跳到主要內容

臺灣博碩士論文加值系統

(18.206.76.226) 您好!臺灣時間:2021/07/30 23:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳崇銘
研究生(外文):Wu, Chungming
論文名稱:可撓式基板之五環素有機薄膜電晶體及應用在有機發光二極體之研究
論文名稱(外文):Investigation Of Pentacene-Based Organic Thin Film Transistors On Flexible Substrate And Their Application In Organic Light Emitting Diodes
指導教授:橫山明聰蘇水祥
指導教授(外文):Yokoyama MeisoSu, Shuihsiang
口試委員:蘇炎坤鄭晃忠許渭州橫山明聰蘇水祥
口試委員(外文):Su, YankuinCheng, HuangchungHsu, WeichouYokoyama MeisoSu, Shuihsiang
口試日期:2012-07-11
學位類別:博士
校院名稱:義守大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:101
中文關鍵詞:有機薄膜電晶體光伏-有機發光二極體緩衝層紫外光固化高分子
外文關鍵詞:Organic Thin Film TransistorsPhotovoltaic Organic Light Emitting DiodesBuffer LayerUltraviolet Patternable Polymer
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1300
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要研究主題為以緩衝層提升可撓式有機薄膜電晶體元件特性、具低溫製程且高解析度圖樣化閘極介電層之研究,以及可撓式光伏-有機發光二極體(PVOLEDs)之研究。
在具有緩衝層的有機薄膜電晶體元件特性研究方面,元件結構為:PET/ITO/PMMA/buffer layer/source drain electrode。pentacene為P-型有機半導體層。研究內容初步以金為源、汲極並以高功函數五氧化二釩 (V2O5)、及常用於有機發光二極體的電洞傳輸層4,4',4''-三(N-3-甲基苯基-N-苯基氨基)三苯胺(m-MTDATA),以及V2O5摻雜m-MTDATA為緩衝層提升有機薄膜電晶體元件特性,載子移動率由0.168提升至0.45 cm2/Vs,開關電流比由8.2×104 提升至 2×105;接著以較金便宜的銀為源、汲極並以有機電洞傳輸層材料(NPB)及電子傳輸層材料(Alq3)為緩衝層來提升有機薄膜電晶體元件特性並探討緩衝層的功效,載子移動率由 0.12提升至0.31 cm2 V-1 s-1; 開關電流比由 6.5×104 提升至 6.7×105。其中在有機半導體層與源、汲極間加入緩衝層能有效提升有機薄膜電晶體元件的特性。再藉由紫外光光電子能譜量測及傳輸線法分析主動層與電極介面關係,發現有機半導體層與電極間的介面耦極量減少,進而導致介面間接觸阻抗降低呈現元件特性提升。
在具低溫製程及高解析度圖樣化閘極介電層之研究方面,我們以低溫製程、高解析度之紫外光固化高分子(mr-UVCur06)為閘極介電層,並完成可撓式有機薄膜電晶體製作,其結構為PET/ITO/mr-UVCur06/pentacene/Ag,研究結果發現具圖樣化閘極介電層可藉由紫外光臭氧處理達到低雜質殘留以及高表面能之功效,使得電洞載子躍遷時更為容易因此有效提升元件特性。載子移動率由0.08提升至0.34 cm2/V- s,開關電流比由3.8×102提升至5.5×104由於元件使用低溫高解析度之閘極介電層材料(mr-UVCur06),因此相較於傳統微影製程呈現製程簡易及降低成本。
在可撓式光伏-有機發光二極體之研究方面,我們將有機太陽能電池堆疊於白光有機發光二極體上,其元件結構為:PET/ITO/CuPc/m-MTDATA:V2O5/NPB/ CBP:FIrpic:DCJTB/BPhen/LiF/Al/P3HT:PCBM/ V2O5/Al。PVOLEDs相較於傳統白光有機發光二極體,於相同驅動條件下具備較高電流密度以及發光效率,當於元件操作於日照環境且驅動電流密度為100 mA/cm2的情況下PVOLEDs發光亮度及發光效率分別提升了34%及27%。因為堆疊於PVOLEDs上之有機太陽能電池吸收光能然後轉換成電能供給有機發光二極體提升發光效率。
The main purpose of this dissertation was the improvement of the performance in OTFTs by inserting a buffer layer between the active layer and source/drain electrodes, the study of feasible fabrication process of gate insulator for OTFTs, and the study of flexible PVOLEDs.
