與方法35
4-1 實驗構想35
4-2 輔具設計與製作36
4-2-1 齒輪運動原理應用36
4-2-2 木工器具簡介37
4-2-3 固定輔具之製作流程40
4-3 磁振造影掃描50
4-3-1 磁振造影掃描方法50
4-3-2 磁振造影掃描影像分析53
第五章 實驗結果54
5-1 輔具固定54
5-2 波序掃描影像54
5-3 SNR比較分析62
5-4 影像位移比較分析65
第六章 討論與結論70
參考文獻72
圖目錄
圖1-1 老鼠用立體定位頭架2
圖1-2 貓的包覆搖籃架3
圖1-3 特製靈長類動物椅子與頭部支架3
圖1-4 猴子的4.7-T MRI掃描儀與眼底攝影機4
圖2-1 電磁波8
圖2-2 自旋9
圖2-3 旋進9
圖2-4 核磁共振過程10
圖2-5 90°RF脈衝激發後淨磁向量的變化11
圖2-6 T1 遲豫與T2 遲豫12
圖2-7 自由感應衰減13
圖2-8 磁振造影流程14
圖2-9 TR定義為兩個連續90°射頻脈衝之間的時間間隔15
圖2-10 TE定義為90°射頻脈衝至收集訊號時段中心點的時間15
圖2-11 自旋回訊波序圖16
圖2-12 不同組織的T1,短的TR1比長的TR2有較佳的組織對比16
圖2-13 不同組織的T2,長的TE2比短的TE1有較佳的組織對比17
圖2-14 T1加權之回復與衰減曲線17
圖2-15 T2加權之回復與衰減曲線18
圖2-16 FSE波序圖19
圖2-17 FSE之K-Space填入19
圖2-18 梯度回訊序列不使用180°RF脈衝21
圖2-19 梯度回訊波序Gx使用重聚焦梯度取代180°RF脈衝22
圖2-20 穩定態橫向磁量成長22
圖2-21 梯度回訊波序圖23
圖2-22 GRASS波序圖24
圖2-23 RF Spoiling25
圖2-24 RF Spoiling GRE波序圖25
圖2-25 Variable Gradient Spoiling GRE波序圖26
圖2-26 部分的回訊27
圖2-27 部分的RF27
圖2-28 部分的NEX27
圖3-1 兔子骨骼架構圖30
圖3-2 兔子頭部活動示意圖30
圖3-3 兔子上臂活動示意圖31
圖3-4 兔子肘關節32
圖3-5 兔子腕關節與手掌部32
圖3-6 兔子髖關節運動方式示意圖33
圖3-7 兔子膝關節伸展與彎曲動作示意圖33
圖3-8 兔子四肢活動示意圖34
圖3-9 兔子四肢活動與固定方式示意圖34
圖4-1 齒輪與齒條36
圖4-2 齒輪連動示意圖36
圖4-3 木工小刀37
圖4-4 弓形鋸38
圖4-5 鉋刀與鉋台使用方式38
圖4-6 電鑽39
圖4-7 大齒輪40
圖4-8 小齒輪40
圖4-9 齒輪組41
圖4-10 長方型底板41
圖4-11 齒輪連動組態41
圖4-12 雙側與前端邊條42
圖4-13 邊條組裝42
圖4-14 齒條42
圖4-15 齒條加裝細木邊條42
圖4-16 在邊條上切割溝槽43
圖4-17 齒輪連動基座完成圖43
圖4-18 弧形支架與長方型木板44
圖4-19 齒輪連動基座與弧形支架44
圖4-20 C形扣組件45
圖4-21 C形扣完成圖45
圖4-22 頭部連動固定夾組件46
圖4-23 頭部連動固定夾組件46
圖4-24 齒條組合46
圖4-25 C形扣組與定位水假體放置處47
圖4-26 C形組扣與齒條組合47
圖4-27 頭部連動固定夾完成圖47
圖4-28 長方形檔板可防止頭部連動固定夾脫落48
圖4-29 固定齒輪卡榫48
圖4-30 固定輔具主體完成圖49
圖4-31 固定輔具完成圖49
圖4-32 GE Signa HDxt 1.5T磁振造影掃描儀50
圖4-33 兔子固定圖51
圖5-1 T2 FSE波序掃描所得之影像55
圖5-2 T2 FSE波序掃描影像距離量測之結果55
圖5-3 T2 FSE (4 NEX)波序掃描所得之影響56
圖5-4 T2 FSE (4 NEX)波序掃描影像距離量測之結果56
圖5-5 SE (TR 270 ms)波序掃描所得之影像57
圖5-6 SE (TR 270 ms)波序掃描影像距離量測之結果57
圖5-7 SE (TR 270 ms) 4 NEX波序掃描所得之影像58
圖5-8 SE (TR 270 ms) 4 NEX波序掃描影像距離量測之結果58
圖5-9 GE (TE 4.6 ms)波序掃描所得之影像59