In the research on the improvement of the performance in OTFTs was inserted a buffer layer between the active layer and source/drain electrodes. The structure of OTFTs is PET/ITO/PMMA/pentacene/buffer layer/ source-drain electrodes. Pentacene is well known a p-type organic semiconductor. The selection of a high work function metals of gold as the source / drain electrodes of OTFTs seems an optimal method to enhance the performance of pentacene-based OTFTs. To study the effect of buffer layer in pentacene-based OTFTs, firstly, we used the high work function of gold as the source/drain electrodes. Vanadium pentoxide (V2O5), hole transporting material 4,4',4''-tris{N,(3-methylpheny)-Nphenylamino}- triphenylamine (m-MTDATA) and m-MTDATA-doped V2O5 films were utilized as buffer layers in pentacene-based OTFTs. Following, silver was also utilized as the source / drain electrodes in OTFTs. Experimental result show that the field-effect mobility increases from 0.168 to 0.45 cm2/Vs, and the on/off current ratio increases from 8.2×104 to 2×105 was obtained. The other buffer layers for N, N’-diphenyl-N, N’-bis (1-naphthyl-phenyl)-(1, 1’-biphenyl)-4, 4’- diamine (NPB), tris(8-hydroxyquinolino)-aluminum (Alq3), Alq3/NPB, and NPB/Alq3 films, which were used at the interface between active layer and source/drain electrodes to enhance the performance of OTFTs. Experimental result show that the field-effect mobility increases from 0.12 to 0.31 cm2 V-1 s-1, and the on/off current ratio increases from 6.5×104 to 6.7×105. The interface mechanism and contact resistance were determined using ultra-violet photoelectron spectroscopy (UPS) and the transmission line method (TLM). The buffer layer inserted between electrode and pentacene reduce contact resistance. Such an improvement is attributed by reducing interface dipole at the interface of pentacene and electrodes.
In the research on the feasible fabrication process of gate insulator for OTFTs was utilized a low temperature with high resolution capability UV-patternable polymer, i.e. mr-UVCur06. The patternable mr-UVCur06 can illuminate organic contaminants from its surface and increases surface energy by using UV/ozone post-treatment. Experimental results indicate that a high surface energy existing at the mr-UVCur06 surface has produced in a larger ratio of Ithin film phase/Itriclinic bulk phase in pentacene. And the distance of pentacene molecular crystal structure, which is arranged in the thin film phase, is shorter than that in triclinic bulk phase. Experimental result show that the field-effect mobility increases from 0.08 to 0.34 cm2/Vs, and the on/off current ratio increases from 3.8×102 to 5.5×104 was obtained. Therefore, the performance of pentacene-based OTFTs can be enhanced with few contaminants and a high surface energy on the UV-patternable gate insulator.
In the research on the flexible PVOLEDs device was merged a white organic light-emitting device (WOLED) and an organic photovoltaic (OPV) cell. It has a PET/indium tin oxide (ITO)/copper phthalocyanine (CuPc)/4,4,4-tris(3-methyl-phenylphenylamino) triphenylamine (m-MTDATA):V2O5/2 N′,N-bis(1-naphthyl)-N,N′-diphenyl-1′- biphenyl-4, 4′-diamine (NPB)/ 4,4′-bis(carbazol-9-yl)biphenyl (CBP):bis(3,5-difluoro-2-(2-pyridyl) phenyl-(2-carboxypyridyl) iridium(II) (FIrpic):4-(dicyanomethylene)-2-t-butyl-6 (1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB)/4,7-diphenyl-1,10-phenanthroline (BPhen)/LiF/Al/poly (3-hexylthiophene) (P3HT):[6,6]-phenyl-C 61 butyric acid methyl ester (PCBM)/V2O5/Al structure. The luminance and luminous efficiency of the PVOLED were 34 and 27% higher than those of the conventional WOLED at 100 mA/cm2 outdoors on a sunny day. Comparing with conventional OLEDs, PVOLEDs with OPV cells have a higher current density under the same driving conditions, the luminance efficiency also has been enhanced due to the OPV cells absorbing photoenergy and then transforming it into electrical power for PVOLED lighting.
摘要I
Abstract III
誌謝V
Contents VI
Table and Figure Caption IX
Chapter 1 Introduction 1
1-1 Background 1
1-1. 1 Overview of OTFTs 1
1-1. 2 Overview of OLEDs 2
1-2 Motivation 2
1-3 Outline of the thesis 3
Chapter 2 The Structure and Work Principles of OTFTs and OLEDs 8
2-1 Charge Transport in Organic Semiconductors[26] 8
2-2 Device Structure and Work principles of OTFTs 8
2-2. 1 The Structure of OTFTs 8
2-2. 2 The Operation Mode and Principles of OTFTs 9
2-2. 3 Important Parameters of OTFTs[27] 10
2-3 Device Structure and Work principles of OLEDs 11
2-3. 1 The Structure of OLEDs 11
2-3. 2 The Work Principles of OLEDs 12
2-4 Device Structure and Work principles of OPV cells 12
2-4. 1 The structure of OPV cells 12
2-4. 2 The Work Principles of OPV cells 13
Chapter 3 Fabrication Equipment and Measurement System 16
3-1 Fabrication Equipment 16
3-1. 1 Thermal evaporation system 16
3-1. 2 Spin Coater 16
3-1. 3 Exposure system 17
3-2 Measurement System 17
3-2. 1 Electronic characteristics of OTFTs measurement system 17
3-2. 2 Ultraviolet photoelectron spectroscopy (UPS)[28] 17
3-2. 3 Scanning electron microscopy (SEM)[29] 18
3-2. 4 Fourier transform infrared spectroscopy (FT-IR)[30] 18
3-2. 5 Atomic force microscopy (AFM)[31] 19
3-2. 6 X-ray diffraction (XRD)[32] 19
Chapter 4 Flexible Organic Thin-Film Transistors using Buffer Layer 26
4-1 Organic Thin-Film Transistors by using an Organic-Inorganic Hybrid Buffer Layer 26
4-1. 1 Introduction 26
4-1. 2 Experimental Details 27
4-1. 3 Experimental Results 27
4-1. 4 Summary 30
4-2 The Pentacene-Based Organic Thin Film Transistors by Inserting Stacked NPB and Alq3 Buffer Layers 37
4-1. 1 Introduction 37
4-1. 2 Experimental Details 38
4-1. 3 Experimental Results 38
4-1. 4 Summary 41
Chapter 5 The Ultraviolet-Patternable Polymer Insulator of Organic Thin Film Transistors 48
5-1 Introduction 48
5-2 Experimental Details 49
5-3 Experimental Results 50
5-4 Discussion 52
5-5 Summary 54
Chapter 6 Flexible Photovoltaic Organic Light Emitting Diodes 61
6-1 Introduction 61
6-2 Experimental Details 61
6-3 Experimental Results 62
6-4 Summary 67
Chapter 7 Conclusions and Future Work 77
7-1 Conclusions 77
7-2 Future Work 78
Reference 80
Publication Lists 85
Table and Figure Caption
Table 1-1 The main development events of organic semiconductor 5
Table 6-1 Summary of PVOLED measurement 68
Fig. 1-1 The first transistor fabricated by John Bardeen, Walter Brattain, and William Shockley at Bell Laboratories in 1947.[1] 6
Fig. 1-2 The development of organic semiconductor material of OTFTs.[5] 6
Fig. 1-3 The schematic diagram of the first OLED.[25] 7
Fig. 2-1 The schematic diagram of hopping model for carrier conduction.[26] 14
Fig. 2-2 The various kinds structure of OTFTs 14
Fig. 2-3 The output and transfer characteristic of OTFTs 14
Fig. 2-4 The schematic of work principles of OLEDs 15
Fig. 2-5 The schematic of work principles of organic photovoltaic cells 15
Fig. 3-1 The schematic diagram of the thermal evaporation. 21
Fig. 3-2 The entity diagram of spin coater 21
Fig. 3-3 The entity diagram of the exposure system 22
Fig. 3-4 The entity diagram of electronic characteristics of OTFTs measurement system. 22
Fig. 3-5 The schematic diagram of UPS system.[28] 23
Fig. 3-6 The entity diagram of SEM system.[29] 23