圖5-10 GE (TE 4.6 ms)波序掃描影像距離量測之結果像59
圖5-11 GE (TE 4.6 ms, 4 NEX)波序掃描所得之影像60
圖5-12 GE (TE 4.6 ms, 4 NEX)波序掃描影像距離量測之結果60
圖5-13 FSPGR波序掃描所得之影像61
圖5-14 FSPGR波序掃描影像距離量測之結果61
圖5-15 T2 FSE波序掃描影像之ROI量測62
圖5-16 實驗組與麻醉對照組影像之位移統計圖68
表目錄
表4-1 各造影波序之掃描參數52
表5-1 實驗組影像ROI之SNR量測63
表5-2 麻醉對照組影像ROI之SNR量測64
表5-3 實驗組影像距離量測的統計分析65
表5-4 麻醉對照組影像距離量測的統計分析66
表5-5 實驗組各波序掃描所得影像之位移變化程度67
表5-6 麻醉對照組各波序掃描所得影像之位移變化程度68
中文部份
[1]田建廣,劉買利,夏照帆,葉朝輝,"磁共振成像的安全性",波譜學雜誌,06: 505-511,2002。
[2]別業廣,呂樺,"再談核磁共振在醫學方面的應用",物理與工程,02: 34-61,2004。
[3]莊克士,"醫學影像物理學",合記出版社,1998。
[4]傅傑青,"核磁共振——獲得諾貝爾獎次數最多的一個科學專題",自然雜誌,06: 357-261,2003。
[5]費昌勇教授,"Animals in experiments. Module 25 實驗動物 模組25",http://animal.coa.gov.tw/html/download/resources/b01/module25.pdf。
[6]黃春盛,齒輪的原理和應用,華聯出版社,1993。
[7]稻本 正,王俞惠,謝佩芬,木的手作時間,尖端出版社,2011。
英文部份
[1]A.M. Wyrwicz, N.K. Chen, L. Li, C. Weiss, J.F. Disterhoft, "fMRI of Visual System Activation in the Conscious Rabbit", Magnetic Resonance in Medicine, 44: 474–478, 2000.
[2]B. Govind, Chavhan, S. Paul, Babyn, B. Thomas, M.M. Shroff, E.M. Haacke, "Techniques, and Applications of T2*-based MR Imaging and Its Special Applications", RadioGraphics, 29: 1433–1449, 2009.
[3]B.A. Bensley, "Practical anatomy of the rabbit an elementary laboratory textbook on mammalian anatomy. 2nd ed.", University of Toronto Press in Toronto, 1918.
[4]E. Fukushima, S.B.W. Roeder, "Experimental Pulse NMR", Addison-Wesley, Reading, 1981.
[5]E.L. Hahn, "Spin echoes", Physical Review, 80: 580–594, 1950.
[6]E.T. Whittaker, , "A history of the theories of aether and electricity", Nelson Vol 1., 1951.
[7]F.G. Shellock, C.J. Schatz, P. Julien, "Occlusion and narrowing of the pharyngeal airway in obstructive sleep apnea: evaluation by ultrafast spoiled GRASS MR imaging", AJR Am J Roentgenol., 158(5): 1019–1024, 1992.
[8]H.Y. Carr, "Field Gradients in Early MRI", Physics Today (American Institute of Physics), 57 (7), 2004.