Fig. 3-7 The schematic diagram of FT-IR system.[30] 24
Fig. 3-8 The schematic diagram of AFM system.[31] 24
Fig. 3-9 (a) The schematic diagram of Bragg’s condition. (b) The schematic diagram of XRD.[32] 25
Fig. 4-1 Schematic architectures of the OTFT with a buffer layer between pentacene and Au electrodes. 31
Fig. 4-2 The output characteristics of IDS versus VDS of OTFTs (a) without a buffer layer and with a buffer layer of (b) V2O5 and (c) m-MTDATA, respectively. 31
Fig. 4-3 The transfer characteristics of IDS versus VGS and the square root of the IDS versus VGS curve. 32
Fig. 4-4 (a)The output characteristics of IDS versus VDS of OTFTs with a V2O5 or m-MTDATA-doped V2O5 buffer layer. (b)The transfer characteristics of IDS versus VGS and the square root of the IDS versus VGS curve of OTFTs with a m-MTDATA or m-MTDATA-doped V2O5 buffer layer. 32
Fig. 4-5 The mobility (■), threshold voltage (●), and on/off current ratio (▲) for the OTFTs (i) without a buffer layer, or with a buffer layer of (ii) V2O5, (iii) m-MTDATA, and (iv) m-MTDATA-doped V2O5, respectively. 33
Fig. 4-6 The UPS spectra measured during the step-by-step deposition of (a)Au/pentacene, (b)Au/ V2O5/pentacene, (c)Au/m-MTDATA/pentacene, and (d)Au/m-MTDATA-doped V2O5/pentacene, respectively. 35
Fig. 4-7 Energy level diagrams of (a)Au/pentacene, (b)Au/V2O5/pentacene, (c)Au/m-MTDATA/pentacene, and (d)Au/m-MTDATA-doped V2O5/pentacene, respectively. Φh is the hole injection barriers and eD is the interface dipole. 36
Fig. 4-8 Schematic architectures of OTFT (a) without and (b) with a buffer layer between pentacene and Ag electrodes. 42
Fig. 4-9 Output characteristics of IDS versus VDS of OTFTs (a) without a buffer layer, and with a buffer layer of (b) NPB, (c) Alq3, (d) Alq3/NPB, and (e) NPB/Alq3. 43
Fig. 4-10 (a) Transfer characteristics of IDS versus VGS and the square root of the IDS versus VGS curve. (b) Mobility (■), threshold voltage (●), and on/off ratio (▲) for OTFTs (i) without a buffer layer, or with a buffer layer of (ii) NPB, (iii) Alq3, (iv) Alq3/NPB, and (v) NPB/Alq3. 44
Fig. 4-11 UPS spectra of specimens deposited step by step: (a) pentacene/Ag, (b) pentacene/NPB/Ag, (c) pentacene/Alq3/Ag, (d) pentacene/Alq3/NPB/Ag, and (e) pentacene/NPB/Alq3/Ag. 45
Fig. 4-12 Energy level diagrams of (a) pentacene/Ag, (b) pentacene/NPB/Ag, (c) pentacene/Alq3/Ag, (d) pentacene/Alq3/NPB/Ag, and (e) pentacene/NPB/Alq3/Ag. Φh and eD are the hole injection barriers and interface dipole. 46
Fig. 4-13 Total resistance as a function of channel length for various gate voltages for OTFT (a) without a buffer layer and (b) with NPB/Alq3 buffer layer. (c) Contact resistances for OTFT without a buffer layer or with NPB/Alq3 buffer layer. 47
Fig. 5-1 Comparison of (a) conventional lithography and (b) photopatternable processes. 55
Fig. 5-2 Curing reaction of acrylates initiated by UV light. (b) Schematic cross section of a pentacene-base OTFT with mr-UVCur06 as an insulator. 56
Fig. 5-3 Leakage current of the ITO/mr-UVCur06 (490 nm)/Al structure determined at a frequency of 100 kHz by applying the voltage in a step of 1 V from −50 to 50 V. 56
Fig. 5-4 SEM cross-sectional image of the mr-UVCur06 patterned at a line and space of 20 and 5 μm, respectively. 57
Fig. 5-5 FT-IR spectra of gate insulator layers, mr-UVCur06, exposed to UV/ozone for various exposure time intervals. 57
Fig. 5-6 (a) and (b) show the output (IDS versus VDS) and transfer (IDS versus VGS) characteristic curves of OTFTs with a patterned gate insulator, which are post-treated by UV/ozone at the time for 0, 30, 60 and 180 s. 58
Fig. 5-7 The contact angles of mr-UVCur06 surface which are post-treated by UV/ozone for (a) 0, (b) 30, (c) 60 and (d) 180 s. 59
Fig. 5-8 The AFM images of pentacene films deposited on mr-UVCur06 surface. The mr-UVCur06 is treated by UV/ozone for (a) 0, (b) 30, (c) 60 and (d) 180 s. 60
Fig. 5- 9 The XRD spectra of pentacene deposited on mr-UVCur06. The mr-UVCur06 is treated by UV/ozone for 0 s, 30 s, 60 s and 180 s. The inset shows the diffraction peak intensity ratio of the ‘‘thin film phase” to ‘‘triclinic bulk phase” for pentacene. 60
Fig. 6-1 Configurations of (a) PVOLED and (b) conventional WOLED. 69
Fig. 6-2 J–V curve of photovoltaic cell in PVOLED device operated at various statuses. 69
Fig. 6-3 Normalized EL spectra of WOLED at various current densities, and UV-vis absorption spectra of P3HT:PCBM. 70
Fig. 6-4 (a) Plots of luminance and luminous efficiency versus current density of conventional WOLED and PVOLED. (b) Plot of current density versus voltage of conventional OLED. 71
Fig. 6-5 Luminance and power recycling efficiency of PVOLED versus photocurrent. 72
Fig. 6-6 (a) EL spectra and Lambert plots of conventional WOLED and PVOLED at viewing angles of 0, 30, 60, and 80°. (b) Normalized EL spectra of the conventional WOLED and PVOLED at 20 mA/cm2. 73
Fig. 6-7 Transmission spectra of stripped Al layer with 80 nm thickness and 100 μm line interval evaporated on glass substrate. 74
Fig. 6-8 Refractive index and extinction coefficient spectra of P3HT:PCBM blends. 74
Fig. 6-9 Contrast ratios of conventional WOLED and PVOLED under various ambient illuminance conditions. 75
Fig. 6-10 Photographs of (a) conventional WOLED and (b) PVOLED. 75
Fig. 6-11 (a) The schematic architecture of OTFTs integrated with OLEDs. (b) The entity diagram of OTFTs driving OLEDs which active area is 9 mm×3 mm. When the OTFTs was biased as VGS=VDS= -40 V, the drain current of OTFTs was about 0.3 mA and the luminance of OLEDs was 100 cd/m2. 76
Fig. 7-1 The structure of OTFTs with transparent electrode as source/drain electrode. 79
Fig. 7-2 The structure of PVOLEDs uses a transparent electrode with high transmittance in both visible and infrared radiation region.[93] 79
[1]A. Godoy, L. Cattin, L. Toumi, F.R. Díaz, M.A. del Valle, G.M. Soto, B. Kouskoussa, M. Morsli, K. Benchouk, A. Khelil, and J.C. Bernède: Sol. Energy Mater. Sol. Cells 94 (2010) 648.
[2]A. Torikai, M. Ohno, and K. Fueki: J. Appl. Polym. Sci. 41 (1990) 1023.
[3]Analytical and Advanced Solutions: Fourier transform infrared spectroscopy Manual
[4]B. Wei, S. Yamamoto, M. Ichikawa, C. Li, T. Fukuda, and Y. Taniguchi: Semicond. Sci. Technol. 22 (2007) 788.
[5]B.T. Wu, Y.K. Su, M.L. Tu, A.C. Wang, Y.S. Chen, Y.Z. Chiou, Y.T. Chiou, and C.H. Chu: Jpn. J. Appl. Phys. 44 (2005) 2783.
[6]C. Bartic, H. Jansen, A. Campitelli, and S. Borghs: Org. Electron. 3 (2002) 65.
[7]C. D. Dimitrakopoulos and P. R. L. Malenfant: Adv. Mater. 2 (2002) 14.