[9]http://www.phys.ncku.edu.tw/~astrolab/e_book/telescopes/images/em_wave.jpg。
[10]http://www.tritechresearch.com。
[11]J. Gong, J.P. Hornak, "A Fast T1 Algorithm." Magn. Reson. Imaging, 10: 623-626, 1992.
[12]J.D. Cohen, W.M. Perlstein, T.S. Braver, L.E. Nystrom, D.C. Noll, J. Jonides, E.E. Smith, "Temporal dynamics of brain activation during a workingmemory task", Nature, 386: 604–608, 1997.
[13]K.K. Kwong, J.W. Belliveau, D.A. Cheder, I.E. Goldberg, R.M. Weisskoff, B.P. Poncelet, D.N. Kennedy, B.E. Hoppel, M.S. Cohen, R. Turner, H.M. Cheng, T.J. Brady, B.R. Rosen, "Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation", Proc. Natl. Acad. Sci. USA, 89: 5675-5679 , 1992.
[14]L. Stefanacci, P. Reber, J. Costanza, E. Wong, R. Buxton, S. Zola, L. Squire, T. Albright, "fMRI of monkey visual-cortex", Neuron, 20: 1051–1057, 1998.
[15]M.J. Miller, C. Weiss, X. Song, G. Iordanescu, J.F. Disterhoft, A.M. Wyrwicz, "fMRI of delay and trace eyeblink conditioning in the primary visual cortex of the rabbit", J Neurosci., 28(19): 4974–4981, 2008.
[16]M.L. Gyngell, C. Bock, B. Schmitz, M.H. Berlage, K.A. Hossmann, "Variation of functional MRI signal in response to frequency of somatosensory stimulation in alpha-chloralose anesthetized rats", Magn Reson Med, 36: 13–15, 1996.
[17]N.A. Kurnit, I.D. Abella, S.R. Hartmann, "Observation of a photon echo", Physical Review Letters, 13: 567–568, 1964.
[18]N.K. Logothetis, H. Guggenberger, S. Peled, J. Pauls, "Functional imaging of the monkey brain", Nat Neurosci, 2: 555–562, 1999.
[19]P. Jezzard, J.P. Rauschecker, D. Malonek, "An in vivo model for functional MRI in cat visual cortex", Magn Reson Med, 38: 699–705, 1997.
[20]P. Mansfield, "Proton magnetic resonance relaxation in solids by transient methods", 1962.
[21]P.A. Bandettini, E.C. Wong, R.S. Hinks, R.S. Tikofsky, J.S. Hyde, "Time course EPI of human brain function during task activation", Mugn. Reson. Med., 25: 390-397, 1992.
[22]P.C. Lauterbur, "Image Formation by Induced Local Interactions: Examples of Employing Nuclear Magnetic Resonance", Nature, 242(5394): 190–191, 1973.
[23]R.B. Buxton, "Introduction to functional magnetic resonance imaging: Principles and techniques", NY: Cambridge University Press, 2002.
[24]R.H. Hashemi, G.B. Willian, "MRI the basics second edition", 合記出版社, 2004.
[25]S. Ogawa, D.W. Tank, R. Menon, J.M. Ellerman, S.G. Kim, H. Merkle, K. Ugurbil, "Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging", Proc. Nutl. Acad. Sci. U S A, 89: 5951-5955, 1992.
[26]S.C. Bushong, "Magnetic resonance imaging: Physical and biological principles. ed/2", St. Louis: Mosby-Year Book, 1996.
[27]S.R. Thomas, L.J. Busse, J.F. Schenck, "Gradient Coil Technology." in Magnetic Resonance Imaging, ed. by C.L. Partain, R.R. Price, J.A. Patton, M.V. Kulkarni, A.E. James, Saunders, Philadelphia, 1988.
[28]T.C. Farrar, "An Introduction To Pulse NMR Spectroscopy", Farragut Press, Chicago, 1987.
[29]T.K.F. Foo, M.A. Bernstein, A.E. Holsinger, S.j. Reiderer, "Ultra-fast spoiled gradient recalled(SPGR) image acquisition(abstr)", Book of Abstracts. Society of Magnetic Resonance in Medicine, Ninth annual meeting. Berkeley, CA:Society of Magnetic Resonance in Medicine, 1308, 1990.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top