[8]C. D. Sheraw, D. J. Gundlach, and T. N. Jackson: Mater. Res. Soc. Symp. Proc. 558 (2000)
[9]C. J. Drury, C. M. J. Mutsaers, C. M. Hart, M. Matters, and D. M. de Leeuw: Appl. Phys. Lett. 73 (1998) 108.
[10]C. J. Yang, T. Y. Cho, C. L. Lin, and C. C. Wu: Appl. Phys. Lett. 90 (2007) 173507.
[11]C. Li, H. Kimura, T. Saito, K. Sakurai, B. Wei, M. Ichikawa, and Y. Taniguchi: Opt. Express 15 (2007) 14422.
[12]C. Shen and A. Kahn: Org. Electron. 2 (2001) 89.
[13]C. Shen and A. Kahn: Org. Electron. 2 (2001) 89.
[14]C. T. Lin, C. H. Hsu, I. R. Chen, C. H. Lee, and W. J. Wu: Thin Solid Films 519 (2011) 8008.
[15]C. W. Chu, S. H. Li, C. W. Chen, V. Shrotriya, and Y. Yang: Appl. Phys. Lett. 87 (2005) 193508.
[16]C. W. Chu, S. H. Li, C. W. Chen, V. Shrotriya, and Y. Yang: Appl. Phys. Lett. 87 (2005) 193508.
[17]C. W. Chu, S. H. Li, C. W. Chen, V. Shrotriya, and Y. Yang: Appl. Phys. Lett. 87 (2005) 193508.
[18]C. W. Tang and S. A. Vanslyke: Appl. Phys. Lett. 51 (1987) 913.
[19]C. W. Tang and S. A. VanSlyke: Appl. Phys. Lett. 51 (1987) 913.
[20]C.D. Dimitrakopoulos and P.R.L. Malenfant: Adv. Mater. 14 (2002) 99.
[21]C.D. Sheraw, D.J. Gundlach, and T.N. Jackson: Mater. Res. Soc. Symp. Proc. 558 (2000) 403.
[22]C.J. Drury, C.M.J. Mutsaers, C.M. Hart, M. Matters, D.M. de Leeuw: Appl. Phys. Lett. 73 (1998) 108.
[23]C.W. Chu, S.H. Li, C.W. Chen, V. Shrotriya, Y. Yang: Appl. Phys. Lett. 87 (2005) 193508.
[24]D. A. Neamen: Semiconductor Physics and Devices, Third Edition (2003).
[25]D. Kim, S. Jeong, S. Lee, B. K. Park, and J. Moon: Thin Solid Films 515 (2007) 7692.
[26]D. Knipp, R. A. Street, A. Völkel, and J. Ho: J. Appl. Phys. 93 (2003) 347.
[27]D. W. Chou, Y. J. Lin, J. H. Wei-Chin, Y. C. Li, and Y. H. Wang: Solid-State Electron. 64 (2011) 1.
[28]D. W. Turner and M. I. Al Jobory: J. Chem. Phys. 37 (1962) 3007.
[29]F.C. Chen, L. J. Kung, and T. H. Chen: Appl. Phys. Lett. 90 (2007) 073504.
[30]G. Horowitz, F. Deloffre, F. Gamier, R. Hajlaoui, M. Hmyene and A. Yassar: Synth. Met. 54 (1993) 435.
[31]G. Horowitz, F. Deloffre, F. Gamier, R. Hajlaoui, M. Hmyene and A. Yassar: Synth. Met. 54 (1993) 435.
[32]G. Horowitz: Adv. Mater. (Weinheim, Ger.) 10 (1998) 365.
[33]G. Horowtiz: Adv. Mater., 10 (1998) 365.
[34]G.C. Yuan, Z. Lu, Z. Xu, C. Gong, Q.L. Song, S.L. Zhao, F.J. Zhang, N. Xu, Y. Gan, H.B. Yang, and C.M. Li: Org. Electron. 10 (2009) 1388.
[35]H. Klauk, M. Halik, U. Zschieschang, G. Schmid, and W. Radlik: J. Appl. Phys. 92 (2002) 5259.
[36]H. Koezuka, A. Tsumura, and T. Ando: Synth. Met. 18 (1987) 699.
[37]H. M. Lee, H. Moon, H. S. Kim, Y. N. Kim, S. M. Choi, S. Yoo, and S. O. Cho: Org. Electron. 12 (2011) 1446.
[38]H. Naarmann: Polymers, Electrically Conducting” in Ullmann's Encyclopedia of Industrial Chemistry (2002).
[39]Hitachi Inc.: Hitachi 4700 Scanning Electron Microscope Manual
[40]J. Bardeen: Solid State Technol., 30, (1987) 69.
[41]J. H. Lee, C. C. Liao, P. J. Hu, and C. Yih: Synth. Met. 144 (2004) 279.
[42]J. H. Lee, J. I. Lee, and H. Y. Chu: Synth. Met. 159 (2009) 991.
[43]J. Hwang, A. Wan, A. Kahn: Materials Science and Engineering: R: Reports 64 (2009) 1.
[44]J. Kwon, J. P. Hong, W. Lee, S. Noh, C. Lee, S. Lee, and J. I. Hong: Org. Electron. 11 (2010) 1103.
[45]J. Ni, T. Tano, Y. Ichino, T. Hanada, T. Kamata, N. Takada, and K. Yase: Jpn. J. Appl. Phys. 40 (2001) L948.
[46]J. Park, J. Lee, and D. Shin: J. Disp. Technol. 6 (2010) 247.
[47]J. Park, J. M. Kang, D. W. Kim, and J. Sun Choi: Thin Solid Films 518 (2010) 6232.
[48]J. Wang, H. Wang, J. Zhang, X. Yan, and D. Yan: J. Appl. Phys. 97 (2005) 026106.
[49]J.B. Koo, J.W. Lim, S.H. Kim, S.J. Yun, C.H. Ku, S.C. Lim, and J.H. Lee: Thin Solid Films 515 (2007) 3132.
[50]J.M. Choi, and S. Im: Synth. Met. 159 (2009) 1689.
[51]L. L. Chua, P. K. H. Ho, H. Sirringhaus, and R. H. Friend: Appl. Phys. Lett. 84 (2004) 3400.
[52]L.L. Chua, J. Zaumseil, J.F. Chang, E.C.W. Ou, P.K.H. Ho, H. Sirringhaus, and R.H. Friend: Nature 434 (2005) 194.
[53]L.L. Chua, P.K.H. Ho, H. Sirringhaus, and R.H. Friend: Appl. Phys. Lett. 84 (2004) 3400.
[54]Lang, K.M., D. A. Hite, R. W. Simmonds, R. McDermott, D. P. Pappas, and J. M. Martinis: Rev. Sci. Instrum. 75 (2004) 2726.
[55]M. Born and E. Wolf: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon Press, New York, 1980) 6th ed., 51.
[56]M. M. El-Nahass, F. S. Bahabri, and R. A. Harbi: Egypt. J. Sol. 24 (2001) 11.
[57]M. Shtein, J. Mapel, J. B. Benziger, and S. R. Forrest: Appl. Phys. Lett. 81 (2002) 268.
[58]M. Yokoyama, S. H. Su, C. C. Hou, C. T. Wu, and C. H. Kung: Jpn. J. Appl. Phys. 50 (2011) 04DK06.
[59]M.G. Mason, C.W. Tang, L.S. Hung, P. Raychaudhuri, J. Madathil, D.J. Giesen, L. Yan, Q.T. Le, Y. Gao, S.T. Lee, L.S. Liao and L.F. Cheng: J. Appl. Phys. 89 (2001) 2756.
[60]N. Koch, A. Kahn, J. Ghijsen, J. J. Pireaux, J. Schwartz, R. L. Johnson, and A. Elschner: Appl. Phys. Lett. 82 (2003) 70.
[61]P. V. Necliudov and M. Shur: Solid-State Electron. 47 (2003) 259.
[62]P. Y. Chen, M. Yokoyama, and H. Y. Ueng: Jpn. J. Appl. Phys. Lett. 49 (2010) 012102.
[63]Q. Qi, A. Yu, P. Jiang, and C. Jiang: Appl. Surf. Sci. 255 (2009) 5096.
[64]R. Schroeder, L. A. Majewski, and M. Grell: Appl. Phys. Lett. 84 (2004) 1004.
[65]R. Schroeder, L. A. Majewski, and M. Grell: Appl. Phys. Lett. 84 (2004) 1004.
[66]R. Schroeder, L. A. Majewski, and M. Grell: Appl. Phys. Lett. 84, 1004 (2004).
[67]R. Schroeder, L.A. Majewski, and M. Grell: Appl. Phys. Lett. 84 (2004) 1004.
[68]S. Altazin, R. Clerc, R. Gwoziecki, D. Boudinet, G. Ghibaudo, G. Pananakakis, I. Chartier, and R. Coppard: Org. Electron. 12 (2011) 897.
[69]S. H. Eom, Y. Zheng, E. Wrzesniewski, J. Lee, N. Chopra, F. So, and J. Xue: Appl. Phys. Lett. 94 (2009) 153303.
[70]S. Pyo, H. Son, K.Y. Choi, and M.H. Yi: Appl. Phys. Lett. 86 (2005) 133508.
[71]S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo: Nature 459 (2009) 234.
[72]S.C. Lim, S.H. Kim, J.H. Lee, M.K. Kim, D.J. Kim, and T. Zyung, Synth: Met. 148 (2005) 75.
[73]S.J. Choi, S. Lee, and K.K. Han: Appl. Phys. Lett. 90 (2007) 063507.
[74]S.Y. Yang, K. Shin, and C.E. Park: Adv. Funct. Mater. 15 (2005) 1806.
[75]Shimadzu Corp.: x-ray diffractometer manual
[76]Stephen A. Campbell: The Science and Engineering of Microelectronic Fabrication, second edition (2001).
[77]T. Hasegawa and J. Takeya: Sci. Technol. Adv. Mat. 10 (2009) 024314.
[78]T. S. Huang, Y. K. Su, and P. C. Wang: Appl. Phys. Lett. 91 (2007) 92116.
[79]T. Takenobu, T. Takahashi, T. Kanbara, K. Tsukagoshi, Y. Aoyagi, and Y. Lwasa: Appl. Phys. Lett. 88 (2006) 033511.
[80]T.S. Huang, Y.K. Su, and P.C. Wang: Appl. Phys. Lett. 91 (2007) 92116.
[81]W. Hu, Y. Zhao, C. S. Ma, J. G. Hou, and S. Y. Liu: Microelectron. J. 38 (2007) 509.
[82]W. Hu, Y. Zhao, C. S. Ma, J. Y. Hou and S. Y. Liu: Microelectronics J. 38 (2007) 509.
[83]W. Hu, Y. Zhao, J. Y. Hou, C. S. Ma, and S.Y. Liu: Microelectron. J. 38 (2007) 632.
[84]W. J. Yoon and P. R. Berger: Org. Electron. 11 (2010) 1719.
[85]X. L. Zhu, J. X. Sun, H. J. Peng, Z. G. Meng, M. Wong, and H. S. Kwok: Appl. Phys. Lett. 87 (2005) 153508.
[86]X. Tian, Z. Xu, F. Zhang, S. Zhao, G. Yuan, J. Li, Q. Sun, and Y. Wang: Curr. Appl. Phys. 10 (2010) 129.
[87]X. Yu, J. S. Yu, J. L. Zhou, J. Huang, and Y. D. Jiang: Appl. Phys. Lett. 99 (2011) 063306.
[88]X. Z. Wang, H. L. Tam, K. S. Yong, Z. K. Chen, and F. Zhu: Org. Electron. 12 (2011) 1429.
[89]Y. Gao, Mater: Sci. Eng. R 68 (2010) 39.
[90]Y. Hirose, A. Kahn, V. Aristov, P. Soukiassian, V. Bulovic, and S.R. Forrest: Phys. Rev. B 54 (1996) 13748.
[91]Y. Jang, D. H. Kim, Y. D. Park, J. H. Cho, M. Hwang, and K. Cho: Appl. Phys. Lett. 88 (2006) 072101.
[92]Y. Okuhara, T. Kato, H. Matsubara, N. Isu, and M. Takata: Thin Solid Films 519 (2011) 2280.
[93]Y. S. Jung, J. Y. Seo, D. W. Lee, and D. Y. Jeon: Thin Solid Films 445 (2003) 63.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top